This commit is contained in:
Mario Voigt 2024-01-18 11:56:30 +01:00
parent 68e1dd9ac4
commit 6f1d0d2003

View File

@ -37,265 +37,272 @@ from optparse import SUPPRESS_HELP
class ChainPaths(inkex.EffectExtension): class ChainPaths(inkex.EffectExtension):
def __init__(self): def __init__(self):
inkex.Effect.__init__(self) inkex.Effect.__init__(self)
# For handling an SVG viewbox attribute, we will need to know the # For handling an SVG viewbox attribute, we will need to know the
# values of the document's <svg> width and height attributes as well # values of the document's <svg> width and height attributes as well
# as establishing a transform from the viewbox to the display. # as establishing a transform from the viewbox to the display.
self.chain_epsilon = 0.01 self.chain_epsilon = 0.01
self.snap_ends = True self.snap_ends = True
self.close_loops = True self.close_loops = True
self.segments_done = {} self.segments_done = {}
self.min_missed_distance_sq = None self.min_missed_distance_sq = None
self.chained_count = 0 self.chained_count = 0
self.arg_parser.add_argument('-V', '--version', type=inkex.Boolean, default=False, help = 'Just print version number ("' + __version__ + '") and exit.') self.arg_parser.add_argument('-V', '--version', type=inkex.Boolean, default=False, help = 'Just print version number ("' + __version__ + '") and exit.')
self.arg_parser.add_argument('-s', '--snap_ends', type=inkex.Boolean, default=True, help='snap end-points together when connecting') self.arg_parser.add_argument('-s', '--snap_ends', type=inkex.Boolean, default=True, help='snap end-points together when connecting')
self.arg_parser.add_argument('-c', '--close_loops', type=inkex.Boolean, default=True, help='close loops (start/end of the same path)') self.arg_parser.add_argument('-c', '--close_loops', type=inkex.Boolean, default=True, help='close loops (start/end of the same path)')
self.arg_parser.add_argument('-l', '--limit', type=int, default=2000, help='Maximum items to process') self.arg_parser.add_argument('-l', '--limit', type=int, default=2000, help='Maximum items to process')
self.arg_parser.add_argument('-u', '--units', default="mm", help="measurement unit for epsilon") self.arg_parser.add_argument('-u', '--units', default="mm", help="measurement unit for epsilon")
self.arg_parser.add_argument('-e', '--chain_epsilon', type=float, default=0.01, help="Max. distance to connect [mm]") self.arg_parser.add_argument('-e', '--chain_epsilon', type=float, default=0.01, help="Max. distance to connect [mm]")
self.arg_parser.add_argument('-d', '--debug', type=inkex.Boolean, default=False, help='Debug') self.arg_parser.add_argument('-d', '--debug', type=inkex.Boolean, default=False, help='Debug')
def version(self): def version(self):
return __version__ return __version__
def author(self): def author(self):
return __author__ return __author__
def calc_unit_factor(self, units='mm'): def calc_unit_factor(self, units='mm'):
""" return the scale factor for all dimension conversions. """ return the scale factor for all dimension conversions.
- The document units are always irrelevant as - The document units are always irrelevant as
everything in inkscape is expected to be in 90dpi pixel units everything in inkscape is expected to be in 90dpi pixel units
""" """
dialog_units = self.svg.unittouu(str(1.0)+units) dialog_units = self.svg.unittouu(str(1.0)+units)
self.unit_factor = 1.0 / dialog_units self.unit_factor = 1.0 / dialog_units
return self.unit_factor return self.unit_factor
def reverse_segment(self, seg): def reverse_segment(self, seg):
r = [] r = []
for s in reversed(seg): for s in reversed(seg):
