mirror of
https://github.com/Doodle3D/Doodle3D-Slicer.git
synced 2024-11-16 19:17:57 +01:00
547 lines
12 KiB
JavaScript
Executable File
547 lines
12 KiB
JavaScript
Executable File
/**
|
|
* @author mrdoob / http://mrdoob.com/
|
|
* @author alteredq / http://alteredqualia.com/
|
|
*/
|
|
|
|
THREE.RaytracingRenderer = function ( parameters ) {
|
|
|
|
console.log( 'THREE.RaytracingRenderer', THREE.REVISION );
|
|
|
|
parameters = parameters || {};
|
|
|
|
var scope = this;
|
|
|
|
var canvas = document.createElement( 'canvas' );
|
|
var context = canvas.getContext( '2d', {
|
|
alpha: parameters.alpha === true
|
|
} );
|
|
|
|
var maxRecursionDepth = 3;
|
|
|
|
var canvasWidth, canvasHeight;
|
|
var canvasWidthHalf, canvasHeightHalf;
|
|
|
|
var clearColor = new THREE.Color( 0x000000 );
|
|
|
|
var origin = new THREE.Vector3();
|
|
var direction = new THREE.Vector3();
|
|
|
|
var cameraPosition = new THREE.Vector3();
|
|
|
|
var raycaster = new THREE.Raycaster( origin, direction );
|
|
var raycasterLight = new THREE.Raycaster();
|
|
|
|
var perspective;
|
|
var modelViewMatrix = new THREE.Matrix4();
|
|
var cameraNormalMatrix = new THREE.Matrix3();
|
|
|
|
var objects;
|
|
var lights = [];
|
|
var cache = {};
|
|
|
|
var animationFrameId = null;
|
|
|
|
this.domElement = canvas;
|
|
|
|
this.autoClear = true;
|
|
|
|
this.setClearColor = function ( color, alpha ) {
|
|
|
|
clearColor.set( color );
|
|
|
|
};
|
|
|
|
this.setPixelRatio = function () {};
|
|
|
|
this.setSize = function ( width, height ) {
|
|
|
|
canvas.width = width;
|
|
canvas.height = height;
|
|
|
|
canvasWidth = canvas.width;
|
|
canvasHeight = canvas.height;
|
|
|
|
canvasWidthHalf = Math.floor( canvasWidth / 2 );
|
|
canvasHeightHalf = Math.floor( canvasHeight / 2 );
|
|
|
|
context.fillStyle = 'white';
|
|
|
|
};
|
|
|
|
this.setSize( canvas.width, canvas.height );
|
|
|
|
this.clear = function () {
|
|
|
|
};
|
|
|
|
//
|
|
|
|
var spawnRay = ( function () {
|
|
|
|
var diffuseColor = new THREE.Color();
|
|
var specularColor = new THREE.Color();
|
|
var lightColor = new THREE.Color();
|
|
var schlick = new THREE.Color();
|
|
|
|
var lightContribution = new THREE.Color();
|
|
|
|
var eyeVector = new THREE.Vector3();
|
|
var lightVector = new THREE.Vector3();
|
|
var normalVector = new THREE.Vector3();
|
|
var halfVector = new THREE.Vector3();
|
|
|
|
var localPoint = new THREE.Vector3();
|
|
var reflectionVector = new THREE.Vector3();
|
|
|
|
var tmpVec = new THREE.Vector3();
|
|
|
|
var tmpColor = [];
|
|
|
|
for ( var i = 0; i < maxRecursionDepth; i ++ ) {
|
|
|
|
tmpColor[ i ] = new THREE.Color();
|
|
|
|
}
|
|
|
|
return function ( rayOrigin, rayDirection, outputColor, recursionDepth ) {
|
|
|
|
var ray = raycaster.ray;
|
|
|
|
ray.origin = rayOrigin;
|
|
ray.direction = rayDirection;
|
|
|
|
//
|
|
|
|
var rayLight = raycasterLight.ray;
|
|
|
|
//
|
|
|
|
outputColor.setRGB( 0, 0, 0 );
|
|
|
|
//
|
|
|
|
var intersections = raycaster.intersectObjects( objects, true );
|
|
|
|
// ray didn't find anything
|
|
// (here should come setting of background color?)
