189 lines
7.4 KiB
Python

#! /usr/bin/python3
#
# Copyright (C) 2007 John Beard john.j.beard@gmail.com
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
This extension allows you to draw a triangle given certain information
about side length or angles.
Measurements of the triangle
C(x_c,y_c)
/`__
/ a_c``--__
/ ``--__ s_a
s_b / ``--__
/a_a a_b`--__
/--------------------------------``B(x_b, y_b)
A(x_a,y_a) s_b
"""
import sys
from math import acos, asin, cos, pi, sin, sqrt
import inkex
X, Y = range(2)
def draw_SVG_tri(point1, point2, point3, offset, width, name, parent):
style = {'stroke': '#000000', 'stroke-width': str(width), 'fill': 'none'}
elem = parent.add(inkex.PathElement())
elem.update(**{
'style': style,
'inkscape:label': name,
'd': 'M ' + str(point1[X] + offset[X]) + ',' + str(point1[Y] + offset[Y]) +
' L ' + str(point2[X] + offset[X]) + ',' + str(point2[Y] + offset[Y]) +
' L ' + str(point3[X] + offset[X]) + ',' + str(point3[Y] + offset[Y]) +
' L ' + str(point1[X] + offset[X]) + ',' + str(point1[Y] + offset[Y]) + ' z'})
return elem
def angle_from_3_sides(a, b, c): # return the angle opposite side c
cosx = (a * a + b * b - c * c) / (2 * a * b) # use the cosine rule
return acos(cosx)
def third_side_from_enclosed_angle(s_a, s_b, a_c): # return the side opposite a_c
c_squared = s_a * s_a + s_b * s_b - 2 * s_a * s_b * cos(a_c)
if c_squared > 0:
return sqrt(c_squared)
else:
return 0 # means we have an invalid or degenerate triangle (zero is caught at the drawing stage)
def pt_on_circ(radius, angle): # return the x,y coordinate of the polar coordinate
x = radius * cos(angle)
y = radius * sin(angle)
return [x, y]
def v_add(point1, point2): # add an offset to coordinates
return [point1[X] + point2[X], point1[Y] + point2[Y]]
def is_valid_tri_from_sides(a, b, c): # check whether triangle with sides a,b,c is valid
return (a + b) > c and (a + c) > b and (b + c) > a and a > 0 and b > 0 and c > 0 # two sides must always be greater than the third
# no zero-length sides, no degenerate case
def draw_tri_from_3_sides(s_a, s_b, s_c, offset, width, parent): # draw a triangle from three sides (with a given offset
if is_valid_tri_from_sides(s_a, s_b, s_c):
a_b = angle_from_3_sides(s_a, s_c, s_b)
a = (0, 0) # a is the origin
b = v_add(a, (s_c, 0)) # point B is horizontal from the origin
c = v_add(b, pt_on_circ(s_a, pi - a_b)) # get point c
c[1] = -c[1]
offx = max(b[0], c[0]) / 2 # b or c could be the furthest right
offy = c[1] / 2 # c is the highest point
offset = (offset[0] - offx, offset[1] - offy) # add the centre of the triangle to the offset
draw_SVG_tri(a, b, c, offset, width, 'Triangle', parent)
else:
inkex.errormsg('Invalid Triangle Specifications.')
class Triangle(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--unit", default="mm", help="Units")
pars.add_argument("--s_a", type=float, default=100.0, help="Side Length a")
pars.add_argument("--s_b", type=float, default=100.0, help="Side Length b")
pars.add_argument("--s_c", type=float, default=100.0, help="Side Length c")
pars.add_argument("--a_a", type=float, default=60.0, help="Angle a")
pars.add_argument("--a_b", type=float, default=30.0, help="Angle b")
pars.add_argument("--a_c", type=float, default=90.0, help="Angle c")
pars.add_argument("--mode", default='3_sides', help="Side Length c")
def effect(self):
tri = self.svg.get_current_layer()
offset = self.svg.namedview.center
self.options.s_a = self.svg.unittouu(str(self.options.s_a) + self.options.unit)
self.options.s_b = self.svg.unittouu(str(self.options.s_b) + self.options.unit)
self.options.s_c = self.svg.unittouu(str(self.options.s_c) + self.options.unit)
stroke_width = self.svg.unittouu('1px')
if self.options.mode == '3_sides':
s_a = self.options.s_a
s_b = self.options.s_b
s_c = self.options.s_c
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
elif self.options.mode == 's_ab_a_c':
s_a = self.options.s_a
s_b = self.options.s_b
a_c = self.options.a_c * pi / 180 # in rad
s_c = third_side_from_enclosed_angle(s_a, s_b, a_c)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
elif self.options.mode == 's_ab_a_a':
s_a = self.options.s_a
s_b = self.options.s_b
a_a = self.options.a_a * pi / 180 # in rad
if (a_a < pi / 2.0) and (s_a < s_b) and (s_a > s_b * sin(a_a)): # this is an ambiguous case
ambiguous = True # we will give both answers
else:
ambiguous = False
sin_a_b = s_b * sin(a_a) / s_a
if (sin_a_b <= 1) and (sin_a_b >= -1): # check the solution is possible
a_b = asin(sin_a_b) # acute solution
a_c = pi - a_a - a_b
error = False
else:
sys.stderr.write('Error:Invalid Triangle Specifications.\n') # signal an error
error = True
if not error and (a_b < pi) and (a_c < pi): # check that the solution is valid, if so draw acute solution
s_c = third_side_from_enclosed_angle(s_a, s_b, a_c)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
if not error and ((a_b > pi) or (a_c > pi) or ambiguous): # we want the obtuse solution
a_b = pi - a_b
a_c = pi - a_a - a_b
s_c = third_side_from_enclosed_angle(s_a, s_b, a_c)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
elif self.options.mode == 's_a_a_ab':
s_a = self.options.s_a
a_a = self.options.a_a * pi / 180 # in rad
a_b = self.options.a_b * pi / 180 # in rad
a_c = pi - a_a - a_b
s_b = s_a * sin(a_b) / sin(a_a)
s_c = s_a * sin(a_c) / sin(a_a)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
elif self.options.mode == 's_c_a_ab':
s_c = self.options.s_c
a_a = self.options.a_a * pi / 180 # in rad
a_b = self.options.a_b * pi / 180 # in rad
a_c = pi - a_a - a_b
s_a = s_c * sin(a_a) / sin(a_c)
s_b = s_c * sin(a_b) / sin(a_c)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
if __name__ == '__main__':
Triangle().run()