mirror of
https://github.com/Doodle3D/Doodle3D-Slicer.git
synced 2025-01-27 11:35:10 +01:00
2187 lines
76 KiB
Python
Executable File
2187 lines
76 KiB
Python
Executable File
# @author zfedoran / http://github.com/zfedoran
|
|
|
|
import os
|
|
import sys
|
|
import math
|
|
import operator
|
|
import re
|
|
import json
|
|
import types
|
|
import shutil
|
|
|
|
# #####################################################
|
|
# Globals
|
|
# #####################################################
|
|
option_triangulate = True
|
|
option_textures = True
|
|
option_copy_textures = True
|
|
option_prefix = True
|
|
option_geometry = False
|
|
option_forced_y_up = False
|
|
option_default_camera = False
|
|
option_default_light = False
|
|
option_pretty_print = False
|
|
|
|
converter = None
|
|
inputFolder = ""
|
|
outputFolder = ""
|
|
|
|
# #####################################################
|
|
# Pretty Printing Hacks
|
|
# #####################################################
|
|
|
|
# Force an array to be printed fully on a single line
|
|
class NoIndent(object):
|
|
def __init__(self, value, separator = ','):
|
|
self.separator = separator
|
|
self.value = value
|
|
def encode(self):
|
|
if not self.value:
|
|
return None
|
|
return '[ %s ]' % self.separator.join(str(f) for f in self.value)
|
|
|
|
# Force an array into chunks rather than printing each element on a new line
|
|
class ChunkedIndent(object):
|
|
def __init__(self, value, chunk_size = 15, force_rounding = False):
|
|
self.value = value
|
|
self.size = chunk_size
|
|
self.force_rounding = force_rounding
|
|
def encode(self):
|
|
# Turn the flat array into an array of arrays where each subarray is of
|
|
# length chunk_size. Then string concat the values in the chunked
|
|
# arrays, delimited with a ', ' and round the values finally append
|
|
# '{CHUNK}' so that we can find the strings with regex later
|
|
if not self.value:
|
|
return None
|
|
if self.force_rounding:
|
|
return ['{CHUNK}%s' % ', '.join(str(round(f, 6)) for f in self.value[i:i+self.size]) for i in range(0, len(self.value), self.size)]
|
|
else:
|
|
return ['{CHUNK}%s' % ', '.join(str(f) for f in self.value[i:i+self.size]) for i in range(0, len(self.value), self.size)]
|
|
|
|
# This custom encoder looks for instances of NoIndent or ChunkedIndent.
|
|
# When it finds
|
|
class CustomEncoder(json.JSONEncoder):
|
|
def default(self, obj):
|
|
if isinstance(obj, NoIndent) or isinstance(obj, ChunkedIndent):
|
|
return obj.encode()
|
|
else:
|
|
return json.JSONEncoder.default(self, obj)
|
|
|
|
def executeRegexHacks(output_string):
|
|
# turn strings of arrays into arrays (remove the double quotes)
|
|
output_string = re.sub(':\s*\"(\[.*\])\"', r': \1', output_string)
|
|
output_string = re.sub('(\n\s*)\"(\[.*\])\"', r'\1\2', output_string)
|
|
output_string = re.sub('(\n\s*)\"{CHUNK}(.*)\"', r'\1\2', output_string)
|
|
|
|
# replace '0metadata' with metadata
|
|
output_string = re.sub('0metadata', r'metadata', output_string)
|
|
# replace 'zchildren' with children
|
|
output_string = re.sub('zchildren', r'children', output_string)
|
|
|
|
# add an extra newline after '"children": {'
|
|
output_string = re.sub('(children.*{\s*\n)', r'\1\n', output_string)
|
|
# add an extra newline after '},'
|
|
output_string = re.sub('},\s*\n', r'},\n\n', output_string)
|
|
# add an extra newline after '\n\s*],'
|
|
output_string = re.sub('(\n\s*)],\s*\n', r'\1],\n\n', output_string)
|
|
|
|
return output_string
|
|
|
|
# #####################################################
|
|
# Object Serializers
|
|
# #####################################################
|
|
|
|
# FbxVector2 is not JSON serializable
|
|
def serializeVector2(v, round_vector = False):
|
|
# JSON does not support NaN or Inf
|
|
if math.isnan(v[0]) or math.isinf(v[0]):
|
|
v[0] = 0
|
|
if math.isnan(v[1]) or math.isinf(v[1]):
|
|
v[1] = 0
|
|
if round_vector or option_pretty_print:
|
|
v = (round(v[0], 5), round(v[1], 5))
|
|
if option_pretty_print:
|
|
return NoIndent([v[0], v[1]], ', ')
|
|
else:
|
|
return [v[0], v[1]]
|
|
|
|
# FbxVector3 is not JSON serializable
|
|
def serializeVector3(v, round_vector = False):
|
|
# JSON does not support NaN or Inf
|
|
if math.isnan(v[0]) or math.isinf(v[0]):
|
|
v[0] = 0
|
|
if math.isnan(v[1]) or math.isinf(v[1]):
|
|
v[1] = 0
|
|
if math.isnan(v[2]) or math.isinf(v[2]):
|
|
v[2] = 0
|
|
if round_vector or option_pretty_print:
|
|
v = (round(v[0], 5), round(v[1], 5), round(v[2], 5))
|
|
if option_pretty_print:
|
|
return NoIndent([v[0], v[1], v[2]], ', ')
|
|
else:
|
|
return [v[0], v[1], v[2]]
|
|
|
|
# FbxVector4 is not JSON serializable
|
|
def serializeVector4(v, round_vector = False):
|
|
# JSON does not support NaN or Inf
|
|
if math.isnan(v[0]) or math.isinf(v[0]):
|
|
v[0] = 0
|
|
if math.isnan(v[1]) or math.isinf(v[1]):
|
|
v[1] = 0
|
|
if math.isnan(v[2]) or math.isinf(v[2]):
|
|
v[2] = 0
|
|
if math.isnan(v[3]) or math.isinf(v[3]):
|
|
v[3] = 0
|
|
if round_vector or option_pretty_print:
|
|
v = (round(v[0], 5), round(v[1], 5), round(v[2], 5), round(v[3], 5))
|
|
if option_pretty_print:
|
|
return NoIndent([v[0], v[1], v[2], v[3]], ', ')
|
|
else:
|
|
return [v[0], v[1], v[2], v[3]]
|
|
|
|
# #####################################################
|
|
# Helpers
|
|
# #####################################################
|
|
def getRadians(v):
|
|
return ((v[0]*math.pi)/180, (v[1]*math.pi)/180, (v[2]*math.pi)/180)
|
|
|
|
def getHex(c):
|
|
color = (int(c[0]*255) << 16) + (int(c[1]*255) << 8) + int(c[2]*255)
|
|
return int(color)
|
|
|
|
def setBit(value, position, on):
|
|
if on:
|
|
mask = 1 << position
|
|
return (value | mask)
|
|
else:
|
|
mask = ~(1 << position)
|
|
return (value & mask)
|
|
|
|
def generate_uvs(uv_layers):
|
|
layers = []
|
|
for uvs in uv_layers:
|
|
tmp = []
|
|
for uv in uvs:
|
|
tmp.append(uv[0])
|
|
tmp.append(uv[1])
|
|
if option_pretty_print:
|
|
layer = ChunkedIndent(tmp)
|
|
else:
|
|
layer = tmp
|
|
layers.append(layer)
|
|
return layers
|
|
|
|
# #####################################################
|
|
# Object Name Helpers
|
|
# #####################################################
|
|
def hasUniqueName(o, class_id):
|
|
scene = o.GetScene()
|
|
object_name = o.GetName()
|
|
object_id = o.GetUniqueID()
|
|
|
|
object_count = scene.GetSrcObjectCount(class_id)
|
|
|
|
for i in range(object_count):
|
|
other = scene.GetSrcObject(class_id, i)
|
|
other_id = other.GetUniqueID()
|
|
other_name = other.GetName()
|
|
|
|
if other_id == object_id:
|
|
continue
|
|
if other_name == object_name:
|
|
return False
|
|
|
|
return True
|
|
|
|
def getObjectName(o, force_prefix = False):
|
|
if not o:
|
|
return ""
|
|
|
|
object_name = o.GetName()
|
|
object_id = o.GetUniqueID()
|
|
|
|
if not force_prefix:
|
|
force_prefix = not hasUniqueName(o, FbxNode.ClassId)
|
|
|
|
prefix = ""
|
|
if option_prefix or force_prefix:
|
|
prefix = "Object_%s_" % object_id
|
|
|
|
return prefix + object_name
|
|
|
|
def getMaterialName(o, force_prefix = False):
|
|
object_name = o.GetName()
|
|
object_id = o.GetUniqueID()
|
|
|
|
if not force_prefix:
|
|
force_prefix = not hasUniqueName(o, FbxSurfaceMaterial.ClassId)
|
|
|
|
prefix = ""
|
|
if option_prefix or force_prefix:
|
|
prefix = "Material_%s_" % object_id
|
|
|
|
return prefix + object_name
|
|
|
|
def getTextureName(t, force_prefix = False):
|
|
if type(t) is FbxFileTexture:
|
|
texture_file = t.GetFileName()
|
|
texture_id = os.path.splitext(os.path.basename(texture_file))[0]
|
|
else:
|
|
texture_id = t.GetName()
|
|
if texture_id == "_empty_":