# s has 3 elements: handle1, point, handle2 # s has 3 elements: handle1, point, handle2
# Swap handles. # Swap handles.
s.reverse() s.reverse()
r.append(s) r.append(s)
return r return r
def set_segment_done(self, so, id, n, msg=''): def set_segment_done(self, so, id, n, msg=''):
if not id in self.segments_done: if not id in self.segments_done:
self.segments_done[id] = {} self.segments_done[id] = {}
self.segments_done[id][n] = True self.segments_done[id][n] = True
if so.debug: inkex.utils.debug("done {} {} {}".format(id, n, msg)) if so.debug: inkex.utils.debug("done {} {} {}".format(id, n, msg))
def is_segment_done(self, id, n): def is_segment_done(self, id, n):
if not id in self.segments_done: if not id in self.segments_done:
return False return False
if n in self.segments_done[id]: if n in self.segments_done[id]:
return True return True
return False return False
def link_segments(self, seg1, seg2): def link_segments(self, seg1, seg2):
if self.snap_ends: if self.snap_ends:
seg = seg1[:-1] seg = seg1[:-1]
p1 = seg1[-1] p1 = seg1[-1]
p2 = seg2[0] p2 = seg2[0]
# fuse p1 and p2 to create one new point: # fuse p1 and p2 to create one new point:
# first handle from p1, point coordinates averaged, second handle from p2 # first handle from p1, point coordinates averaged, second handle from p2
seg.append([ [ p1[0][0] , p1[0][1] ], seg.append([
[ (p1[1][0] + p2[1][0]) * .5, (p1[1][1] + p2[1][1]) * .5 ], [ p1[0][0] , p1[0][1] ],
[ p2[2][0] , p2[2][1] ] ]) [(p1[1][0] + p2[1][0]) * .5, (p1[1][1] + p2[1][1]) * .5],
seg.extend(seg2[1:]) [ p2[2][0] , p2[2][1] ]
else: ])
seg = seg1[:] seg.extend(seg2[1:])
seg.extend(seg2[:]) else:
self.chained_count += 1 seg = seg1[:]
return seg seg.extend(seg2[:])
self.chained_count += 1
return seg
def near_ends(self, end1, end2): def near_ends(self, end1, end2):
""" requires self.eps_sq to be the square of the near distance """ """ requires self.eps_sq to be the square of the near distance """
dx = end1[0] - end2[0] dx = end1[0] - end2[0]
dy = end1[1] - end2[1] dy = end1[1] - end2[1]
d_sq = dx * dx + dy * dy d_sq = dx * dx + dy * dy
if d_sq > self.eps_sq: if d_sq > self.eps_sq:
if self.min_missed_distance_sq is None: if self.min_missed_distance_sq is None:
self.min_missed_distance_sq = d_sq self.min_missed_distance_sq = d_sq
elif self.min_missed_distance_sq > d_sq: elif self.min_missed_distance_sq > d_sq:
self.min_missed_distance_sq = d_sq self.min_missed_distance_sq = d_sq
return False return False
else: else:
return True return True
def effect(self): def effect(self):
so = self.options so = self.options
if so.version: if so.version:
print(__version__) print(__version__)
sys.exit(0) sys.exit(0)
self.calc_unit_factor(so.units) self.calc_unit_factor(so.units)
if so.snap_ends is not None: self.snap_ends = so.snap_ends if so.snap_ends is not None: self.snap_ends = so.snap_ends
if so.close_loops is not None: self.close_loops = so.close_loops if so.close_loops is not None: self.close_loops = so.close_loops
if so.chain_epsilon is not None: self.chain_epsilon = so.chain_epsilon if so.chain_epsilon is not None: self.chain_epsilon = so.chain_epsilon
if self.chain_epsilon < 0.001: self.chain_epsilon = 0.001 # keep a minimum. if self.chain_epsilon < 0.001: self.chain_epsilon = 0.001 # keep a minimum.
self.eps_sq = self.chain_epsilon * self.unit_factor * self.chain_epsilon * self.unit_factor self.eps_sq = self.chain_epsilon * self.unit_factor * self.chain_epsilon * self.unit_factor
selected = self.svg.selected.items() selected = self.svg.selected.items()
itemsCount = len(selected) itemsCount = len(selected)
if not itemsCount: if not itemsCount:
inkex.errormsg("Please select one or more objects.") inkex.errormsg("Please select one or more objects.")
