2022-11-14 23:27:13 +01:00

123 lines
4.6 KiB
Python
Executable File

#! /usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
from math import pi, tan, sqrt, sin, cos
import inkex
from Path import Path
from Pattern import Pattern
class Hypar(Pattern):
def __init__(self):
""" Constructor
"""
Pattern.__init__(self) # Must be called in order to parse common options
# save all custom parameters defined on .inx file
self.add_argument('--pattern', type=self.str, default='template1')
self.add_argument('--radius', type=self.float, default=10.0)
self.add_argument('--sides', type=self.int, default=4)
self.add_argument('--rings', type=self.int, default=7)
self.add_argument('--simplify_center', type=self.bool, default=0)
def generate_path_tree(self):
""" Specialized path generation for your origami pattern
"""
# retrieve saved parameters
unit_factor = self.calc_unit_factor()
vertex_radius = self.options.vertex_radius * unit_factor
pattern = self.options.pattern
radius = self.options.radius * unit_factor
sides = self.options.sides
rings = self.options.rings
simplify_center = self.options.simplify_center
sin_ = sin(pi / float(sides))
a = radius*sin_ # half of length of polygon side
H = radius*sqrt(1 - sin_**2)
polygon = Path.generate_polygon(sides, radius, 'e')
# # OLD diagonals generation with universal creases
# diagonals = []
# for i in range(sides):
# diagonals.append(Path([(0, 0), polygon.points[i]], 'u'))
# points = [(x, y) for x, y in polygon.points]
# diagonals = diagonals + [Path.generate_separated_paths(points, 'm')]
# # modify center if needed
# if simplify_center:
# for i in range(sides):
# if i % 2 == 0:
# p2 = diagonals[i].points[1]
# diagonals[i].points[0] = (1. / (rings + 1) * p2[0], 1. / (rings + 1) * p2[1])
# separate generic closed ring to create edges
self.edge_points = polygon.points
# vertex and diagonal lines creation
vertex_line = []
diagonal_line = []
for i in range(1, rings + 2):
y1 = a * (float(i - 1) / (rings + 1.))
x1 = H * float(i - 1) / (rings + 1.)
y2 = a * (float(i) / (rings + 1.))
x2 = H * float(i) / (rings + 1.)
vertex_line.append((Path((x2, y2), style='p', radius=vertex_radius)))
diagonal_line.append((Path([(x1, y1), (x2, y2)], style='m' if i % 2 else 'v')))
# rotation of vertices and diagonals for completing the drawing
diagonals = []
vertices = [Path((0, 0), style='p', radius=vertex_radius)]
for i in range(sides):
vertices = vertices+Path.list_rotate(vertex_line, i * 2 * pi / float(sides))
diagonals = diagonals+[Path.list_rotate(diagonal_line, i * 2 * pi / float(sides))]
# modify center if needed
if simplify_center:
for i in range(sides):
if i % 2 == 0:
del diagonals[i][0]
# inkex.debug(len(diagonals))
# inkex.debug(len(diagonals[0]))
# diagonals = diagonals + diagonal
# scale generic closed ring to create inner rings
inner_rings = []
for i in range(rings + 1):
inner_rings.append(polygon * (float(i)/(rings+1)))
inner_rings[i].style = 'v' if i % 2 else 'm'
# create points for zig zag pattern
zig_zags = []
if pattern != "classic":
zig_zag = []
for i in range(1, rings + 1):
y_out = a * ((i + 1.) / (rings + 1.))
y_in = a * (float(i) / (rings + 1.))
x_out = H * (i + 1.) / (rings + 1.)
x_in = H * float(i) / (rings + 1.)
if pattern == "alternate_asymmetric" and i % 2:
zig_zag.append(Path([(x_in, -y_in), (x_out, +y_out)], style='u'))
else:
zig_zag.append(Path([(x_in, +y_in), (x_out, -y_out)], style='u'))
# reflect zig zag pattern to create all sides
zig_zags.append(zig_zag)
for i in range(sides - 1):
points = diagonals[i][0].points
zig_zags.append(Path.list_reflect(zig_zags[i], points[0], points[1]))
self.translate = (radius, radius)
self.path_tree = [diagonals, zig_zags, inner_rings, vertices]
# Main function, creates an instance of the Class and calls inkex.affect() to draw the origami on inkscape
if __name__ == '__main__':
e = Hypar() # remember to put the name of your Class here!
e.draw()