|
|
texture_id = ""
|
|
prefix = ""
|
|
if option_prefix or force_prefix:
|
|
prefix = "Texture_%s_" % t.GetUniqueID()
|
|
if len(texture_id) == 0:
|
|
prefix = prefix[0:len(prefix)-1]
|
|
return prefix + texture_id
|
|
|
|
def getMtlTextureName(texture_name, texture_id, force_prefix = False):
|
|
texture_name = os.path.splitext(texture_name)[0]
|
|
prefix = ""
|
|
if option_prefix or force_prefix:
|
|
prefix = "Texture_%s_" % texture_id
|
|
return prefix + texture_name
|
|
|
|
def getPrefixedName(o, prefix):
|
|
return (prefix + '_%s_') % o.GetUniqueID() + o.GetName()
|
|
|
|
# #####################################################
|
|
# Triangulation
|
|
# #####################################################
|
|
def triangulate_node_hierarchy(node):
|
|
node_attribute = node.GetNodeAttribute();
|
|
|
|
if node_attribute:
|
|
if node_attribute.GetAttributeType() == FbxNodeAttribute.eMesh or \
|
|
node_attribute.GetAttributeType() == FbxNodeAttribute.eNurbs or \
|
|
node_attribute.GetAttributeType() == FbxNodeAttribute.eNurbsSurface or \
|
|
node_attribute.GetAttributeType() == FbxNodeAttribute.ePatch:
|
|
converter.TriangulateInPlace(node);
|
|
|
|
child_count = node.GetChildCount()
|
|
for i in range(child_count):
|
|
triangulate_node_hierarchy(node.GetChild(i))
|
|
|
|
def triangulate_scene(scene):
|
|
node = scene.GetRootNode()
|
|
if node:
|
|
for i in range(node.GetChildCount()):
|
|
triangulate_node_hierarchy(node.GetChild(i))
|
|
|
|
# #####################################################
|
|
# Generate Material Object
|
|
# #####################################################
|
|
def generate_texture_bindings(material_property, material_params):
|
|
# FBX to Three.js texture types
|
|
binding_types = {
|
|
"DiffuseColor": "map",
|
|
"DiffuseFactor": "diffuseFactor",
|
|
"EmissiveColor": "emissiveMap",
|
|
"EmissiveFactor": "emissiveFactor",
|
|
"AmbientColor": "lightMap", # "ambientMap",
|
|
"AmbientFactor": "ambientFactor",
|
|
"SpecularColor": "specularMap",
|
|
"SpecularFactor": "specularFactor",
|
|
"ShininessExponent": "shininessExponent",
|
|
"NormalMap": "normalMap",
|
|
"Bump": "bumpMap",
|
|
"TransparentColor": "transparentMap",
|
|
"TransparencyFactor": "transparentFactor",
|
|
"ReflectionColor": "reflectionMap",
|
|
"ReflectionFactor": "reflectionFactor",
|
|
"DisplacementColor": "displacementMap",
|
|
"VectorDisplacementColor": "vectorDisplacementMap"
|
|
}
|
|
|
|
if material_property.IsValid():
|
|
#Here we have to check if it's layeredtextures, or just textures:
|
|
layered_texture_count = material_property.GetSrcObjectCount(FbxLayeredTexture.ClassId)
|
|
if layered_texture_count > 0:
|
|
for j in range(layered_texture_count):
|
|
layered_texture = material_property.GetSrcObject(FbxLayeredTexture.ClassId, j)
|
|
texture_count = layered_texture.GetSrcObjectCount(FbxTexture.ClassId)
|
|
for k in range(texture_count):
|
|
texture = layered_texture.GetSrcObject(FbxTexture.ClassId,k)
|
|
if texture:
|
|
texture_id = getTextureName(texture, True)
|
|
material_params[binding_types[str(material_property.GetName())]] = texture_id
|
|
else:
|
|
# no layered texture simply get on the property
|
|
texture_count = material_property.GetSrcObjectCount(FbxTexture.ClassId)
|
|
for j in range(texture_count):
|
|
texture = material_property.GetSrcObject(FbxTexture.ClassId,j)
|
|
if texture:
|
|
texture_id = getTextureName(texture, True)
|
|
material_params[binding_types[str(material_property.GetName())]] = texture_id
|
|
|
|
def generate_material_object(material):
|
|
#Get the implementation to see if it's a hardware shader.
|
|
implementation = GetImplementation(material, "ImplementationHLSL")
|
|
implementation_type = "HLSL"
|
|
if not implementation:
|
|
implementation = GetImplementation(material, "ImplementationCGFX")
|
|
implementation_type = "CGFX"
|
|
|
|
output = None
|
|
material_params = None
|
|
material_type = None
|
|
|
|
if implementation:
|
|
print("Shader materials are not supported")
|
|
|
|
elif material.GetClassId().Is(FbxSurfaceLambert.ClassId):
|
|
|
|
ambient = getHex(material.Ambient.Get())
|
|
diffuse = getHex(material.Diffuse.Get())
|
|
emissive = getHex(material.Emissive.Get())
|
|
opacity = 1.0 - material.TransparencyFactor.Get()
|
|
opacity = 1.0 if opacity == 0 else opacity
|
|
opacity = opacity
|
|
transparent = False
|
|
reflectivity = 1
|
|
|
|
material_type = 'MeshBasicMaterial'
|
|
# material_type = 'MeshLambertMaterial'
|
|
material_params = {
|
|
|
|
'color' : diffuse,
|
|
'ambient' : ambient,
|
|
'emissive' : emissive,
|
|
'reflectivity' : reflectivity,
|
|
'transparent' : transparent,
|
|
'opacity' : opacity
|
|
|
|
}
|
|
|
|
elif material.GetClassId().Is(FbxSurfacePhong.ClassId):
|
|
|
|
ambient = getHex(material.Ambient.Get())
|
|
diffuse = getHex(material.Diffuse.Get())
|
|
emissive = getHex(material.Emissive.Get())
|
|
specular = getHex(material.Specular.Get())
|
|
opacity = 1.0 - material.TransparencyFactor.Get()
|
|
opacity = 1.0 if opacity == 0 else opacity
|
|
opacity = opacity
|
|
shininess = material.Shininess.Get()
|
|
transparent = False
|
|
reflectivity = 1
|
|
bumpScale = 1
|
|
|
|
material_type = 'MeshPhongMaterial'
|
|
material_params = {
|
|
|
|
'color' : diffuse,
|
|
'ambient' : ambient,
|
|
'emissive' : emissive,
|
|
'specular' : specular,
|
|
'shininess' : shininess,
|
|
'bumpScale' : bumpScale,
|
|
'reflectivity' : reflectivity,
|
|
'transparent' : transparent,
|
|
'opacity' : opacity
|
|
|
|
}
|
|
|
|
else:
|
|
print "Unknown type of Material", getMaterialName(material)
|
|
|
|
# default to Lambert Material if the current Material type cannot be handeled
|
|
if not material_type:
|
|
ambient = getHex((0,0,0))
|
|
diffuse = getHex((0.5,0.5,0.5))
|
|
emissive = getHex((0,0,0))
|
|
opacity = 1
|
|
transparent = False
|
|
reflectivity = 1
|
|
|
|
material_type = 'MeshLambertMaterial'
|
|
material_params = {
|
|
|
|
'color' : diffuse,
|
|
'ambient' : ambient,
|
|
'emissive' : emissive,
|
|
'reflectivity' : reflectivity,
|
|
'transparent' : transparent,
|
|
'opacity' : opacity
|
|
|
|
}
|
|
|
|
if option_textures:
|
|
texture_count = FbxLayerElement.sTypeTextureCount()
|
|
for texture_index in range(texture_count):
|
|
material_property = material.FindProperty(FbxLayerElement.sTextureChannelNames(texture_index))
|
|
generate_texture_bindings(material_property, material_params)
|
|
|
|
material_params['wireframe'] = False
|
|
material_params['wireframeLinewidth'] = 1
|
|
|
|
output = {
|
|
'type' : material_type,
|
|
'parameters' : material_params
|
|
}
|
|
|
|
return output
|
|
|
|
def generate_proxy_material_object(node, material_names):
|
|
|
|
material_type = 'MeshFaceMaterial'
|
|
material_params = {
|
|
'materials' : material_names
|
|
}
|
|
|
|
output = {
|
|
'type' : material_type,
|
|
'parameters' : material_params
|
|
}
|
|
|
|
return output
|
|
|
|
# #####################################################
|
|
# Find Scene Materials
|
|
# #####################################################
|
|
def extract_materials_from_node(node, material_dict):
|
|
name = node.GetName()
|
|
mesh = node.GetNodeAttribute()
|
|
|
|
node = None
|
|
if mesh:
|
|
node = mesh.GetNode()
|
|
if node:
|
|
material_count = node.GetMaterialCount()
|
|
|
|
material_names = []
|
|
for l in range(mesh.GetLayerCount()):
|
|
materials = mesh.GetLayer(l).GetMaterials()
|
|
if materials:
|
|
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
|
|
#Materials are in an undefined external table
|
|
continue
|
|
for i in range(material_count):
|
|
material = node.GetMaterial(i)
|
|