return return
#selected = dict(reversed(list(selected))) #reverse #selected = dict(reversed(list(selected))) #reverse
if so.limit > 0 and itemsCount > so.limit: if so.limit > 0 and itemsCount > so.limit:
inkex.utils.debug("Maximum items to process is set to {}. You selected {} items. We continue with processing until limit is reached.".format(so.limit, itemsCount)) inkex.utils.debug("Maximum items to process is set to {}. You selected {} items. We continue with processing until limit is reached.".format(so.limit, itemsCount))
segments = [] segments = []
workedon = 0 workedon = 0
for id, node in selected: for id, node in selected:
if node.tag != inkex.addNS('path', 'svg'): if node.tag != inkex.addNS('path', 'svg'):
inkex.errormsg("Object id {} is not a path. Try\n - Path->Object to Path\n - Object->Ungroup".format(node.get('id'))) inkex.errormsg("Object id {} is not a path. Try\n - Path->Object to Path\n - Object->Ungroup".format(node.get('id')))
return return
if so.debug: inkex.utils.debug("id={}, tag=".format(idnode.get('id'), node.tag)) #check if node has a transform. If yes, print a warning
path_d = CubicSuperPath(Path(node.get('d'))) if node.get('transform') is not None:
sub_idx = -1 inkex.utils.debug("Warning: node {} has transform {}. Use 'Apply Transforms' extension before to handle this.".format(node.get('id'), node.get('transform')))
for sub in path_d: return
sub_idx += 1
# sub = [[[200.0, 300.0], [200.0, 300.0], [175.0, 290.0]], [[175.0, 265.0], [220.37694, 256.99876], [175.0, 240.0]], [[175.0, 215.0], [200.0, 200.0], [200.0, 200.0]]] if so.debug: inkex.utils.debug("id={}, tag=".format(idnode.get('id'), node.tag))
# this is a path of three points. All the bezier handles are included. the Structure is: path_d = CubicSuperPath(Path(node.get('d')))
# [[handle0_OUT, point0, handle0_1], [handle1_0, point1, handle1_2], [handle2_1, point2, handle2_OUT]] sub_idx = -1
# the _OUT handles at the end of the path are ignored. The data structure has them identical to their points. for sub in path_d:
# sub_idx += 1
if so.debug: inkex.utils.debug(" sub={}".format(sub)) # sub = [[[200.0, 300.0], [200.0, 300.0], [175.0, 290.0]], [[175.0, 265.0], [220.37694, 256.99876], [175.0, 240.0]], [[175.0, 215.0], [200.0, 200.0], [200.0, 200.0]]]
end1 = [sub[ 0][1][0], sub[ 0][1][1]] # this is a path of three points. All the bezier handles are included. the Structure is:
end2 = [sub[-1][1][0], sub[-1][1][1]] # [[handle0_OUT, point0, handle0_1], [handle1_0, point1, handle1_2], [handle2_1, point2, handle2_OUT]]
# the _OUT handles at the end of the path are ignored. The data structure has them identical to their points.
#
if so.debug: inkex.utils.debug(" sub={}".format(sub))
end1 = [sub[ 0][1][0], sub[ 0][1][1]]
end2 = [sub[-1][1][0], sub[-1][1][1]]
# Remove trivial self reversal when building candidate segments list. # Remove trivial self reversal when building candidate segments list.
if ((len(sub) == 3) and self.near_ends(end1, end2)): if ((len(sub) == 3) and self.near_ends(end1, end2)):
if so.debug: inkex.utils.debug("dropping segment from self-reversing path, length: {}".format(len(sub))) if so.debug: inkex.utils.debug("dropping segment from self-reversing path, length: {}".format(len(sub)))
sub.pop() sub.pop()
end2 = [sub[-1][1][0], sub[-1][1][1]] end2 = [sub[-1][1][0], sub[-1][1][1]]
segments.append({'id': id, 'n': sub_idx, 'end1': end1, 'end2':end2, 'seg': sub}) segments.append({'id': id, 'n': sub_idx, 'end1': end1, 'end2':end2, 'seg': sub})
if node.get(inkex.addNS('type', 'sodipodi')): if node.get(inkex.addNS('type', 'sodipodi')):
del node.attrib[inkex.addNS('type', 'sodipodi')] del node.attrib[inkex.addNS('type', 'sodipodi')]
workedon += 1 workedon += 1
if workedon >= so.limit and so.limit > 0: if workedon >= so.limit and so.limit > 0:
break break
if so.debug: inkex.utils.debug("-------- seen: ") if so.debug: inkex.utils.debug("-------- seen: ")
for s in segments: for s in segments:
if so.debug: inkex.utils.debug("{}, {}, {}, {}".format(s['id'], s['n'], s['end1'], s['end2'])) if so.debug: inkex.utils.debug("{}, {}, {}, {}".format(s['id'], s['n'], s['end1'], s['end2']))
# chain the segments # chain the segments
obsoleted = 0 obsoleted = 0
remaining = 0 remaining = 0
workedon = 0 workedon = 0
for id, node in selected: for id, node in selected:
path_d = CubicSuperPath(Path(node.get('d'))) path_d = CubicSuperPath(Path(node.get('d')))
# ATTENTION: for parsePath() it is the same, if first and last point coincide, or if the path is really closed. # ATTENTION: for parsePath() it is the same, if first and last point coincide, or if the path is really closed.
path_closed = True if re.search(r'z\s*$', node.get('d')) else False path_closed = True if re.search(r'z\s*$', node.get('d')) else False
new = [] new = []
cur_idx = -1 cur_idx = -1
for chain in path_d: for chain in path_d:
cur_idx += 1 cur_idx += 1
if not self.is_segment_done(id, cur_idx): if not self.is_segment_done(id, cur_idx):
# quadratic algorithm: we check both ends of the current segment. # quadratic algorithm: we check both ends of the current segment.