|
|
|
|
if ( intersections.length === 0 ) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// ray hit
|
|
|
|
var intersection = intersections[ 0 ];
|
|
|
|
var point = intersection.point;
|
|
var object = intersection.object;
|
|
var material = object.material;
|
|
var face = intersection.face;
|
|
|
|
var vertices = object.geometry.vertices;
|
|
|
|
//
|
|
|
|
var _object = cache[ object.id ];
|
|
|
|
localPoint.copy( point ).applyMatrix4( _object.inverseMatrix );
|
|
eyeVector.subVectors( raycaster.ray.origin, point ).normalize();
|
|
|
|
// resolve pixel diffuse color
|
|
|
|
if ( material instanceof THREE.MeshLambertMaterial ||
|
|
material instanceof THREE.MeshPhongMaterial ||
|
|
material instanceof THREE.MeshBasicMaterial ) {
|
|
|
|
diffuseColor.copyGammaToLinear( material.color );
|
|
|
|
} else {
|
|
|
|
diffuseColor.setRGB( 1, 1, 1 );
|
|
|
|
}
|
|
|
|
if ( material.vertexColors === THREE.FaceColors ) {
|
|
|
|
diffuseColor.multiply( face.color );
|
|
|
|
}
|
|
|
|
// compute light shading
|
|
|
|
rayLight.origin.copy( point );
|
|
|
|
if ( material instanceof THREE.MeshBasicMaterial ) {
|
|
|
|
for ( var i = 0, l = lights.length; i < l; i ++ ) {
|
|
|
|
var light = lights[ i ];
|
|
|
|
lightVector.setFromMatrixPosition( light.matrixWorld );
|
|
lightVector.sub( point );
|
|
|
|
rayLight.direction.copy( lightVector ).normalize();
|
|
|
|
var intersections = raycasterLight.intersectObjects( objects, true );
|
|
|
|
// point in shadow
|
|
|
|
if ( intersections.length > 0 ) continue;
|
|
|
|
// point visible
|
|
|
|
outputColor.add( diffuseColor );
|
|
|
|
}
|
|
|
|
} else if ( material instanceof THREE.MeshLambertMaterial ||
|
|
material instanceof THREE.MeshPhongMaterial ) {
|
|
|
|
var normalComputed = false;
|
|
|
|
for ( var i = 0, l = lights.length; i < l; i ++ ) {
|
|
|
|
var light = lights[ i ];
|
|
|
|
lightColor.copyGammaToLinear( light.color );
|
|
|
|
lightVector.setFromMatrixPosition( light.matrixWorld );
|
|
lightVector.sub( point );
|
|
|
|
rayLight.direction.copy( lightVector ).normalize();
|
|
|
|
var intersections = raycasterLight.intersectObjects( objects, true );
|
|
|
|
// point in shadow
|
|
|
|
if ( intersections.length > 0 ) continue;
|
|
|
|
// point lit
|
|
|
|
if ( normalComputed === false ) {
|
|
|
|
// the same normal can be reused for all lights
|
|
// (should be possible to cache even more)
|
|
|
|
computePixelNormal( normalVector, localPoint, material.shading, face, vertices );
|
|
normalVector.applyMatrix3( _object.normalMatrix ).normalize();
|
|
|
|
normalComputed = true;
|
|
|
|
}
|
|
|
|
// compute attenuation
|
|
|
|
var attenuation = 1.0;
|
|
|
|
if ( light.physicalAttenuation === true ) {
|
|
|
|
attenuation = lightVector.length();
|
|
attenuation = 1.0 / ( attenuation * attenuation );
|
|
|
|
}
|
|
|
|
lightVector.normalize();
|
|
|
|
// compute diffuse
|
|
|
|
var dot = Math.max( normalVector.dot( lightVector ), 0 );
|
|
var diffuseIntensity = dot * light.intensity;
|
|
|
|
lightContribution.copy( diffuseColor );
|
|
lightContribution.multiply( lightColor );
|
|
lightContribution.multiplyScalar( diffuseIntensity * attenuation );
|
|
|
|
outputColor.add( lightContribution );
|
|
|
|
// compute specular
|
|
|
|
if ( material instanceof THREE.MeshPhongMaterial ) {
|
|
|
|
halfVector.addVectors( lightVector, eyeVector ).normalize();
|
|
|
|
var dotNormalHalf = Math.max( normalVector.dot( halfVector ), 0.0 );
|
|
var specularIntensity = Math.max( Math.pow( dotNormalHalf, material.shininess ), 0.0 ) * diffuseIntensity;