material_names.append(getMaterialName(material))
|
|
|
|
if material_count > 1:
|
|
proxy_material = generate_proxy_material_object(node, material_names)
|
|
proxy_name = getMaterialName(node, True)
|
|
material_dict[proxy_name] = proxy_material
|
|
|
|
def generate_materials_from_hierarchy(node, material_dict):
|
|
if node.GetNodeAttribute() == None:
|
|
pass
|
|
else:
|
|
attribute_type = (node.GetNodeAttribute().GetAttributeType())
|
|
if attribute_type == FbxNodeAttribute.eMesh:
|
|
extract_materials_from_node(node, material_dict)
|
|
for i in range(node.GetChildCount()):
|
|
generate_materials_from_hierarchy(node.GetChild(i), material_dict)
|
|
|
|
def generate_material_dict(scene):
|
|
material_dict = {}
|
|
|
|
# generate all materials for this scene
|
|
material_count = scene.GetSrcObjectCount(FbxSurfaceMaterial.ClassId)
|
|
for i in range(material_count):
|
|
material = scene.GetSrcObject(FbxSurfaceMaterial.ClassId, i)
|
|
material_object = generate_material_object(material)
|
|
material_name = getMaterialName(material)
|
|
material_dict[material_name] = material_object
|
|
|
|
# generate material porxies
|
|
# Three.js does not support meshs with multiple materials, however it does
|
|
# support materials with multiple submaterials
|
|
node = scene.GetRootNode()
|
|
if node:
|
|
for i in range(node.GetChildCount()):
|
|
generate_materials_from_hierarchy(node.GetChild(i), material_dict)
|
|
|
|
return material_dict
|
|
|
|
# #####################################################
|
|
# Generate Texture Object
|
|
# #####################################################
|
|
def generate_texture_object(texture):
|
|
|
|
#TODO: extract more texture properties
|
|
wrap_u = texture.GetWrapModeU()
|
|
wrap_v = texture.GetWrapModeV()
|
|
offset = texture.GetUVTranslation()
|
|
|
|
if type(texture) is FbxFileTexture:
|
|
url = texture.GetFileName()
|
|
else:
|
|
url = getTextureName( texture )
|
|
|
|
#url = replace_inFolder2OutFolder( url )
|
|
#print( url )
|
|
|
|
index = url.rfind( '/' )
|
|
if index == -1:
|
|
index = url.rfind( '\\' )
|
|
filename = url[ index+1 : len(url) ]
|
|
|
|
output = {
|
|
|
|
'url': filename,
|
|
'fullpath': url,
|
|
'repeat': serializeVector2( (1,1) ),
|
|
'offset': serializeVector2( texture.GetUVTranslation() ),
|
|
'magFilter': 'LinearFilter',
|
|
'minFilter': 'LinearMipMapLinearFilter',
|
|
'anisotropy': True
|
|
|
|
}
|
|
|
|
return output
|
|
|
|
# #####################################################
|
|
# Replace Texture input path to output
|
|
# #####################################################
|
|
def replace_inFolder2OutFolder(url):
|
|
folderIndex = url.find(inputFolder)
|
|
|
|
if folderIndex != -1:
|
|
url = url[ folderIndex+len(inputFolder): ]
|
|
url = outputFolder + url
|
|
|
|
return url
|
|
|
|
# #####################################################
|
|
# Replace Texture output path to input
|
|
# #####################################################
|
|
def replace_OutFolder2inFolder(url):
|
|
folderIndex = url.find(outputFolder)
|
|
|
|
if folderIndex != -1:
|
|
url = url[ folderIndex+len(outputFolder): ]
|
|
url = inputFolder + url
|
|
|
|
return url
|
|
|
|
# #####################################################
|
|
# Find Scene Textures
|
|
# #####################################################
|
|
def extract_material_textures(material_property, texture_dict):
|
|
if material_property.IsValid():
|
|
#Here we have to check if it's layeredtextures, or just textures:
|
|
layered_texture_count = material_property.GetSrcObjectCount(FbxLayeredTexture.ClassId)
|
|
if layered_texture_count > 0:
|
|
for j in range(layered_texture_count):
|
|
layered_texture = material_property.GetSrcObject(FbxLayeredTexture.ClassId, j)
|
|
texture_count = layered_texture.GetSrcObjectCount(FbxTexture.ClassId)
|
|
for k in range(texture_count):
|
|
texture = layered_texture.GetSrcObject(FbxTexture.ClassId,k)
|
|
if texture:
|
|
texture_object = generate_texture_object(texture)
|
|
texture_name = getTextureName( texture, True )
|
|
texture_dict[texture_name] = texture_object
|
|
else:
|
|
# no layered texture simply get on the property
|
|
texture_count = material_property.GetSrcObjectCount(FbxTexture.ClassId)
|
|
for j in range(texture_count):
|
|
texture = material_property.GetSrcObject(FbxTexture.ClassId,j)
|
|
if texture:
|
|
texture_object = generate_texture_object(texture)
|
|
texture_name = getTextureName( texture, True )
|
|
texture_dict[texture_name] = texture_object
|
|
|
|
def extract_textures_from_node(node, texture_dict):
|
|
name = node.GetName()
|
|
mesh = node.GetNodeAttribute()
|
|
|
|
#for all materials attached to this mesh
|
|
material_count = mesh.GetNode().GetSrcObjectCount(FbxSurfaceMaterial.ClassId)
|
|
for material_index in range(material_count):
|
|
material = mesh.GetNode().GetSrcObject(FbxSurfaceMaterial.ClassId, material_index)
|
|
|
|
#go through all the possible textures types
|
|
if material:
|
|
texture_count = FbxLayerElement.sTypeTextureCount()
|
|
for texture_index in range(texture_count):
|
|
material_property = material.FindProperty(FbxLayerElement.sTextureChannelNames(texture_index))
|
|
extract_material_textures(material_property, texture_dict)
|
|
|
|
def generate_textures_from_hierarchy(node, texture_dict):
|
|
if node.GetNodeAttribute() == None:
|
|
pass
|
|
else:
|
|
attribute_type = (node.GetNodeAttribute().GetAttributeType())
|
|
if attribute_type == FbxNodeAttribute.eMesh:
|
|
extract_textures_from_node(node, texture_dict)
|
|
for i in range(node.GetChildCount()):
|
|
generate_textures_from_hierarchy(node.GetChild(i), texture_dict)
|
|
|
|
def generate_texture_dict(scene):
|
|
if not option_textures:
|
|
return {}
|
|
|
|
texture_dict = {}
|
|
node = scene.GetRootNode()
|
|
if node:
|
|
for i in range(node.GetChildCount()):
|
|
generate_textures_from_hierarchy(node.GetChild(i), texture_dict)
|
|
return texture_dict
|
|
|
|
# #####################################################
|
|
# Extract Fbx SDK Mesh Data
|
|
# #####################################################
|
|
def extract_fbx_vertex_positions(mesh):
|
|
control_points_count = mesh.GetControlPointsCount()
|
|
control_points = mesh.GetControlPoints()
|
|
|
|
positions = []
|
|
for i in range(control_points_count):
|
|
tmp = control_points[i]
|
|
tmp = [tmp[0], tmp[1], tmp[2]]
|
|
positions.append(tmp)
|
|
|
|
node = mesh.GetNode()
|
|
if node:
|
|
t = node.GeometricTranslation.Get()
|
|
t = FbxVector4(t[0], t[1], t[2], 1)
|
|
r = node.GeometricRotation.Get()
|
|
r = FbxVector4(r[0], r[1], r[2], 1)
|
|
s = node.GeometricScaling.Get()
|
|
s = FbxVector4(s[0], s[1], s[2], 1)
|
|
|
|
hasGeometricTransform = False
|
|
if t[0] != 0 or t[1] != 0 or t[2] != 0 or \
|
|
r[0] != 0 or r[1] != 0 or r[2] != 0 or \
|
|
s[0] != 1 or s[1] != 1 or s[2] != 1:
|
|
hasGeometricTransform = True
|
|
|
|
if hasGeometricTransform:
|
|
geo_transform = FbxMatrix(t,r,s)
|
|
else:
|
|
geo_transform = FbxMatrix()
|
|
|
|
transform = None
|
|
|
|
if option_geometry:
|
|
# FbxMeshes are local to their node, we need the vertices in global space
|
|
# when scene nodes are not exported
|
|
transform = node.EvaluateGlobalTransform()
|
|
transform = FbxMatrix(transform) * geo_transform
|
|
|
|
elif hasGeometricTransform:
|
|
transform = geo_transform
|
|
|
|
if transform:
|
|
for i in range(len(positions)):
|
|
v = positions[i]
|
|
position = FbxVector4(v[0], v[1], v[2])
|
|
position = transform.MultNormalize(position)
|
|
positions[i] = [position[0], position[1], position[2]]
|
|
|
|
return positions
|
|
|
|
def extract_fbx_vertex_normals(mesh):
