mirror of
https://github.com/Doodle3D/Doodle3D-Slicer.git
synced 2024-11-19 12:27:56 +01:00
85 lines
3.3 KiB
JavaScript
Executable File
85 lines
3.3 KiB
JavaScript
Executable File
/**
|
|
* Hilbert Curve: Generates 2D-Coordinates in a very fast way.
|
|
*
|
|
* @author Dylan Grafmyre
|
|
*
|
|
* Based on work by:
|
|
* @author Thomas Diewald
|
|
* @link http://www.openprocessing.org/visuals/?visualID=15599
|
|
*
|
|
* Based on `examples/canvas_lines_colors.html`:
|
|
* @author OpenShift guest
|
|
* @link https://github.com/mrdoob/three.js/blob/8413a860aa95ed29c79cbb7f857c97d7880d260f/examples/canvas_lines_colors.html
|
|
* @see Line 149 - 186
|
|
*
|
|
* @param center Center of Hilbert curve.
|
|
* @param size Total width of Hilbert curve.
|
|
* @param iterations Number of subdivisions.
|
|
* @param v0 Corner index -X, +Y, -Z.
|
|
* @param v1 Corner index -X, +Y, +Z.
|
|
* @param v2 Corner index -X, -Y, +Z.
|
|
* @param v3 Corner index -X, -Y, -Z.
|
|
* @param v4 Corner index +X, -Y, -Z.
|
|
* @param v5 Corner index +X, -Y, +Z.
|
|
* @param v6 Corner index +X, +Y, +Z.
|
|
* @param v7 Corner index +X, +Y, -Z.
|
|
*/
|
|
function hilbert3D(center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7) {
|
|
// Default Vars
|
|
var center = undefined !== center ? center : new THREE.Vector3(0, 0, 0),
|
|
size = undefined !== size ? size : 10,
|
|
half = size / 2,
|
|
iterations = undefined !== iterations ? iterations : 1,
|
|
v0 = undefined !== v0 ? v0 : 0,
|
|
v1 = undefined !== v1 ? v1 : 1,
|
|
v2 = undefined !== v2 ? v2 : 2,
|
|
v3 = undefined !== v3 ? v3 : 3,
|
|
v4 = undefined !== v4 ? v4 : 4,
|
|
v5 = undefined !== v5 ? v5 : 5,
|
|
v6 = undefined !== v6 ? v6 : 6,
|
|
v7 = undefined !== v7 ? v7 : 7
|
|
;
|
|
|
|
var vec_s = [
|
|
new THREE.Vector3( center.x - half, center.y + half, center.z - half ),
|
|
new THREE.Vector3( center.x - half, center.y + half, center.z + half ),
|
|
new THREE.Vector3( center.x - half, center.y - half, center.z + half ),
|
|
new THREE.Vector3( center.x - half, center.y - half, center.z - half ),
|
|
new THREE.Vector3( center.x + half, center.y - half, center.z - half ),
|
|
new THREE.Vector3( center.x + half, center.y - half, center.z + half ),
|
|
new THREE.Vector3( center.x + half, center.y + half, center.z + half ),
|
|
new THREE.Vector3( center.x + half, center.y + half, center.z - half )
|
|
];
|
|
|
|
var vec = [
|
|
vec_s[ v0 ],
|
|
vec_s[ v1 ],
|
|
vec_s[ v2 ],
|
|
vec_s[ v3 ],
|
|
vec_s[ v4 ],
|
|
vec_s[ v5 ],
|
|
vec_s[ v6 ],
|
|
vec_s[ v7 ]
|
|
];
|
|
|
|
// Recurse iterations
|
|
if ( -- iterations >= 0 ) {
|
|
var tmp = [];
|
|
|
|
Array.prototype.push.apply( tmp, hilbert3D ( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
|
|
Array.prototype.push.apply( tmp, hilbert3D ( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
|
|
Array.prototype.push.apply( tmp, hilbert3D ( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
|
|
Array.prototype.push.apply( tmp, hilbert3D ( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
|
|
Array.prototype.push.apply( tmp, hilbert3D ( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
|
|
Array.prototype.push.apply( tmp, hilbert3D ( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
|
|
Array.prototype.push.apply( tmp, hilbert3D ( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
|
|
Array.prototype.push.apply( tmp, hilbert3D ( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );
|
|
|
|
// Return recursive call
|
|
return tmp;
|
|
}
|
|
|
|
// Return complete Hilbert Curve.
|
|
return vec;
|
|
}
|