|
|
|
|
var specularNormalization = ( material.shininess + 2.0 ) / 8.0;
|
|
|
|
specularColor.copyGammaToLinear( material.specular );
|
|
|
|
var alpha = Math.pow( Math.max( 1.0 - lightVector.dot( halfVector ), 0.0 ), 5.0 );
|
|
|
|
schlick.r = specularColor.r + ( 1.0 - specularColor.r ) * alpha;
|
|
schlick.g = specularColor.g + ( 1.0 - specularColor.g ) * alpha;
|
|
schlick.b = specularColor.b + ( 1.0 - specularColor.b ) * alpha;
|
|
|
|
lightContribution.copy( schlick );
|
|
|
|
lightContribution.multiply( lightColor );
|
|
lightContribution.multiplyScalar( specularNormalization * specularIntensity * attenuation );
|
|
outputColor.add( lightContribution );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// reflection / refraction
|
|
|
|
var reflectivity = material.reflectivity;
|
|
|
|
if ( ( material.mirror || material.glass ) && reflectivity > 0 && recursionDepth < maxRecursionDepth ) {
|
|
|
|
if ( material.mirror ) {
|
|
|
|
reflectionVector.copy( rayDirection );
|
|
reflectionVector.reflect( normalVector );
|
|
|
|
} else if ( material.glass ) {
|
|
|
|
var eta = material.refractionRatio;
|
|
|
|
var dotNI = rayDirection.dot( normalVector )
|
|
var k = 1.0 - eta * eta * ( 1.0 - dotNI * dotNI );
|
|
|
|
if ( k < 0.0 ) {
|
|
|
|
reflectionVector.set( 0, 0, 0 );
|
|
|
|
} else {
|
|
|
|
reflectionVector.copy( rayDirection );
|
|
reflectionVector.multiplyScalar( eta );
|
|
|
|
var alpha = eta * dotNI + Math.sqrt( k );
|
|
tmpVec.copy( normalVector );
|
|
tmpVec.multiplyScalar( alpha );
|
|
reflectionVector.sub( tmpVec );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
var theta = Math.max( eyeVector.dot( normalVector ), 0.0 );
|
|
var rf0 = reflectivity;
|
|
var fresnel = rf0 + ( 1.0 - rf0 ) * Math.pow( ( 1.0 - theta ), 5.0 );
|
|
|
|
var weight = fresnel;
|
|
|
|
var zColor = tmpColor[ recursionDepth ];
|
|
|
|
spawnRay( point, reflectionVector, zColor, recursionDepth + 1 );
|
|
|
|
if ( material.specular !== undefined ) {
|
|
|
|
zColor.multiply( material.specular );
|
|
|
|
}
|
|
|
|
zColor.multiplyScalar( weight );
|
|
outputColor.multiplyScalar( 1 - weight );
|
|
outputColor.add( zColor );
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}() );
|
|
|
|
var computePixelNormal = ( function () {
|
|
|
|
var tmpVec1 = new THREE.Vector3();
|
|
var tmpVec2 = new THREE.Vector3();
|
|
var tmpVec3 = new THREE.Vector3();
|
|
|
|
return function ( outputVector, point, shading, face, vertices ) {
|
|
|
|
var faceNormal = face.normal;
|
|
var vertexNormals = face.vertexNormals;
|
|
|
|
if ( shading === THREE.FlatShading ) {
|
|
|
|
outputVector.copy( faceNormal );
|
|
|
|
} else if ( shading === THREE.SmoothShading ) {
|
|
|
|
// compute barycentric coordinates
|
|
|
|
var vA = vertices[ face.a ];
|
|
var vB = vertices[ face.b ];
|
|
var vC = vertices[ face.c ];
|
|
|
|
tmpVec3.crossVectors( tmpVec1.subVectors( vB, vA ), tmpVec2.subVectors( vC, vA ) );
|
|
var areaABC = faceNormal.dot( tmpVec3 );
|
|
|
|
tmpVec3.crossVectors( tmpVec1.subVectors( vB, point ), tmpVec2.subVectors( vC, point ) );
|
|
var areaPBC = faceNormal.dot( tmpVec3 );
|
|
var a = areaPBC / areaABC;
|
|
|
|
tmpVec3.crossVectors( tmpVec1.subVectors( vC, point ), tmpVec2.subVectors( vA, point ) );
|
|
var areaPCA = faceNormal.dot( tmpVec3 );
|
|
var b = areaPCA / areaABC;
|
|
|
|
var c = 1.0 - a - b;
|
|
|
|
// compute interpolated vertex normal
|
|
|
|
tmpVec1.copy( vertexNormals[ 0 ] );
|
|
tmpVec1.multiplyScalar( a );
|
|
|
|
tmpVec2.copy( vertexNormals[ 1 ] );