|
|
# eNone The mapping is undetermined.
|
|
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
|
|
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
|
|
# eByPolygon There can be only one mapping coordinate for the whole polygon.
|
|
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
|
|
# eAllSame There can be only one mapping coordinate for the whole surface.
|
|
|
|
layered_normal_indices = []
|
|
layered_normal_values = []
|
|
|
|
poly_count = mesh.GetPolygonCount()
|
|
control_points = mesh.GetControlPoints()
|
|
|
|
for l in range(mesh.GetLayerCount()):
|
|
mesh_normals = mesh.GetLayer(l).GetNormals()
|
|
if not mesh_normals:
|
|
continue
|
|
|
|
normals_array = mesh_normals.GetDirectArray()
|
|
normals_count = normals_array.GetCount()
|
|
|
|
if normals_count == 0:
|
|
continue
|
|
|
|
normal_indices = []
|
|
normal_values = []
|
|
|
|
# values
|
|
for i in range(normals_count):
|
|
normal = normals_array.GetAt(i)
|
|
normal = [normal[0], normal[1], normal[2]]
|
|
normal_values.append(normal)
|
|
|
|
node = mesh.GetNode()
|
|
if node:
|
|
t = node.GeometricTranslation.Get()
|
|
t = FbxVector4(t[0], t[1], t[2], 1)
|
|
r = node.GeometricRotation.Get()
|
|
r = FbxVector4(r[0], r[1], r[2], 1)
|
|
s = node.GeometricScaling.Get()
|
|
s = FbxVector4(s[0], s[1], s[2], 1)
|
|
|
|
hasGeometricTransform = False
|
|
if t[0] != 0 or t[1] != 0 or t[2] != 0 or \
|
|
r[0] != 0 or r[1] != 0 or r[2] != 0 or \
|
|
s[0] != 1 or s[1] != 1 or s[2] != 1:
|
|
hasGeometricTransform = True
|
|
|
|
if hasGeometricTransform:
|
|
geo_transform = FbxMatrix(t,r,s)
|
|
else:
|
|
geo_transform = FbxMatrix()
|
|
|
|
transform = None
|
|
|
|
if option_geometry:
|
|
# FbxMeshes are local to their node, we need the vertices in global space
|
|
# when scene nodes are not exported
|
|
transform = node.EvaluateGlobalTransform()
|
|
transform = FbxMatrix(transform) * geo_transform
|
|
|
|
elif hasGeometricTransform:
|
|
transform = geo_transform
|
|
|
|
if transform:
|
|
t = FbxVector4(0,0,0,1)
|
|
transform.SetRow(3, t)
|
|
|
|
for i in range(len(normal_values)):
|
|
n = normal_values[i]
|
|
normal = FbxVector4(n[0], n[1], n[2])
|
|
normal = transform.MultNormalize(normal)
|
|
normal.Normalize()
|
|
normal = [normal[0], normal[1], normal[2]]
|
|
normal_values[i] = normal
|
|
|
|
# indices
|
|
vertexId = 0
|
|
for p in range(poly_count):
|
|
poly_size = mesh.GetPolygonSize(p)
|
|
poly_normals = []
|
|
|
|
for v in range(poly_size):
|
|
control_point_index = mesh.GetPolygonVertex(p, v)
|
|
|
|
# mapping mode is by control points. The mesh should be smooth and soft.
|
|
# we can get normals by retrieving each control point
|
|
if mesh_normals.GetMappingMode() == FbxLayerElement.eByControlPoint:
|
|
|
|
# reference mode is direct, the normal index is same as vertex index.
|
|
# get normals by the index of control vertex
|
|
if mesh_normals.GetReferenceMode() == FbxLayerElement.eDirect:
|
|
poly_normals.append(control_point_index)
|
|
|
|
elif mesh_normals.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
|
|
index = mesh_normals.GetIndexArray().GetAt(control_point_index)
|
|
poly_normals.append(index)
|
|
|
|
# mapping mode is by polygon-vertex.
|
|
# we can get normals by retrieving polygon-vertex.
|
|
elif mesh_normals.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
|
|
|
|
if mesh_normals.GetReferenceMode() == FbxLayerElement.eDirect:
|
|
poly_normals.append(vertexId)
|
|
|
|
elif mesh_normals.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
|
|
index = mesh_normals.GetIndexArray().GetAt(vertexId)
|
|
poly_normals.append(index)
|
|
|
|
elif mesh_normals.GetMappingMode() == FbxLayerElement.eByPolygon or \
|
|
mesh_normals.GetMappingMode() == FbxLayerElement.eAllSame or \
|
|
mesh_normals.GetMappingMode() == FbxLayerElement.eNone:
|
|
print("unsupported normal mapping mode for polygon vertex")
|
|
|
|
vertexId += 1
|
|
normal_indices.append(poly_normals)
|
|
|
|
layered_normal_values.append(normal_values)
|
|
layered_normal_indices.append(normal_indices)
|
|
|
|
normal_values = []
|
|
normal_indices = []
|
|
|
|
# Three.js only supports one layer of normals
|
|
if len(layered_normal_values) > 0:
|
|
normal_values = layered_normal_values[0]
|
|
normal_indices = layered_normal_indices[0]
|
|
|
|
return normal_values, normal_indices
|
|
|
|
def extract_fbx_vertex_colors(mesh):
|
|
# eNone The mapping is undetermined.
|
|
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
|
|
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
|
|
# eByPolygon There can be only one mapping coordinate for the whole polygon.
|
|
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
|
|
# eAllSame There can be only one mapping coordinate for the whole surface.
|
|
|
|
layered_color_indices = []
|
|
layered_color_values = []
|
|
|
|
poly_count = mesh.GetPolygonCount()
|
|
control_points = mesh.GetControlPoints()
|
|
|
|
for l in range(mesh.GetLayerCount()):
|
|
mesh_colors = mesh.GetLayer(l).GetVertexColors()
|
|
if not mesh_colors:
|
|
continue
|
|
|
|
colors_array = mesh_colors.GetDirectArray()
|
|
colors_count = colors_array.GetCount()
|
|
|
|
if colors_count == 0:
|
|
continue
|
|
|
|
color_indices = []
|
|
color_values = []
|
|
|
|
# values
|
|
for i in range(colors_count):
|
|
color = colors_array.GetAt(i)
|
|
color = [color.mRed, color.mGreen, color.mBlue, color.mAlpha]
|
|
color_values.append(color)
|
|
|
|
# indices
|
|
vertexId = 0
|
|
for p in range(poly_count):
|
|
poly_size = mesh.GetPolygonSize(p)
|
|
poly_colors = []
|
|
|
|
for v in range(poly_size):
|
|
control_point_index = mesh.GetPolygonVertex(p, v)
|
|
|
|
if mesh_colors.GetMappingMode() == FbxLayerElement.eByControlPoint:
|
|
if mesh_colors.GetReferenceMode() == FbxLayerElement.eDirect:
|
|
poly_colors.append(control_point_index)
|
|
elif mesh_colors.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
|
|
index = mesh_colors.GetIndexArray().GetAt(control_point_index)
|
|
poly_colors.append(index)
|
|
elif mesh_colors.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
|
|
if mesh_colors.GetReferenceMode() == FbxLayerElement.eDirect:
|
|
poly_colors.append(vertexId)
|
|
elif mesh_colors.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
|
|
index = mesh_colors.GetIndexArray().GetAt(vertexId)
|
|
poly_colors.append(index)
|
|
elif mesh_colors.GetMappingMode() == FbxLayerElement.eByPolygon or \
|
|
mesh_colors.GetMappingMode() == FbxLayerElement.eAllSame or \
|
|
mesh_colors.GetMappingMode() == FbxLayerElement.eNone:
|
|
print("unsupported color mapping mode for polygon vertex")
|
|
|
|
vertexId += 1
|
|
color_indices.append(poly_colors)
|
|
|
|
layered_color_indices.append( color_indices )
|
|
layered_color_values.append( color_values )
|
|
|
|
color_values = []
|
|
color_indices = []
|
|
|
|
# Three.js only supports one layer of colors
|
|
if len(layered_color_values) > 0:
|
|
color_values = layered_color_values[0]
|
|
color_indices = layered_color_indices[0]
|
|
|
|
'''
|
|
# The Fbx SDK defaults mesh.Color to (0.8, 0.8, 0.8)
|
|
# This causes most models to receive incorrect vertex colors
|
|
if len(color_values) == 0:
|
|
color = mesh.Color.Get()
|
|
color_values = [[color[0], color[1], color[2]]]
|
|
color_indices = []
|
|
for p in range(poly_count):
|
|
poly_size = mesh.GetPolygonSize(p)
|
|
color_indices.append([0] * poly_size)
|
|
'''
|
|
|
|
return color_values, color_indices
|
|
|
|
def extract_fbx_vertex_uvs(mesh):
