836 lines
35 KiB
Python

#!/usr/bin/env python
'''
Copyright (C) 2017 , Pierre-Antoine Delsart
This file is part of InkscapeShapeReco.
InkscapeShapeReco is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with InkscapeShapeReco; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Quick description:
This extension uses all selected path, ignoring all other selected objects.
It tries to regularize hand drawn paths BY :
- evaluating if the path is a full circle or ellipse
- else finding sequences of aligned points and replacing them by a simple segment.
- changing the segments angles to the closest remarkable angle (pi/2, pi/3, pi/6, etc...)
- eqalizing all segments lengths which are close to each other
- replacing 4 segments paths by a rectangle object if this makes sens (giving the correct rotation to the rectangle).
Requires numpy.
'''
import sys
sys.path.append('/usr/share/inkscape/extensions')
import inkex
import gettext
_ = gettext.gettext
# *************************************************************
# debugging
def void(*l):
pass
def debug_on(*l):
sys.stderr.write(' '.join(str(i) for i in l) +'\n')
debug = void
#debug = debug_on
from shaperrec import geometric
from shaperrec import internal
from shaperrec import groups
from shaperrec import manipulation
from shaperrec import extenders
from shaperrec import miscellaneous
import numpy
numpy.set_printoptions(precision=3)
class PreProcess():
def removeSmallEdge(paths, wTot, hTot):
"""Remove small Path objects which stand between 2 Segments (or at the ends of the sequence).
Small means the bbox of the path is less then 5% of the mean of the 2 segments."""
if len(paths)<2:
return
def getdiag(points):
xmin, ymin, w, h = geometric.computeBox(points)
return numpy.sqrt(w**2+h**2), w, h
removeSeg=[]
def remove(p):
removeSeg.append(p)
if hasattr(p, "__next__") : p.next.prev = p.prev
if p.prev: p.prev.next = p.__next__ if hasattr(p, "__next__") else None
p.effectiveNPoints =0
debug(' --> remove !', p, p.length, len(p.points))
for p in paths:
if len(p.points)==0 :
remove(p)
continue
# select only path between 2 segments
next, prev = p.__next__ if hasattr(p, "__next__") else None, p.prev
if next is None: next = prev
if prev is None: prev = next
if not (False if next == None else next.isSegment()) or not (False if prev == None else prev.isSegment()) : continue
#diag = getdiag(p.points)
diag, w, h = getdiag(p.points)
debug(p, p.pointN, ' removing edge diag = ', diag, p.length, ' l=', next.length+prev.length, 'totDim ', (wTot, hTot))
debug( ' ---> ', prev, next)
#t TODO: his needs to be parameterized
# remove last or first very small in anycase
doRemove = prev==next and (diag < 0.05*(wTot+hTot)*0.5 )
if not doRemove:
# check if this small
isLarge = diag > (next.length+prev.length)*0.1 # check size relative to neighbour
isLarge = isLarge or w > 0.2*wTot or h > 0.2*hTot # check size w.r.t total size
# is it the small side of a long rectangle ?
dd = prev.distanceTo(next.pointN)
rect = abs(prev.unitv.dot(next.unitv))>0.98 and diag > dd*0.5
doRemove = not( isLarge or rect )
if doRemove:
remove(p)
if next != prev:
prev.setIntersectWithNext(next)
debug('removed Segments ', removeSeg)
for p in removeSeg:
paths.remove(p)
def prepareParrallelize( segs):
"""Group Segment by their angles (segments are grouped together if their deltAangle is within 0.15 rad)
The 'newAngle' member of segments in a group are then set to the mean angle of the group (where angles are all
considered in [-pi, pi])
segs : list of segments
"""
angles = numpy.array([s.angle for s in segs ])
angles[numpy.where(angles<0)] += geometric._pi # we care about direction, not angle orientation
clList = miscellaneous.clusterValues(angles, 0.30, refScaleAbs='abs')#was 15
pi = numpy.pi
for cl in clList:
anglecount = {}
for angle in angles[list(cl)]:
# #angleDeg = int(angle * 360.0 / (2.0*pi))
if not angle in anglecount:
anglecount[angle] = 1
else:
anglecount[angle] += 1
anglecount = {k: v for k, v in sorted(list(anglecount.items()), key=lambda item: item[1], reverse=True)}
meanA = anglecount.popitem()[0]#.items()[1]#sorted(anglecount.items(), key = lambda kv:(kv[1], kv[0]), reverse=True)[1][1]
#meanA = float(meanA) * (2.0*pi) / 360.0
#meanA = angles[list(cl)].mean()
for i in cl:
seg = segs[i]
seg.newAngle = meanA if seg.angle>=0. else meanA-geometric._pi
def prepareDistanceEqualization(segs, relDelta=0.1):
""" Input segments are grouped according to their length :
- for each length L, find all other lengths within L*relDelta. of L.
