2022-11-14 23:27:13 +01:00

164 lines
6.2 KiB
Python

#! /usr/bin/env python
# -*- coding: utf-8 -*-
from math import pi, sin, asin, cos, tan, acos, sqrt
import inkex
import os
from Path import Path
from Pattern import Pattern
from Cylindrical import Cylindrical
class Kresling(Cylindrical):
def __init__(self):
""" Constructor
"""
Cylindrical.__init__(self) # Must be called in order to parse common options
self.add_argument('--pattern', type=self.str, default="kresling")
self.add_argument('--measure_value', type=self.float, default=10.0)
self.add_argument('--measure_type', type=self.str, default=60)
self.add_argument('--parameter_type', type=self.str, default=60)
self.add_argument('--radial_ratio', type=self.float, default=0.5)
self.add_argument('--angle_ratio', type=self.float, default=0.5)
self.add_argument('--lambdatheta', type=self.float, default=45)
def parse_parameters(self):
n = self.options.sides
theta = pi * (n - 2) / (2 * n)
# define ratio parameter
parameter = self.options.parameter_type
if parameter == 'radial_ratio':
radial_ratio = self.options.radial_ratio
max_radial_ratio = sin((pi / 4) * (1. - 2. / n))
if radial_ratio > max_radial_ratio:
inkex.errormsg(
_("For polygon of {} sides, the maximal radial ratio is = {}".format(n, max_radial_ratio)))
radial_ratio = max_radial_ratio
self.options.angle_ratio = 1 - 2 * n * asin(radial_ratio) / ((n - 2) * pi)
elif parameter == 'lambdatheta':
lambdatheta = self.options.lambdatheta
angle_min = 45. * (1 - 2. / n)
angle_max = 2 * angle_min
if lambdatheta < angle_min:
inkex.errormsg(_(
"For polygon of {} sides, phi must be between {} and {} degrees, \nsetting lambda*theta = {}\n".format(
n, angle_min, angle_max, angle_min)))
lambdatheta = angle_min
elif lambdatheta > angle_max:
inkex.errormsg(_(
"For polygon of {} sides, phi must be between {} and {} degrees, \nsetting lambda*theta = {}\n".format(
n, angle_min, angle_max, angle_max)))
lambdatheta = angle_max
self.options.angle_ratio = lambdatheta * n / (90. * (n - 2.))
# define some length
mtype = self.options.measure_type
mvalue = self.options.measure_value
angle_ratio = self.options.angle_ratio
if mtype == 'a':
radius = 0.5 * mvalue / (sin(pi / n))
if mtype == 'b':
A = cos(theta * (1 - angle_ratio))
B = sin(pi / n)
C = cos(theta * angle_ratio)
radius = 0.5 * mvalue / sqrt(A ** 2 + B ** 2 - 2 * A * B * C)
elif mtype == 'l':
radius = 0.5 * mvalue / cos(theta * (1 - angle_ratio))
elif mtype == 'radius_external':
radius = mvalue
elif mtype == 'radius_internal':
radius = mvalue / (sin(theta * (1 - angle_ratio)))
elif mtype == 'diameter_external':
radius = 0.5 * mvalue
elif mtype == 'diameter_internal':
radius = 0.5 * mvalue / sin(theta * (1 - angle_ratio))
if self.options.pattern == 'mirrowed':
self.options.mirror_cells = True
else:
self.options.mirror_cells = False
self.options.radius = radius
def generate_cell(self):
""" Generate the the origami cell
"""
# retrieve conversion factor for selected unit
unit_factor = self.calc_unit_factor()
rows = self.options.rows
sides = self.options.sides
cols = self.options.cols
radius = self.options.radius * unit_factor
width = self.options.width * unit_factor
# vertex_radius = self.options.vertex_radius * unit_factor
angle_ratio = self.options.angle_ratio
mirror_cells = self.options.mirror_cells
theta = (pi/2.)*(1 - 2./sides)
l = 2.*radius*cos(theta*(1.-angle_ratio))
dy = l * sin(theta * angle_ratio)
dx = l * cos(theta * angle_ratio) - width
# init dict that holds everything
cell_data = {}
# divider (supposed to be the same)
cell_data['divider'] = Path([(0, 0), (width * cols, 0)], style='m')
# IMPORTANT: left edges from TOP to BOTTOM
edge_left = [Path([(0, 0), (dx, dy)], style='e')]
if mirror_cells:
edge_left.append(Path([(0, 0), (-dx, dy)], style='e'))
cell_data['edge_left'] = [edge_left[i % (1 + mirror_cells)] for i in range(rows)]
# IMPORTANT: right edges from BOTTOM to TOP
edge_right = [Path([(cols * width + dx, dy), (cols * width, 0)], style='e')]
if mirror_cells:
edge_right.append(Path([(cols * width - dx, dy), (cols * width, 0)], style='e'))
cell_data['edge_right'] = [edge_right[i % (1 + mirror_cells)] for i in range(rows)]
# rest of cell
zigzags = [Kresling.generate_kresling_zigzag(sides, cols, radius, angle_ratio)]
if mirror_cells:
zigzags.append(Path.list_reflect(zigzags[0], (0, dy / 2), (dx, dy / 2)))
zigzags[1] = Path.list_add(zigzags[1], (-dx, 0))
cell_data['interior'] = [zigzags[i % (1 + mirror_cells)] for i in range(rows)]
return cell_data
@staticmethod
def generate_kresling_zigzag(sides, cols, radius, angle_ratio):
# def generate_kresling_zigzag(sides, radius, angle_ratio, add_attachment):
theta = (pi / 2.) * (1 - 2. / sides)
l = 2. * radius * cos(theta * (1. - angle_ratio))
a = 2. * radius * sin(pi / sides)
dy = l * sin(theta * angle_ratio)
dx = l * cos(theta * angle_ratio) - a
points = []
styles = []
for i in range(cols):
points.append((i * a, 0))
points.append(((i + 1) * a + dx, dy))
styles.append('v')
if i != cols - 1:
styles.append('m')
# elif add_attachment:
# points.append((sides * a, 0))
# styles.append('m')
path = Path.generate_separated_paths(points, styles)
return path
if __name__ == '__main__':
e = Kresling()
e.draw()