|
|
# eNone The mapping is undetermined.
|
|
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
|
|
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
|
|
# eByPolygon There can be only one mapping coordinate for the whole polygon.
|
|
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
|
|
# eAllSame There can be only one mapping coordinate for the whole surface.
|
|
|
|
layered_uv_indices = []
|
|
layered_uv_values = []
|
|
|
|
poly_count = mesh.GetPolygonCount()
|
|
control_points = mesh.GetControlPoints()
|
|
|
|
for l in range(mesh.GetLayerCount()):
|
|
mesh_uvs = mesh.GetLayer(l).GetUVs()
|
|
if not mesh_uvs:
|
|
continue
|
|
|
|
uvs_array = mesh_uvs.GetDirectArray()
|
|
uvs_count = uvs_array.GetCount()
|
|
|
|
if uvs_count == 0:
|
|
continue
|
|
|
|
uv_indices = []
|
|
uv_values = []
|
|
|
|
# values
|
|
for i in range(uvs_count):
|
|
uv = uvs_array.GetAt(i)
|
|
uv = [uv[0], uv[1]]
|
|
uv_values.append(uv)
|
|
|
|
# indices
|
|
vertexId = 0
|
|
for p in range(poly_count):
|
|
poly_size = mesh.GetPolygonSize(p)
|
|
poly_uvs = []
|
|
|
|
for v in range(poly_size):
|
|
control_point_index = mesh.GetPolygonVertex(p, v)
|
|
|
|
if mesh_uvs.GetMappingMode() == FbxLayerElement.eByControlPoint:
|
|
if mesh_uvs.GetReferenceMode() == FbxLayerElement.eDirect:
|
|
poly_uvs.append(control_point_index)
|
|
elif mesh_uvs.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
|
|
index = mesh_uvs.GetIndexArray().GetAt(control_point_index)
|
|
poly_uvs.append(index)
|
|
elif mesh_uvs.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
|
|
uv_texture_index = mesh_uvs.GetIndexArray().GetAt(vertexId)
|
|
|
|
if mesh_uvs.GetReferenceMode() == FbxLayerElement.eDirect or \
|
|
mesh_uvs.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
|
|
poly_uvs.append(uv_texture_index)
|
|
elif mesh_uvs.GetMappingMode() == FbxLayerElement.eByPolygon or \
|
|
mesh_uvs.GetMappingMode() == FbxLayerElement.eAllSame or \
|
|
mesh_uvs.GetMappingMode() == FbxLayerElement.eNone:
|
|
print("unsupported uv mapping mode for polygon vertex")
|
|
|
|
vertexId += 1
|
|
uv_indices.append(poly_uvs)
|
|
|
|
layered_uv_values.append(uv_values)
|
|
layered_uv_indices.append(uv_indices)
|
|
|
|
return layered_uv_values, layered_uv_indices
|
|
|
|
# #####################################################
|
|
# Process Mesh Geometry
|
|
# #####################################################
|
|
def generate_normal_key(normal):
|
|
return (round(normal[0], 6), round(normal[1], 6), round(normal[2], 6))
|
|
|
|
def generate_color_key(color):
|
|
return getHex(color)
|
|
|
|
def generate_uv_key(uv):
|
|
return (round(uv[0], 6), round(uv[1], 6))
|
|
|
|
def append_non_duplicate_uvs(source_uvs, dest_uvs, counts):
|
|
source_layer_count = len(source_uvs)
|
|
for layer_index in range(source_layer_count):
|
|
|
|
dest_layer_count = len(dest_uvs)
|
|
|
|
if dest_layer_count <= layer_index:
|
|
dest_uv_layer = {}
|
|
count = 0
|
|
dest_uvs.append(dest_uv_layer)
|
|
counts.append(count)
|
|
else:
|
|
dest_uv_layer = dest_uvs[layer_index]
|
|
count = counts[layer_index]
|
|
|
|
source_uv_layer = source_uvs[layer_index]
|
|
|
|
for uv in source_uv_layer:
|
|
key = generate_uv_key(uv)
|
|
if key not in dest_uv_layer:
|
|
dest_uv_layer[key] = count
|
|
count += 1
|
|
|
|
counts[layer_index] = count
|
|
|
|
return counts
|
|
|
|
def generate_unique_normals_dictionary(mesh_list):
|
|
normals_dictionary = {}
|
|
nnormals = 0
|
|
|
|
# Merge meshes, remove duplicate data
|
|
for mesh in mesh_list:
|
|
node = mesh.GetNode()
|
|
normal_values, normal_indices = extract_fbx_vertex_normals(mesh)
|
|
|
|
if len(normal_values) > 0:
|
|
for normal in normal_values:
|
|
key = generate_normal_key(normal)
|
|
if key not in normals_dictionary:
|
|
normals_dictionary[key] = nnormals
|
|
nnormals += 1
|
|
|
|
return normals_dictionary
|
|
|
|
def generate_unique_colors_dictionary(mesh_list):
|
|
colors_dictionary = {}
|
|
ncolors = 0
|
|
|
|
# Merge meshes, remove duplicate data
|
|
for mesh in mesh_list:
|
|
color_values, color_indices = extract_fbx_vertex_colors(mesh)
|
|
|
|
if len(color_values) > 0:
|
|
for color in color_values:
|
|
key = generate_color_key(color)
|
|
if key not in colors_dictionary:
|
|
colors_dictionary[key] = ncolors
|
|
ncolors += 1
|
|
|
|
return colors_dictionary
|
|
|
|
def generate_unique_uvs_dictionary_layers(mesh_list):
|
|
uvs_dictionary_layers = []
|
|
nuvs_list = []
|
|
|
|
# Merge meshes, remove duplicate data
|
|
for mesh in mesh_list:
|
|
uv_values, uv_indices = extract_fbx_vertex_uvs(mesh)
|
|
|
|
if len(uv_values) > 0:
|
|
nuvs_list = append_non_duplicate_uvs(uv_values, uvs_dictionary_layers, nuvs_list)
|
|
|
|
return uvs_dictionary_layers
|
|
|
|
def generate_normals_from_dictionary(normals_dictionary):
|
|
normal_values = []
|
|
for key, index in sorted(normals_dictionary.items(), key = operator.itemgetter(1)):
|
|
normal_values.append(key)
|
|
|
|
return normal_values
|
|
|
|
def generate_colors_from_dictionary(colors_dictionary):
|
|
color_values = []
|
|
for key, index in sorted(colors_dictionary.items(), key = operator.itemgetter(1)):
|
|
color_values.append(key)
|
|
|
|
return color_values
|
|
|
|
def generate_uvs_from_dictionary_layers(uvs_dictionary_layers):
|
|
uv_values = []
|
|
for uvs_dictionary in uvs_dictionary_layers:
|
|
uv_values_layer = []
|
|
for key, index in sorted(uvs_dictionary.items(), key = operator.itemgetter(1)):
|
|
uv_values_layer.append(key)
|
|
uv_values.append(uv_values_layer)
|
|
|
|
return uv_values
|
|
|
|
def generate_normal_indices_for_poly(poly_index, mesh_normal_values, mesh_normal_indices, normals_to_indices):
|
|
if len(mesh_normal_indices) <= 0:
|
|
return []
|
|
|
|
poly_normal_indices = mesh_normal_indices[poly_index]
|
|
poly_size = len(poly_normal_indices)
|
|
|
|
output_poly_normal_indices = []
|
|
for v in range(poly_size):
|
|
normal_index = poly_normal_indices[v]
|
|
normal_value = mesh_normal_values[normal_index]
|
|
|
|
key = generate_normal_key(normal_value)
|
|
|
|
output_index = normals_to_indices[key]
|
|
output_poly_normal_indices.append(output_index)
|
|
|
|
return output_poly_normal_indices
|
|
|
|