- Find the larger of such subgroup.
- repeat the procedure on remaining lengths until none is left.
Each length in a group is set to the mean length of the group
segs : a list of segments
relDelta : float, minimum relative distance.
"""
lengths = numpy.array( [x.tempLength() for x in segs] )
clusters = miscellaneous.clusterValues(lengths, relDelta)
if len(clusters)==1:
# deal with special case with low num of segments
# --> don't let a single segment alone
if len(clusters[0])+1==len(segs):
clusters[0]=list(range(len(segs))) # all
allDist = []
for cl in clusters:
dmean = sum( lengths[i] for i in cl ) / len(cl)
allDist.append(dmean)
for i in cl:
segs[i].setNewLength(dmean)
debug( i, ' set newLength ', dmean, segs[i].length, segs[i].dumpShort())
return allDist
def prepareRadiusEqualization(circles, otherDists, relSize=0.2):
"""group circles radius and distances into cluster.
Then set circles radius according to the mean of the clusters they belong to."""
ncircles = len(circles)
lengths = numpy.array( [c.radius for c in circles]+otherDists )
indices = numpy.array( list(range(ncircles+len(otherDists))) )
clusters = miscellaneous.clusterValues(numpy.stack([ lengths, indices ], 1 ), relSize, refScaleAbs='local' )
debug('prepareRadiusEqualization radius ', repr(lengths))
debug('prepareRadiusEqualization clusters ', clusters)
allDist = []
for cl in clusters:
dmean = sum( lengths[i] for i in cl ) / len(cl)
#print cl , dmean ,
allDist.append(dmean)
if len(cl)==1:
continue
for i in cl:
if i< ncircles:
circles[i].radius = dmean
debug(' post radius ', [c.radius for c in circles] )
return allDist
def centerCircOnSeg(circles, segments, relSize=0.18):
""" move centers of circles onto the segments if close enough"""
for circ in circles:
circ.moved = False
for seg in segments:
for circ in circles:
d = seg.distanceTo(circ.center)
#debug( ' ', seg.projectPoint(circ.center))
if d < circ.radius*relSize and not circ.moved :
circ.center = seg.projectPoint(circ.center)
circ.moved = True
def adjustToKnownAngle( paths):
""" Check current angle against remarkable angles. If close enough, change it
paths : a list of segments"""
for seg in paths:
a = seg.tempAngle()
i = (abs(geometric.vec_in_mPi_pPi(geometric.knownAngle - a) )).argmin()
seg.newAngle = geometric.knownAngle[i]
debug( ' Known angle ', seg, seg.tempAngle(), ' -> ', geometric.knownAngle[i])
## if abs(geometric.knownAngle[i] - a) < 0.08:
class PostProcess():
def mergeConsecutiveParralels(segments, options):
ignoreNext=False
newList=[]
for s in segments:
if ignoreNext:
ignoreNext=False
continue
if not s.isSegment():
newList.append(s)
continue
if not hasattr(s, "__next__"):
newList.append(s)
continue
if not s.next.isSegment():
newList.append(s)
continue
d = geometric.closeAngleAbs(s.angle, s.next.angle)
if d < options.segAngleMergePara:
debug("merging ", s.angle, s.next.angle )