|
|
tmpVec2.multiplyScalar( b );
|
|
|
|
tmpVec3.copy( vertexNormals[ 2 ] );
|
|
tmpVec3.multiplyScalar( c );
|
|
|
|
outputVector.addVectors( tmpVec1, tmpVec2 );
|
|
outputVector.add( tmpVec3 );
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}() );
|
|
|
|
var renderBlock = ( function () {
|
|
|
|
var blockSize = 64;
|
|
|
|
var canvasBlock = document.createElement( 'canvas' );
|
|
canvasBlock.width = blockSize;
|
|
canvasBlock.height = blockSize;
|
|
|
|
var contextBlock = canvasBlock.getContext( '2d', {
|
|
|
|
alpha: parameters.alpha === true
|
|
|
|
} );
|
|
|
|
var imagedata = contextBlock.getImageData( 0, 0, blockSize, blockSize );
|
|
var data = imagedata.data;
|
|
|
|
var pixelColor = new THREE.Color();
|
|
|
|
return function ( blockX, blockY ) {
|
|
|
|
var index = 0;
|
|
|
|
for ( var y = 0; y < blockSize; y ++ ) {
|
|
|
|
for ( var x = 0; x < blockSize; x ++, index += 4 ) {
|
|
|
|
// spawn primary ray at pixel position
|
|
|
|
origin.copy( cameraPosition );
|
|
|
|
direction.set( x + blockX - canvasWidthHalf, - ( y + blockY - canvasHeightHalf ), - perspective );
|
|
direction.applyMatrix3( cameraNormalMatrix ).normalize();
|
|
|
|
spawnRay( origin, direction, pixelColor, 0 );
|
|
|
|
// convert from linear to gamma
|
|
|
|
data[ index ] = Math.sqrt( pixelColor.r ) * 255;
|
|
data[ index + 1 ] = Math.sqrt( pixelColor.g ) * 255;
|
|
data[ index + 2 ] = Math.sqrt( pixelColor.b ) * 255;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
context.putImageData( imagedata, blockX, blockY );
|
|
|
|
blockX += blockSize;
|
|
|
|
if ( blockX >= canvasWidth ) {
|
|
|
|
blockX = 0;
|
|
blockY += blockSize;
|
|
|
|
if ( blockY >= canvasHeight ) {
|
|
|
|
scope.dispatchEvent( { type: "complete" } );
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
context.fillRect( blockX, blockY, blockSize, blockSize );
|
|
|
|
animationFrameId = requestAnimationFrame( function () {
|
|
|
|
renderBlock( blockX, blockY );
|
|
|
|
} );
|
|
|
|
};
|
|
|
|
}() );
|
|
|
|
this.render = function ( scene, camera ) {
|
|
|
|
if ( this.autoClear === true ) this.clear();
|
|
|
|
cancelAnimationFrame( animationFrameId );
|
|
|
|
// update scene graph
|
|
|
|
if ( scene.autoUpdate === true ) scene.updateMatrixWorld();
|
|
|
|
// update camera matrices
|
|
|
|
if ( camera.parent === undefined ) camera.updateMatrixWorld();
|
|
|
|
camera.matrixWorldInverse.getInverse( camera.matrixWorld );
|
|
cameraPosition.setFromMatrixPosition( camera.matrixWorld );
|
|
|
|
//
|
|
|
|
cameraNormalMatrix.getNormalMatrix( camera.matrixWorld );
|
|
origin.copy( cameraPosition );
|
|
|
|
perspective = 0.5 / Math.tan( THREE.Math.degToRad( camera.fov * 0.5 ) ) * canvasHeight;
|
|
|
|
objects = scene.children;
|
|
|
|
// collect lights and set up object matrices
|
|
|
|
lights.length = 0;
|
|
|
|
scene.traverse( function ( object ) {
|
|
|
|
if ( object instanceof THREE.Light ) {
|
|
|
|
lights.push( object );
|
|
|
|
}
|
|
|
|
if ( cache[ object.id ] === undefined ) {
|
|
|
|
cache[ object.id ] = {
|
|
normalMatrix: new THREE.Matrix3(),
|
|
inverseMatrix: new THREE.Matrix4()
|
|
};
|
|
|
|
}
|
|
|
|
modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld )
|
|
|
|
var _object = cache[ object.id ];
|
|
|
|
_object.normalMatrix.getNormalMatrix( modelViewMatrix );
|
|
_object.inverseMatrix.getInverse( object.matrixWorld );
|
|
|
|
} );
|
|
|
|
renderBlock( 0, 0 );
|
|
|
|
};
|
|
|
|
};
|
|
|
|
THREE.EventDispatcher.prototype.apply(THREE.RaytracingRenderer.prototype);
|