def generate_color_indices_for_poly(poly_index, mesh_color_values, mesh_color_indices, colors_to_indices):
|
|
if len(mesh_color_indices) <= 0:
|
|
return []
|
|
|
|
poly_color_indices = mesh_color_indices[poly_index]
|
|
poly_size = len(poly_color_indices)
|
|
|
|
output_poly_color_indices = []
|
|
for v in range(poly_size):
|
|
color_index = poly_color_indices[v]
|
|
color_value = mesh_color_values[color_index]
|
|
|
|
key = generate_color_key(color_value)
|
|
|
|
output_index = colors_to_indices[key]
|
|
output_poly_color_indices.append(output_index)
|
|
|
|
return output_poly_color_indices
|
|
|
|
def generate_uv_indices_for_poly(poly_index, mesh_uv_values, mesh_uv_indices, uvs_to_indices):
|
|
if len(mesh_uv_indices) <= 0:
|
|
return []
|
|
|
|
poly_uv_indices = mesh_uv_indices[poly_index]
|
|
poly_size = len(poly_uv_indices)
|
|
|
|
output_poly_uv_indices = []
|
|
for v in range(poly_size):
|
|
uv_index = poly_uv_indices[v]
|
|
uv_value = mesh_uv_values[uv_index]
|
|
|
|
key = generate_uv_key(uv_value)
|
|
|
|
output_index = uvs_to_indices[key]
|
|
output_poly_uv_indices.append(output_index)
|
|
|
|
return output_poly_uv_indices
|
|
|
|
def process_mesh_vertices(mesh_list):
|
|
vertex_offset = 0
|
|
vertex_offset_list = [0]
|
|
vertices = []
|
|
for mesh in mesh_list:
|
|
node = mesh.GetNode()
|
|
mesh_vertices = extract_fbx_vertex_positions(mesh)
|
|
|
|
vertices.extend(mesh_vertices[:])
|
|
vertex_offset += len(mesh_vertices)
|
|
vertex_offset_list.append(vertex_offset)
|
|
|
|
return vertices, vertex_offset_list
|
|
|
|
|
|
def process_mesh_materials(mesh_list):
|
|
material_offset = 0
|
|
material_offset_list = [0]
|
|
materials_list = []
|
|
|
|
#TODO: remove duplicate mesh references
|
|
for mesh in mesh_list:
|
|
node = mesh.GetNode()
|
|
|
|
material_count = node.GetMaterialCount()
|
|
if material_count > 0:
|
|
for l in range(mesh.GetLayerCount()):
|
|
materials = mesh.GetLayer(l).GetMaterials()
|
|
if materials:
|
|
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
|
|
#Materials are in an undefined external table
|
|
continue
|
|
|
|
for i in range(material_count):
|
|
material = node.GetMaterial(i)
|
|
materials_list.append( material )
|
|
|
|
material_offset += material_count
|
|
material_offset_list.append(material_offset)
|
|
|
|
return materials_list, material_offset_list
|
|
|
|
def process_mesh_polygons(mesh_list, normals_to_indices, colors_to_indices, uvs_to_indices_list, vertex_offset_list, material_offset_list):
|
|
faces = []
|
|
for mesh_index in range(len(mesh_list)):
|
|
mesh = mesh_list[mesh_index]
|
|
|
|
flipWindingOrder = False
|
|
node = mesh.GetNode()
|
|
if node:
|
|
local_scale = node.EvaluateLocalScaling()
|
|
if local_scale[0] < 0 or local_scale[1] < 0 or local_scale[2] < 0:
|
|
flipWindingOrder = True
|
|
|
|
poly_count = mesh.GetPolygonCount()
|
|
control_points = mesh.GetControlPoints()
|
|
|
|
normal_values, normal_indices = extract_fbx_vertex_normals(mesh)
|
|
color_values, color_indices = extract_fbx_vertex_colors(mesh)
|
|
uv_values_layers, uv_indices_layers = extract_fbx_vertex_uvs(mesh)
|
|
|
|
for poly_index in range(poly_count):
|
|
poly_size = mesh.GetPolygonSize(poly_index)
|
|
|
|
face_normals = generate_normal_indices_for_poly(poly_index, normal_values, normal_indices, normals_to_indices)
|
|
face_colors = generate_color_indices_for_poly(poly_index, color_values, color_indices, colors_to_indices)
|
|
|
|
face_uv_layers = []
|
|
for l in range(len(uv_indices_layers)):
|
|
uv_values = uv_values_layers[l]
|
|
uv_indices = uv_indices_layers[l]
|
|
face_uv_indices = generate_uv_indices_for_poly(poly_index, uv_values, uv_indices, uvs_to_indices_list[l])
|
|
face_uv_layers.append(face_uv_indices)
|
|
|
|
face_vertices = []
|
|
for vertex_index in range(poly_size):
|
|
control_point_index = mesh.GetPolygonVertex(poly_index, vertex_index)
|
|
face_vertices.append(control_point_index)
|
|
|
|
#TODO: assign a default material to any mesh without one
|
|
if len(material_offset_list) <= mesh_index:
|
|
material_offset = 0
|
|
else:
|
|
material_offset = material_offset_list[mesh_index]
|
|
|
|
vertex_offset = vertex_offset_list[mesh_index]
|
|
|
|
if poly_size > 4:
|
|
new_face_normals = []
|
|
new_face_colors = []
|
|
new_face_uv_layers = []
|
|
|
|
for i in range(poly_size - 2):
|
|
new_face_vertices = [face_vertices[0], face_vertices[i+1], face_vertices[i+2]]
|
|
|
|
if len(face_normals):
|
|
new_face_normals = [face_normals[0], face_normals[i+1], face_normals[i+2]]
|
|
if len(face_colors):
|
|
new_face_colors = [face_colors[0], face_colors[i+1], face_colors[i+2]]
|
|
if len(face_uv_layers):
|
|
new_face_uv_layers = []
|
|
for layer in face_uv_layers:
|
|
new_face_uv_layers.append([layer[0], layer[i+1], layer[i+2]])
|
|
|
|
face = generate_mesh_face(mesh,
|
|
poly_index,
|
|
new_face_vertices,
|
|
new_face_normals,
|
|
new_face_colors,
|
|
new_face_uv_layers,
|
|
vertex_offset,
|
|
material_offset,
|
|
flipWindingOrder)
|
|
faces.append(face)
|
|
else:
|
|
face = generate_mesh_face(mesh,
|
|
poly_index,
|
|
face_vertices,
|
|
face_normals,
|
|
face_colors,
|
|
face_uv_layers,
|
|
vertex_offset,
|
|
material_offset,
|
|
flipWindingOrder)
|
|
faces.append(face)
|
|
|
|
return faces
|
|
|
|
def generate_mesh_face(mesh, polygon_index, vertex_indices, normals, colors, uv_layers, vertex_offset, material_offset, flipOrder):
|
|
isTriangle = ( len(vertex_indices) == 3 )
|
|
nVertices = 3 if isTriangle else 4
|
|
|
|
hasMaterial = False
|
|
for l in range(mesh.GetLayerCount()):
|
|
materials = mesh.GetLayer(l).GetMaterials()
|
|
if materials:
|
|
hasMaterial = True
|
|
break
|
|
|
|
hasFaceUvs = False
|
|
hasFaceVertexUvs = len(uv_layers) > 0
|
|
hasFaceNormals = False
|
|
hasFaceVertexNormals = len(normals) > 0
|
|
hasFaceColors = False
|
|
hasFaceVertexColors = len(colors) > 0
|
|
|
|
faceType = 0
|
|
faceType = setBit(faceType, 0, not isTriangle)
|
|
faceType = setBit(faceType, 1, hasMaterial)
|
|
faceType = setBit(faceType, 2, hasFaceUvs)
|
|
faceType = setBit(faceType, 3, hasFaceVertexUvs)
|
|
faceType = setBit(faceType, 4, hasFaceNormals)
|
|
faceType = setBit(faceType, 5, hasFaceVertexNormals)