snew = s.mergedWithNext(doRefit=False)
ignoreNext=True
newList.append(snew)
else:
debug("notmerging ", s.angle, s.next.angle )
newList.append(s)
if len(segments)>len(newList):
debug("merged parallel ", segments, '-->', newList)
return newList
def uniformizeShapes(pathGroupList, options):
allSegs = [ p for g in pathGroupList for p in g.listOfPaths if p.isSegment() ]
if options.doParrallelize:
PreProcess.prepareParrallelize(allSegs)
if options.doKnownAngle:
PreProcess.adjustToKnownAngle(allSegs)
adjustAng = options.doKnownAngle or options.doParrallelize
allShapeDist = []
for g in [ group for group in pathGroupList if not isinstance(group, groups.Circle)]:
# first pass : independently per path
if adjustAng:
manipulation.adjustAllAngles(g.listOfPaths)
g.listOfPaths[:] = PostProcess.mergeConsecutiveParralels(g.listOfPaths, options)
if options.doEqualizeDist:
allShapeDist=allShapeDist + PreProcess.prepareDistanceEqualization([p for p in g.listOfPaths if p.isSegment()], options.shapeDistLocal ) ##0.30
manipulation.adjustAllDistances([p for p in g.listOfPaths if p.isSegment()]) #findme was group.li..
## # then 2nd global pass, with tighter criteria
if options.doEqualizeDist:
allShapeDist=PreProcess.prepareDistanceEqualization(allSegs, options.shapeDistGlobal) ##0.08
for g in [ group for group in pathGroupList if not isinstance(group, groups.Circle)]:
manipulation.adjustAllDistances([p for p in g.listOfPaths if p.isSegment()])
#TODO: I think this is supposed to close thje paths and it is failing
for g in pathGroupList:
if g.isClosing and not isinstance(g, groups.Circle):
debug('Closing intersec ', g.listOfPaths[0].point1, g.listOfPaths[0].pointN )
g.listOfPaths[-1].setIntersectWithNext(g.listOfPaths[0])
circles=[ group for group in pathGroupList if isinstance(group, groups.Circle)]
if options.doEqualizeRadius:
PreProcess.prepareRadiusEqualization(circles, allShapeDist)
if options.doCenterCircOnSeg:
PreProcess.centerCircOnSeg(circles, allSegs)
pathGroupList = [manipulation.toRemarkableShape(g) for g in pathGroupList]
return pathGroupList
class FitShapes():
def checkForCircle(points, tangents):
"""Determine if the points and their tangents represent a circle
The difficulty is to be able to recognize ellipse while avoiding paths small fluctuations a
nd false positive due to badly drawn rectangle or non-convex closed curves.
Method : we consider angle of tangent as function of lenght on path.
For circles these are : angle = c1 x lenght + c0. (c1 ~1)
We calculate dadl = d(angle)/d(length) and compare to c1.
We use 3 criteria :
* num(dadl > 6) : number of sharp angles
* length(dadl<0.3)/totalLength : lengths of straight lines within the path.
* totalLength/(2pi x radius) : fraction of lenght vs a plain circle
Still failing to recognize elongated ellipses...
"""
if len(points)<10:
return False, 0
if all(points[0]==points[-1]): # last exactly equals the first.