# If one of them is near another known end from the segments list, we # If one of them is near another known end from the segments list, we
# chain this segment to the current segment and remove it from the # chain this segment to the current segment and remove it from the
# list, # list,
# end1-end1 or end2-end2: The new segment is reversed. # end1-end1 or end2-end2: The new segment is reversed.
# end1-end2: The new segment is prepended to the current segment. # end1-end2: The new segment is prepended to the current segment.
# end2-end1: The new segment is appended to the current segment. # end2-end1: The new segment is appended to the current segment.
self.set_segment_done(so, id, cur_idx, "output") # do not cross with ourselves. self.set_segment_done(so, id, cur_idx, "output") # do not cross with ourselves.
end1 = [chain[ 0][1][0], chain[ 0][1][1]] end1 = [chain[ 0][1][0], chain[ 0][1][1]]
end2 = [chain[-1][1][0], chain[-1][1][1]] end2 = [chain[-1][1][0], chain[-1][1][1]]
# Remove trivial self revesal when doing the actual chain operation. # Remove trivial self revesal when doing the actual chain operation.
if ((len(chain) == 3) and self.near_ends(end1, end2)): if ((len(chain) == 3) and self.near_ends(end1, end2)):
chain.pop() chain.pop()
end2 = [chain[-1][1][0], chain[-1][1][1]] end2 = [chain[-1][1][0], chain[-1][1][1]]
segments_idx = 0 segments_idx = 0
while segments_idx < len(segments): while segments_idx < len(segments):
seg = segments[segments_idx] seg = segments[segments_idx]
if self.is_segment_done(seg['id'], seg['n']): if self.is_segment_done(seg['id'], seg['n']):
segments_idx += 1 segments_idx += 1
continue continue
if (self.near_ends(end1, seg['end1']) or if (self.near_ends(end1, seg['end1']) or
self.near_ends(end2, seg['end2'])): self.near_ends(end2, seg['end2'])):
seg['seg'] = self.reverse_segment(seg['seg']) seg['seg'] = self.reverse_segment(seg['seg'])
seg['end1'], seg['end2'] = seg['end2'], seg['end1'] seg['end1'], seg['end2'] = seg['end2'], seg['end1']
if so.debug: inkex.utils.debug("reversed seg {}, {}".format(seg['id'], seg['n'])) if so.debug: inkex.utils.debug("reversed seg {}, {}".format(seg['id'], seg['n']))
if self.near_ends(end1, seg['end2']): if self.near_ends(end1, seg['end2']):
# prepend seg to chain # prepend seg to chain
self.set_segment_done(so, seg['id'], seg['n'], 'prepended to {} {}'.format(id, cur_idx)) self.set_segment_done(so, seg['id'], seg['n'], 'prepended to {} {}'.format(id, cur_idx))
chain = self.link_segments(seg['seg'], chain) chain = self.link_segments(seg['seg'], chain)
end1 = [chain[0][1][0], chain[0][1][1]] end1 = [chain[0][1][0], chain[0][1][1]]
segments_idx = 0 # this chain changed. re-visit all candidate segments_idx = 0 # this chain changed. re-visit all candidate
continue continue
if self.near_ends(end2, seg['end1']): if self.near_ends(end2, seg['end1']):
# append seg to chain # append seg to chain
self.set_segment_done(so, seg['id'], seg['n'], 'appended to {} {}'.format(id, cur_idx)) self.set_segment_done(so, seg['id'], seg['n'], 'appended to {} {}'.format(id, cur_idx))
chain = self.link_segments(chain, seg['seg']) chain = self.link_segments(chain, seg['seg'])
end2 = [chain[-1][1][0], chain[-1][1][1]] end2 = [chain[-1][1][0], chain[-1][1][1]]
segments_idx = 0 # this chain changed. re-visit all candidate segments_idx = 0 # this chain changed. re-visit all candidate
continue continue
segments_idx += 1 segments_idx += 1
# Now all joinable segments are joined. # Now all joinable segments are joined.
# Finally, we can check, if the resulting path is a closed path: # Finally, we can check, if the resulting path is a closed path:
# Closing a path here, isolates it from the rest. # Closing a path here, isolates it from the rest.
# But as we prefer to make the chain as long as possible, we close late. # But as we prefer to make the chain as long as possible, we close late.