|
|
faceType = setBit(faceType, 6, hasFaceColors)
|
|
faceType = setBit(faceType, 7, hasFaceVertexColors)
|
|
|
|
faceData = []
|
|
|
|
# order is important, must match order in JSONLoader
|
|
|
|
# face type
|
|
# vertex indices
|
|
# material index
|
|
# face uvs index
|
|
# face vertex uvs indices
|
|
# face color index
|
|
# face vertex colors indices
|
|
|
|
faceData.append(faceType)
|
|
|
|
if flipOrder:
|
|
if nVertices == 3:
|
|
vertex_indices = [vertex_indices[0], vertex_indices[2], vertex_indices[1]]
|
|
if hasFaceVertexNormals:
|
|
normals = [normals[0], normals[2], normals[1]]
|
|
if hasFaceVertexColors:
|
|
colors = [colors[0], colors[2], colors[1]]
|
|
if hasFaceVertexUvs:
|
|
tmp = []
|
|
for polygon_uvs in uv_layers:
|
|
tmp.append([polygon_uvs[0], polygon_uvs[2], polygon_uvs[1]])
|
|
uv_layers = tmp
|
|
else:
|
|
vertex_indices = [vertex_indices[0], vertex_indices[3], vertex_indices[2], vertex_indices[1]]
|
|
if hasFaceVertexNormals:
|
|
normals = [normals[0], normals[3], normals[2], normals[1]]
|
|
if hasFaceVertexColors:
|
|
colors = [colors[0], colors[3], colors[2], colors[1]]
|
|
if hasFaceVertexUvs:
|
|
tmp = []
|
|
for polygon_uvs in uv_layers:
|
|
tmp.append([polygon_uvs[0], polygon_uvs[3], polygon_uvs[2], polygon_uvs[3]])
|
|
uv_layers = tmp
|
|
|
|
for i in range(nVertices):
|
|
index = vertex_indices[i] + vertex_offset
|
|
faceData.append(index)
|
|
|
|
if hasMaterial:
|
|
material_id = 0
|
|
for l in range(mesh.GetLayerCount()):
|
|
materials = mesh.GetLayer(l).GetMaterials()
|
|
if materials:
|
|
material_id = materials.GetIndexArray().GetAt(polygon_index)
|
|
break
|
|
material_id += material_offset
|
|
faceData.append( material_id )
|
|
|
|
if hasFaceVertexUvs:
|
|
for polygon_uvs in uv_layers:
|
|
for i in range(nVertices):
|
|
index = polygon_uvs[i]
|
|
faceData.append(index)
|
|
|
|
if hasFaceVertexNormals:
|
|
for i in range(nVertices):
|
|
index = normals[i]
|
|
faceData.append(index)
|
|
|
|
if hasFaceVertexColors:
|
|
for i in range(nVertices):
|
|
index = colors[i]
|
|
faceData.append(index)
|
|
|
|
return faceData
|
|
|
|
# #####################################################
|
|
# Generate Mesh Object (for scene output format)
|
|
# #####################################################
|
|
def generate_scene_output(node):
|
|
mesh = node.GetNodeAttribute()
|
|
|
|
# This is done in order to keep the scene output and non-scene output code DRY
|
|
mesh_list = [ mesh ]
|
|
|
|
# Extract the mesh data into arrays
|
|
vertices, vertex_offsets = process_mesh_vertices(mesh_list)
|
|
materials, material_offsets = process_mesh_materials(mesh_list)
|
|
|
|
normals_to_indices = generate_unique_normals_dictionary(mesh_list)
|
|
colors_to_indices = generate_unique_colors_dictionary(mesh_list)
|
|
uvs_to_indices_list = generate_unique_uvs_dictionary_layers(mesh_list)
|
|
|
|
normal_values = generate_normals_from_dictionary(normals_to_indices)
|
|
color_values = generate_colors_from_dictionary(colors_to_indices)
|
|
uv_values = generate_uvs_from_dictionary_layers(uvs_to_indices_list)
|
|
|
|
# Generate mesh faces for the Three.js file format
|
|
faces = process_mesh_polygons(mesh_list,
|
|
normals_to_indices,
|
|
colors_to_indices,
|
|
uvs_to_indices_list,
|
|
vertex_offsets,
|
|
material_offsets)
|
|
|
|
# Generate counts for uvs, vertices, normals, colors, and faces
|
|
nuvs = []
|
|
for layer_index, uvs in enumerate(uv_values):
|
|
nuvs.append(str(len(uvs)))
|
|
|
|
nvertices = len(vertices)
|
|
nnormals = len(normal_values)
|
|
ncolors = len(color_values)
|
|
nfaces = len(faces)
|
|
|
|
# Flatten the arrays, currently they are in the form of [[0, 1, 2], [3, 4, 5], ...]
|
|
vertices = [val for v in vertices for val in v]
|
|
normal_values = [val for n in normal_values for val in n]
|
|
color_values = [c for c in color_values]
|
|
faces = [val for f in faces for val in f]
|
|
uv_values = generate_uvs(uv_values)
|
|
|
|
# Disable automatic json indenting when pretty printing for the arrays
|
|
if option_pretty_print:
|
|
nuvs = NoIndent(nuvs)
|
|
vertices = ChunkedIndent(vertices, 15, True)
|
|
normal_values = ChunkedIndent(normal_values, 15, True)
|
|
color_values = ChunkedIndent(color_values, 15)
|
|
faces = ChunkedIndent(faces, 30)
|
|
|
|
metadata = {
|
|
'vertices' : nvertices,
|
|
'normals' : nnormals,
|
|
'colors' : ncolors,
|
|
'faces' : nfaces,
|
|
'uvs' : nuvs
|
|
}
|
|
|
|
output = {
|
|
'scale' : 1,
|
|
'materials' : [],
|
|
'vertices' : vertices,
|
|
'normals' : [] if nnormals <= 0 else normal_values,
|
|
'colors' : [] if ncolors <= 0 else color_values,
|
|
'uvs' : uv_values,
|
|
'faces' : faces
|
|
}
|
|
|
|
if option_pretty_print:
|
|
output['0metadata'] = metadata
|
|
else:
|
|
output['metadata'] = metadata
|
|
|
|
return output
|
|
|
|
# #####################################################
|
|
# Generate Mesh Object (for non-scene output)
|
|
# #####################################################
|
|
def generate_non_scene_output(scene):
|
|
mesh_list = generate_mesh_list(scene)
|
|
|
|
# Extract the mesh data into arrays
|
|
vertices, vertex_offsets = process_mesh_vertices(mesh_list)
|
|
materials, material_offsets = process_mesh_materials(mesh_list)
|
|
|
|
normals_to_indices = generate_unique_normals_dictionary(mesh_list)
|
|
colors_to_indices = generate_unique_colors_dictionary(mesh_list)
|
|
uvs_to_indices_list = generate_unique_uvs_dictionary_layers(mesh_list)
|
|
|
|
normal_values = generate_normals_from_dictionary(normals_to_indices)
|
|
color_values = generate_colors_from_dictionary(colors_to_indices)
|
|
uv_values = generate_uvs_from_dictionary_layers(uvs_to_indices_list)
|
|
|
|
# Generate mesh faces for the Three.js file format
|
|
faces = process_mesh_polygons(mesh_list,
|
|
normals_to_indices,
|
|
colors_to_indices,
|
|
uvs_to_indices_list,
|
|
vertex_offsets,
|
|
material_offsets)
|
|
|
|
# Generate counts for uvs, vertices, normals, colors, and faces
|
|
nuvs = []
|
|
for layer_index, uvs in enumerate(uv_values):
|
|
nuvs.append(str(len(uvs)))
|
|
|
|
nvertices = len(vertices)
|
|
nnormals = len(normal_values)
|
|
ncolors = len(color_values)
|
|
nfaces = len(faces)