# Ignore last point for this check
points = points[:-1]
tangents = tangents[:-1]
#print 'Removed last ', points
xmin, ymin, w, h = geometric.computeBox( points)
diag2=(w*w+h*h)
diag = numpy.sqrt(diag2)*0.5
norms = numpy.sqrt(numpy.sum( tangents**2, 1 ))
angles = numpy.arctan2( tangents[:, 1], tangents[:, 0] )
#debug( 'angle = ', repr(angles))
N = len(angles)
deltas = points[1:] - points[:-1]
deltasD = numpy.concatenate([ [geometric.D(points[0], points[-1])/diag], numpy.sqrt(numpy.sum( deltas**2, 1 )) / diag] )
# locate and avoid the point when swicthing
# from -pi to +pi. The point is around the minimum
imin = numpy.argmin(angles)
debug(' imin ', imin)
angles = numpy.roll(angles, -imin)
deltasD = numpy.roll(deltasD, -imin)
n=int(N*0.1)
# avoid fluctuations by removing points around the min
angles=angles[n:-n]
deltasD=deltasD[n:-n]
deltasD = deltasD.cumsum()
N = len(angles)
# smooth angles to avoid artificial bumps
angles = manipulation.smoothArray(angles, n=max(int(N*0.03), 2) )
deltaA = angles[1:] - angles[:-1]
deltasDD = (deltasD[1:] -deltasD[:-1])
deltasDD[numpy.where(deltasDD==0.)] = 1e-5*deltasD[0]
dAdD = abs(deltaA/deltasDD)
belowT, count = True, 0
for v in dAdD:
if v>6 and belowT:
count+=1
belowT = False
belowT= (v<6)
temp = (deltasD, angles, tangents, dAdD )
fracStraight = numpy.sum(deltasDD[numpy.where(dAdD<0.3)])/(deltasD[-1]-deltasD[0])
curveLength = deltasD[-1]/3.14
#print "SSS ",count , fracStraight
if curveLength> 1.4 or fracStraight>0.4 or count > 6:
isCircle =False
else:
isCircle= (count < 4 and fracStraight<=0.3) or \
(fracStraight<=0.1 and count<5)
if not isCircle:
return False, 0
# It's a circle !
radius = points - numpy.array([xmin+w*0.5, ymin+h*0.5])
radius_n = numpy.sqrt(numpy.sum( radius**2, 1 )) # normalize
mini = numpy.argmin(radius_n)
rmin = radius_n[mini]
maxi = numpy.argmax(radius_n)
rmax = radius_n[maxi]
# void points around maxi and mini to make sure the 2nd max is found
# on the "other" side
n = len(radius_n)
radius_n[maxi]=0
radius_n[mini]=0
for i in range(1, int(n/8+1)):
radius_n[(maxi+i)%n]=0
radius_n[(maxi-i)%n]=0
radius_n[(mini+i)%n]=0
radius_n[(mini-i)%n]=0
radius_n_2 = [ r for r in radius_n if r>0]
rmax_2 = max(radius_n_2)
rmin_2 = min(radius_n_2) # not good !!
anglemax = numpy.arccos( radius[maxi][0]/rmax)*numpy.sign(radius[maxi][1])
return True, (xmin+w*0.5, ymin+h*0.5, 0.5*(rmin+rmin_2), 0.5*(rmax+rmax_2), anglemax)
def checkForArcs(points, tangents):
"""Determine if the points and their tangents represent a circle
The difficulty is to be able to recognize ellipse while avoiding paths small fluctuations a
nd false positive due to badly drawn rectangle or non-convex closed curves.
Method : we consider angle of tangent as function of lenght on path.
For circles these are : angle = c1 x lenght + c0. (c1 ~1)
We calculate dadl = d(angle)/d(length) and compare to c1.
We use 3 criteria :
* num(dadl > 6) : number of sharp angles
* length(dadl<0.3)/totalLength : lengths of straight lines within the path.
* totalLength/(2pi x radius) : fraction of lenght vs a plain circle
Still failing to recognize elongated ellipses...
"""
if len(points)<10:
return False, 0
if all(points[0]==points[-1]): # last exactly equals the first.