if self.near_ends(end1, end2) and not path_closed and self.close_loops: if self.near_ends(end1, end2) and not path_closed and self.close_loops:
if so.debug: inkex.utils.debug("closing closeable loop {}".format(id)) if so.debug: inkex.utils.debug("closing closeable loop {}".format(id))
if self.snap_ends: if self.snap_ends:
# move first point to mid position # move first point to mid position
x1n = (chain[0][1][0] + chain[-1][1][0]) * 0.5 x1n = (chain[0][1][0] + chain[-1][1][0]) * 0.5
y1n = (chain[0][1][1] + chain[-1][1][1]) * 0.5 y1n = (chain[0][1][1] + chain[-1][1][1]) * 0.5
chain[0][1][0], chain[0][1][1] = x1n, y1n chain[0][1][0], chain[0][1][1] = x1n, y1n
# merge handle of the last point to the handle of the first point # merge handle of the last point to the handle of the first point
dx0e = chain[-1][0][0] - chain[-1][1][0] dx0e = chain[-1][0][0] - chain[-1][1][0]
dy0e = chain[-1][0][1] - chain[-1][1][1] dy0e = chain[-1][0][1] - chain[-1][1][1]
if so.debug: inkex.utils.debug("handle diff: {} {}".format(dx0e, dy0e)) if so.debug: inkex.utils.debug("handle diff: {} {}".format(dx0e, dy0e))
# FIXME: this does not work. cubicsuperpath.formatPath() ignores this handle. # FIXME: this does not work. cubicsuperpath.formatPath() ignores this handle.
chain[0][0][0], chain[0][0][1] = x1n+dx0e, y1n+dy0e chain[0][0][0], chain[0][0][1] = x1n+dx0e, y1n+dy0e
# drop last point # drop last point
chain.pop() chain.pop()
end2 = [chain[-1][1][0], chain[-1][1][1]] end2 = [chain[-1][1][0], chain[-1][1][1]]
path_closed = True path_closed = True
self.chained_count +=1 self.chained_count +=1
new.append(chain) new.append(chain)
if not len(new): if not len(new):
# node.clear() # node.clear()
if node.getparent() is not None: if node.getparent() is not None:
node.delete() node.delete()
obsoleted += 1 obsoleted += 1
if so.debug: inkex.utils.debug("Path node obsoleted: {}".format(id)) if so.debug: inkex.utils.debug("Path node obsoleted: {}".format(id))
else: else:
remaining += 1 remaining += 1
# BUG: All previously closed loops are open after we convert them back with cubicsuperpath.formatPath() # BUG: All previously closed loops are open after we convert them back with cubicsuperpath.formatPath()
p_fmt = str(Path(CubicSuperPath(new).to_path().to_arrays())) p_fmt = str(Path(CubicSuperPath(new).to_path().to_arrays()))
if path_closed: p_fmt += " z" if path_closed: p_fmt += " z"
if so.debug: inkex.utils.debug("new path: {}".format(p_fmt)) if so.debug: inkex.utils.debug("new path: {}".format(p_fmt))
node.set('d', p_fmt) node.set('d', p_fmt)
workedon += 1 workedon += 1
if workedon >= so.limit and so.limit > 0: if workedon >= so.limit and so.limit > 0:
break break
# statistics: # statistics:
if so.debug: inkex.utils.debug("Path nodes obsoleted: {}\nPath nodes remaining: {}".format(obsoleted, remaining)) if so.debug: inkex.utils.debug("Path nodes obsoleted: {}\nPath nodes remaining: {}".format(obsoleted, remaining))
if self.min_missed_distance_sq is not None: if self.min_missed_distance_sq is not None:
if so.debug: inkex.utils.debug("min_missed_distance: {} > {}".format(math.sqrt(float(self.min_missed_distance_sq))/self.unit_factor, self.chain_epsilon)+str(so.units)) if so.debug: inkex.utils.debug("min_missed_distance: {} > {}".format(math.sqrt(float(self.min_missed_distance_sq))/self.unit_factor, self.chain_epsilon)+str(so.units))
if so.debug: inkex.utils.debug("Successful link operations: {}".format(self.chained_count)) if so.debug: inkex.utils.debug("Successful link operations: {}".format(self.chained_count))
if __name__ == '__main__': if __name__ == '__main__':
ChainPaths().run() ChainPaths().run()