# Ignore last point for this check
points = points[:-1]
tangents = tangents[:-1]
print(('Removed last ', points))
xmin, ymin, w, h = geometric.computeBox( points)
diag2=(w*w+h*h)
diag = numpy.sqrt(diag2)*0.5
norms = numpy.sqrt(numpy.sum( tangents**2, 1 ))
angles = numpy.arctan2( tangents[:, 1], tangents[:, 0] )
#debug( 'angle = ', repr(angles))
N = len(angles)
deltas = points[1:] - points[:-1]
deltasD = numpy.concatenate([ [geometric.D(points[0], points[-1])/diag], numpy.sqrt(numpy.sum( deltas**2, 1 )) / diag] )
# locate and avoid the point when swicthing
# from -pi to +pi. The point is around the minimum
imin = numpy.argmin(angles)
debug(' imin ', imin)
angles = numpy.roll(angles, -imin)
deltasD = numpy.roll(deltasD, -imin)
n=int(N*0.1)
# avoid fluctuations by removing points around the min
angles=angles[n:-n]
deltasD=deltasD[n:-n]
deltasD = deltasD.cumsum()
N = len(angles)
# smooth angles to avoid artificial bumps
angles = manipulation.smoothArray(angles, n=max(int(N*0.03), 2) )
deltaA = angles[1:] - angles[:-1]
deltasDD = (deltasD[1:] -deltasD[:-1])
deltasDD[numpy.where(deltasDD==0.)] = 1e-5*deltasD[0]
dAdD = abs(deltaA/deltasDD)
belowT, count = True, 0
self.temp = (deltasD, angles, tangents, dAdD )
#TODO: Loop over deltasDD searching for curved segments, no sharp bumps and a curve of at least 1/4 pi
curveStart = 0
curveToTest= numpy.array([deltasDD[curveStart]]);
dAdDd = numpy.array([dAdD[curveStart]])
v = dAdD[curveStart]
belowT= (v<6)
for i in range(1, deltasDD.size):
curveToTest = numpy.append(curveToTest, deltasDD[i])
dAdDd = numpy.append(dAdDd, dAdD[i])
fracStraight = numpy.sum(curveToTest[numpy.where(dAdDd<0.3)])/(deltasD[i]-deltasD[curveStart])
curveLength = (deltasD[i]-deltasD[curveStart])/3.14
v = dAdD[i]
if v>6 and belowT:
count+=1
belowT = False
belowT= (v<6)
inkex.debug("SSS "+str(count) +":"+ str(fracStraight))
if curveLength> 1.4 or fracStraight>0.4 or count > 8:
inkex.debug("curveLengtha:" + str(curveLength) +"fracStraight:"+str(fracStraight)+"count:"+str(count))
isArc=False
curveStart=int(i)
curveToTest= numpy.array([deltasDD[curveStart]]);
v = dAdD[curveStart]
dAdDd = numpy.array([dAdD[curveStart]])
belowT= (v<6)
count = 0
continue
else:
inkex.debug("curveLengthb:" + str(curveLength) +"fracStraight:"+str(fracStraight)+"count:"+str(count))
isArc= (count < 4 and fracStraight<=0.3) or \
(fracStraight<=0.1 and count<5)
if not isArc:
return False, 0
# It's a circle !
radius = points - numpy.array([xmin+w*0.5, ymin+h*0.5])
radius_n = numpy.sqrt(numpy.sum( radius**2, 1 )) # normalize
mini = numpy.argmin(radius_n)
rmin = radius_n[mini]
maxi = numpy.argmax(radius_n)
rmax = radius_n[maxi]
# void points around maxi and mini to make sure the 2nd max is found
# on the "other" side
n = len(radius_n)
radius_n[maxi]=0
radius_n[mini]=0
for i in range(1, int(n/8+1)):
radius_n[(maxi+i)%n]=0
radius_n[(maxi-i)%n]=0
radius_n[(mini+i)%n]=0
radius_n[(mini-i)%n]=0
radius_n_2 = [ r for r in radius_n if r>0]
rmax_2 = max(radius_n_2)
rmin_2 = min(radius_n_2) # not good !!
anglemax = numpy.arccos( radius[maxi][0]/rmax)*numpy.sign(radius[maxi][1])
return True, (xmin+w*0.5, ymin+h*0.5, 0.5*(rmin+rmin_2), 0.5*(rmax+rmax_2), anglemax)
def tangentEnvelop(svgCommandsList, refNode, options):
a, svgCommandsList = geometric.toArray(svgCommandsList)
tangents = manipulation.buildTangents(a)
newSegs = [ internal.Segment.fromCenterAndDir( p, t ) for (p, t) in zip(a, tangents) ]
debug("build envelop ", newSegs[0].point1, newSegs[0].pointN)
clustersInd = manipulation.clusterAngles( [s.angle for s in newSegs] )
debug("build envelop cluster: ", clustersInd)
return TangentEnvelop( newSegs, svgCommandsList, refNode)
def isClosing(wTot, hTot, d):
aR = min(wTot/hTot, hTot/wTot)
maxDim = max(wTot, hTot)
# was 0.2
return aR*0.5 > d/maxDim
def curvedFromTangents(svgCommandsList, refNode, x, y, wTot, hTot, d, isClosing, sourcepoints, tangents, options):
# debug('isClosing ', isClosing, maxDim, d)
# global quantities :
hasArcs = False
res = ()
# Check if circle -----------------------
if isClosing:
if len(sourcepoints)<9:
return groups.PathGroup.toSegments(sourcepoints, svgCommandsList, refNode, isClosing=True)
isCircle, res = FitShapes.checkForCircle( sourcepoints, tangents)
debug("Is Circle = ", isCircle )
if isCircle:
x, y, rmin, rmax, angle = res
debug("Circle -> ", rmin, rmax, angle )
if rmin/rmax>0.7:
circ = groups.Circle((x, y), 0.5*(rmin+rmax), refNode )
else:
circ = groups.Circle((x, y), rmin, refNode, rmax=rmax, angle=angle)
circ.points = sourcepoints
return circ
#else:
# hasArcs, res = FitShapes.checkForArcs( sourcepoints, tangents)
#else:
#hasArcs, res = FitShapes.checkForArcs( sourcepoints, tangents)
# -----------------------
if hasArcs:
x, y, rmin, rmax, angle = res
debug("Circle -> ", rmin, rmax, angle )
if rmin/rmax>0.7:
circ = groups.Circle((x, y), 0.5*(rmin+rmax), refNode )
else:
circ = groups.Circle((x, y), rmin, refNode, rmax=rmax, angle=angle)
circ.points = sourcepoints
return circ
return None
def segsFromTangents(svgCommandsList, refNode, options):
"""Finds segments part in a list of points represented by svgCommandsList.
The method is to build the (averaged) tangent vectors to the curve.
Aligned points will have tangent with similar angle, so we cluster consecutive angles together
to define segments.
Then we extend segments to connected points not already part of other segments.
Then we merge consecutive segments with similar angles.
"""
sourcepoints, svgCommandsList = geometric.toArray(svgCommandsList)
d = geometric.D(sourcepoints[0], sourcepoints[-1])
x, y, wTot, hTot = geometric.computeBox(sourcepoints)
if wTot == 0: wTot = 0.001
if hTot == 0: hTot = 0.001
if d==0:
# then we remove the last point to avoid null distance
# in other calculations
sourcepoints = sourcepoints[:-1]
svgCommandsList = svgCommandsList[:-1]
isClosing = FitShapes.isClosing(wTot, hTot, d)
if len(sourcepoints) < 4:
return groups.PathGroup.toSegments(sourcepoints, svgCommandsList, refNode, isClosing=isClosing)
tangents = manipulation.buildTangents(sourcepoints, isClosing=isClosing)
aCurvedSegment = FitShapes.curvedFromTangents(svgCommandsList, refNode, x, y, wTot, hTot, d, isClosing, sourcepoints, tangents, options)
if not aCurvedSegment == None:
return aCurvedSegment
# cluster points by angle of their tangents -------------
tgSegs = [ internal.Segment.fromCenterAndDir( p, t ) for (p, t) in zip(sourcepoints, tangents) ]
clustersInd = sorted(manipulation.clusterAngles( [s.angle for s in tgSegs] ))
debug("build envelop cluster: ", clustersInd)
# build Segments from clusters
newSegs = []
for imin, imax in clustersInd:
if imin+1< imax: # consider clusters with more than 3 points
seg = manipulation.fitSingleSegment(sourcepoints[imin:imax+1])
elif imin+1==imax: # 2 point path : we build a segment
seg = internal.Segment.from2Points(sourcepoints[imin], sourcepoints[imax], sourcepoints[imin:imax+1])
else:
seg = internal.Path( sourcepoints[imin:imax+1] )
seg.sourcepoints = sourcepoints
newSegs.append( seg )
manipulation.resetPrevNextSegment( newSegs )
debug(newSegs)
# -----------------------
# -----------------------
# Merge consecutive Path objects
updatedSegs=[]
def toMerge(p):
l=[p]
setattr(p, 'merged', True)
if hasattr(p, "__next__") and not p.next.isSegment():
l += toMerge(p.next)
return l
for i, seg in enumerate(newSegs[:-1]):
if seg.isSegment():
updatedSegs.append( seg)
continue
if hasattr(seg, 'merged'): continue
mergeList = toMerge(seg)
debug('merging ', mergeList)
p = internal.Path(numpy.concatenate([ p.points for p in mergeList]) )
debug('merged == ', p.points)
updatedSegs.append(p)
if not hasattr(newSegs[-1], 'merged'): updatedSegs.append( newSegs[-1])
debug("merged path", updatedSegs)
newSegs = manipulation.resetPrevNextSegment( updatedSegs )
# Extend segments -----------------------------------
if options.segExtensionEnable:
newSegs = extenders.SegmentExtender.extendSegments( newSegs, options.segExtensionDtoSeg, options.segExtensionQual )
debug("extended segs", newSegs)
newSegs = manipulation.resetPrevNextSegment( newSegs )
debug("extended segs", newSegs)
# ----------------------------------------
# ---------------------------------------
# merge consecutive segments with close angle
updatedSegs=[]
if options.segAngleMergeEnable:
newSegs = miscellaneous.mergeConsecutiveCloseAngles( newSegs, mangle=options.segAngleMergeTol1 )
newSegs=manipulation.resetPrevNextSegment(newSegs)
debug(' __ 2nd angle merge')
newSegs = miscellaneous.mergeConsecutiveCloseAngles( newSegs, mangle=options.segAngleMergeTol2 ) # 2nd pass
newSegs=manipulation.resetPrevNextSegment(newSegs)
debug('after merge ', len(newSegs), newSegs)
# Check if first and last also have close angles.
if isClosing and len(newSegs)>2 :
first, last = newSegs[0], newSegs[-1]
if first.isSegment() and last.isSegment():
if geometric.closeAngleAbs( first.angle, last.angle) < 0.1:
# force merge
points= numpy.concatenate( [ last.points, first.points] )
newseg = manipulation.fitSingleSegment(points)
newseg.next = first.__next__ if hasattr(first, "__next__") else None
last.prev.next = None
newSegs[0]=newseg
newSegs.pop()
# -----------------------------------------------------
# remove negligible Path/Segments between 2 large Segments
if options.segRemoveSmallEdge:
PreProcess.removeSmallEdge(newSegs, wTot, hTot)
newSegs=manipulation.resetPrevNextSegment(newSegs)
debug('after remove small ', len(newSegs), newSegs)
# -----------------------------------------------------
# -----------------------------------------------------
# Extend segments to their intersections
for p in newSegs:
if p.isSegment() and hasattr(p, "__next__"):
p.setIntersectWithNext()
# -----------------------------------------------------
return groups.PathGroup(newSegs, svgCommandsList, refNode, isClosing)
# *************************************************************
# The inkscape extension
# *************************************************************
class ShapeRecognition(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--title")
pars.add_argument("--keepOrigin", dest="keepOrigin", default=False, type=inkex.Boolean, help="Do not replace path")
pars.add_argument("--MainTabs")
pars.add_argument("--segExtensionDtoSeg", dest="segExtensionDtoSeg", default=0.03, type=float, help="max distance from point to segment")
pars.add_argument("--segExtensionQual", dest="segExtensionQual", default=0.5, type=float, help="segment extension fit quality")
pars.add_argument("--segExtensionEnable", dest="segExtensionEnable", default=True, type=inkex.Boolean, help="Enable segment extension")
pars.add_argument("--segAngleMergeEnable", dest="segAngleMergeEnable", default=True, type=inkex.Boolean, help="Enable merging of almost aligned consecutive segments")
pars.add_argument("--segAngleMergeTol1", dest="segAngleMergeTol1", default=0.2, type=float, help="merging with tollarance 1")
pars.add_argument("--segAngleMergeTol2", dest="segAngleMergeTol2", default=0.35, type=float, help="merging with tollarance 2")
pars.add_argument("--segAngleMergePara", dest="segAngleMergePara", default=0.001, type=float, help="merge lines as parralels if they fit")
pars.add_argument("--segRemoveSmallEdge", dest="segRemoveSmallEdge", default=True, type=inkex.Boolean, help="Enable removing very small segments")
pars.add_argument("--doUniformization", dest="doUniformization", default=True, type=inkex.Boolean, help="Preform angles and distances uniformization")
for opt in ["doParrallelize", "doKnownAngle", "doEqualizeDist", "doEqualizeRadius", "doCenterCircOnSeg"]:
pars.add_argument( "--"+opt, dest=opt, default=True, type=inkex.Boolean, help=opt)
pars.add_argument("--shapeDistLocal", dest="shapeDistLocal", default=0.3, type=float, help="Pthe percentage of difference at which we make lengths equal, locally")
pars.add_argument("--shapeDistGlobal", dest="shapeDistGlobal", default=0.025, type=float, help="Pthe percentage of difference at which we make lengths equal, globally")
def effect(self):
rej='{http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd}type'
paths = []
for id, node in list(self.svg.selected.items()):
if node.tag == '{http://www.w3.org/2000/svg}path' and rej not in list(node.keys()):
paths.append(node)
shapes = self.extractShapes(paths)
# add new shapes in SVG document
self.addShapesToDoc( shapes )
def extractShapesFromID( self, *nids, **options ):
"""for debugging purpose """
eList = []
for nid in nids:
el = self.getElementById(nid)
if el is None:
print(("Cant find ", nid))
return
eList.append(el)
class tmp:
pass
self.options = self.OptionParser.parse_args()[0]
self.options._update_careful(options)
nodes=self.extractShapes(eList)
self.shape = nodes[0]
def buildShape(self, node):
def rotationAngle(tr):
if tr and tr.startswith('rotate'):
# retrieve the angle :
return float(tr[7:-1].split(','))
else:
return 0.
if node.tag.endswith('path'):
g = FitShapes.segsFromTangents(node.path.to_arrays(), node, self.options)
elif node.tag.endswith('rect'):
tr = node.get('transform', None)
if tr and tr.startswith('matrix'):
return None # can't deal with scaling
recSize = numpy.array([node.get('width'), node.get('height')])
recCenter = numpy.array([node.get('x'), node.get('y')]) + recSize/2
angle=rotationAngle(tr)
g = groups.Rectangle( recSize, recCenter, 0, [], node)
elif node.tag.endswith('circle'):
g = groups.Circle(node.get('cx'), node.get('cy'), node.get('r'), [], node )
elif node.tag.endswith('ellipse'):
if tr and tr.startswith('matrix'):
return None # can't deal with scaling
angle=rotationAngle(tr)
rx = node.get('rx')
ry = node.get('ry')
g = groups.Circle(node.get('cx'), node.get('cy'), ry, rmax=rx, angle=angle, refNode=node)
return g
def extractShapes( self, nodes ):
"""The main function.
nodes : a list of nodes"""
analyzedNodes = []
# convert nodes to list of segments (groups.PathGroup) or Circle
for n in nodes :
g = self.buildShape(n)
if g :
analyzedNodes.append( g )
# uniformize shapes
if self.options.doUniformization:
analyzedNodes = PostProcess.uniformizeShapes(analyzedNodes, self.options)
return analyzedNodes
def addShapesToDoc(self, pathGroupList):
for group in pathGroupList:
debug("final ", group.listOfPaths, group.refNode )
debug("final-style ", group.refNode.get('style'))
# change to Rectangle if possible :
finalshape = manipulation.toRemarkableShape( group )
ele = group.addToNode( group.refNode)
group.setNodeStyle(ele, group.refNode)
if not self.options.keepOrigin:
group.refNode.xpath('..')[0].remove(group.refNode)
if __name__ == '__main__':
ShapeRecognition().run()