|
|
|
|
# Flatten the arrays, currently they are in the form of [[0, 1, 2], [3, 4, 5], ...]
|
|
vertices = [val for v in vertices for val in v]
|
|
normal_values = [val for n in normal_values for val in n]
|
|
color_values = [c for c in color_values]
|
|
faces = [val for f in faces for val in f]
|
|
uv_values = generate_uvs(uv_values)
|
|
|
|
# Disable json indenting when pretty printing for the arrays
|
|
if option_pretty_print:
|
|
nuvs = NoIndent(nuvs)
|
|
vertices = NoIndent(vertices)
|
|
normal_values = NoIndent(normal_values)
|
|
color_values = NoIndent(color_values)
|
|
faces = NoIndent(faces)
|
|
|
|
metadata = {
|
|
'formatVersion' : 3,
|
|
'type' : 'geometry',
|
|
'generatedBy' : 'convert-to-threejs.py',
|
|
'vertices' : nvertices,
|
|
'normals' : nnormals,
|
|
'colors' : ncolors,
|
|
'faces' : nfaces,
|
|
'uvs' : nuvs
|
|
}
|
|
|
|
output = {
|
|
'scale' : 1,
|
|
'materials' : [],
|
|
'vertices' : vertices,
|
|
'normals' : [] if nnormals <= 0 else normal_values,
|
|
'colors' : [] if ncolors <= 0 else color_values,
|
|
'uvs' : uv_values,
|
|
'faces' : faces
|
|
}
|
|
|
|
if option_pretty_print:
|
|
output['0metadata'] = metadata
|
|
else:
|
|
output['metadata'] = metadata
|
|
|
|
return output
|
|
|
|
def generate_mesh_list_from_hierarchy(node, mesh_list):
|
|
if node.GetNodeAttribute() == None:
|
|
pass
|
|
else:
|
|
attribute_type = (node.GetNodeAttribute().GetAttributeType())
|
|
if attribute_type == FbxNodeAttribute.eMesh or \
|
|
attribute_type == FbxNodeAttribute.eNurbs or \
|
|
attribute_type == FbxNodeAttribute.eNurbsSurface or \
|
|
attribute_type == FbxNodeAttribute.ePatch:
|
|
|
|
if attribute_type != FbxNodeAttribute.eMesh:
|
|
converter.TriangulateInPlace(node);
|
|
|
|
mesh_list.append(node.GetNodeAttribute())
|
|
|
|
for i in range(node.GetChildCount()):
|
|
generate_mesh_list_from_hierarchy(node.GetChild(i), mesh_list)
|
|
|
|
def generate_mesh_list(scene):
|
|
mesh_list = []
|
|
node = scene.GetRootNode()
|
|
if node:
|
|
for i in range(node.GetChildCount()):
|
|
generate_mesh_list_from_hierarchy(node.GetChild(i), mesh_list)
|
|
return mesh_list
|
|
|
|
# #####################################################
|
|
# Generate Embed Objects
|
|
# #####################################################
|
|
def generate_embed_dict_from_hierarchy(node, embed_dict):
|
|
if node.GetNodeAttribute() == None:
|
|
pass
|
|
else:
|
|
attribute_type = (node.GetNodeAttribute().GetAttributeType())
|
|
if attribute_type == FbxNodeAttribute.eMesh or \
|
|
attribute_type == FbxNodeAttribute.eNurbs or \
|
|
attribute_type == FbxNodeAttribute.eNurbsSurface or \
|
|
attribute_type == FbxNodeAttribute.ePatch:
|
|
|
|
if attribute_type != FbxNodeAttribute.eMesh:
|
|
converter.TriangulateInPlace(node);
|
|
|
|
embed_object = generate_scene_output(node)
|
|
embed_name = getPrefixedName(node, 'Embed')
|
|
embed_dict[embed_name] = embed_object
|
|
|
|
for i in range(node.GetChildCount()):
|
|
generate_embed_dict_from_hierarchy(node.GetChild(i), embed_dict)
|
|
|
|
def generate_embed_dict(scene):
|
|
embed_dict = {}
|
|
node = scene.GetRootNode()
|
|
if node:
|
|
for i in range(node.GetChildCount()):
|
|
generate_embed_dict_from_hierarchy(node.GetChild(i), embed_dict)
|
|
return embed_dict
|
|
|
|
# #####################################################
|
|
# Generate Geometry Objects
|
|
# #####################################################
|
|
def generate_geometry_object(node):
|
|
|
|
output = {
|
|
'type' : 'embedded',
|
|
'id' : getPrefixedName( node, 'Embed' )
|
|
}
|
|
|
|
return output
|
|
|
|
def generate_geometry_dict_from_hierarchy(node, geometry_dict):
|
|
if node.GetNodeAttribute() == None:
|
|
pass
|
|
else:
|
|
attribute_type = (node.GetNodeAttribute().GetAttributeType())
|
|
if attribute_type == FbxNodeAttribute.eMesh:
|
|
geometry_object = generate_geometry_object(node)
|
|
geometry_name = getPrefixedName( node, 'Geometry' )
|
|
geometry_dict[geometry_name] = geometry_object
|
|
for i in range(node.GetChildCount()):
|
|
generate_geometry_dict_from_hierarchy(node.GetChild(i), geometry_dict)
|
|
|
|
def generate_geometry_dict(scene):
|
|
geometry_dict = {}
|
|
node = scene.GetRootNode()
|
|
if node:
|
|
for i in range(node.GetChildCount()):
|
|
generate_geometry_dict_from_hierarchy(node.GetChild(i), geometry_dict)
|
|
return geometry_dict
|
|
|
|
|
|
# #####################################################
|
|
# Generate Light Node Objects
|
|
# #####################################################
|
|
def generate_default_light():
|
|
direction = (1,1,1)
|
|
color = (1,1,1)
|
|
intensity = 80.0
|
|
|
|
output = {
|
|
'type': 'DirectionalLight',
|
|
'color': getHex(color),
|
|
'intensity': intensity/100.00,
|
|
'direction': serializeVector3( direction ),
|
|
'target': getObjectName( None )
|
|
}
|
|
|
|
return output
|
|
|
|
def generate_light_object(node):
|
|
light = node.GetNodeAttribute()
|
|
light_types = ["point", "directional", "spot", "area", "volume"]
|
|
light_type = light_types[light.LightType.Get()]
|
|
|
|
transform = node.EvaluateLocalTransform()
|
|
position = transform.GetT()
|
|
|
|
output = None
|
|
|
|
if light_type == "directional":
|
|
|
|
# Three.js directional lights emit light from a point in 3d space to a target node or the origin.
|
|
# When there is no target, we need to take a point, one unit away from the origin, and move it
|
|
# into the right location so that the origin acts like the target
|
|
|
|
if node.GetTarget():
|
|
direction = position
|
|
else:
|
|
translation = FbxVector4(0,0,0,0)
|
|
scale = FbxVector4(1,1,1,1)
|
|
rotation = transform.GetR()
|
|
matrix = FbxMatrix(translation, rotation, scale)
|
|
direction = matrix.MultNormalize(FbxVector4(0,1,0,1))
|
|
|
|
output = {
|
|
|
|
'type': 'DirectionalLight',
|
|
'color': getHex(light.Color.Get()),
|
|
'intensity': light.Intensity.Get()/100.0,
|
|
'direction': serializeVector3( direction ),
|
|
'target': getObjectName( node.GetTarget() )
|
|
|
|
}
|
|
|
|
elif light_type == "point":
|
|
|
|
output = {
|
|
|
|
'type': 'PointLight',
|
|
'color': getHex(light.Color.Get()),
|
|
'intensity': light.Intensity.Get()/100.0,
|
|
'position': serializeVector3( position ),
|
|
'distance': light.FarAttenuationEnd.Get()
|
|
|
|
}
|
|
|
|
elif light_type == "spot":
|
|
|
|
output = {
|
|
|
|
'type': 'SpotLight',
|
|
'color': getHex(light.Color.Get()),
|
|
'intensity': light.Intensity.Get()/100.0,
|
|
'position': serializeVector3( position ),
|
|
'distance': light.FarAttenuationEnd.Get(),
|
|
'angle': light.OuterAngle.Get()*math.pi/180,
|
|
'exponent': light.DecayType.Get(),
|
|
'target': getObjectName( node.GetTarget() )
|
|
|
|
}
|
|
|
|
return output
|
|
|
|
def generate_ambient_light(scene):
|
|
|
|
scene_settings = scene.GetGlobalSettings()
|
|
ambient_color = scene_settings.GetAmbientColor()
|
|
ambient_color = (ambient_color.mRed, ambient_color.mGreen, ambient_color.mBlue)
|
|
|
|
if ambient_color[0] == 0 and ambient_color[1] == 0 and ambient_color[2] == 0:
|
|
return None
|
|
|
|
output = {
|
|
|
|
'type': 'AmbientLight',
|
|
'color': getHex(ambient_color)
|
|
|
|
}
|
|
|
|
return output
|
|
|
|
# #####################################################
|
|
# Generate Camera Node Objects
|
|
# #####################################################
|
|
def generate_default_camera():
|
|
position = (100, 100, 100)
|
|
near = 0.1
|
|
far = 1000
|
|
fov = 75
|
|
|
|
output = {
|
|
'type': 'PerspectiveCamera',
|
|
'fov': fov,
|
|
'near': near,
|
|
'far': far,
|
|
'position': serializeVector3( position )
|
|
}
|
|
|
|
return output
|
|
|
|
def generate_camera_object(node):
|
|
camera = node.GetNodeAttribute()
|
|
position = camera.Position.Get()
|
|
|
|
projection_types = [ "perspective", "orthogonal" ]
|
|
projection = projection_types[camera.ProjectionType.Get()]
|
|
|
|
near = camera.NearPlane.Get()
|
|
far = camera.FarPlane.Get()
|
|
|
|
name = getObjectName( node )
|
|
output = {}
|
|
|
|
if projection == "perspective":
|
|
|
|
aspect = camera.PixelAspectRatio.Get()
|
|
fov = camera.FieldOfView.Get()
|
|
|
|
output = {
|
|
|
|
'type': 'PerspectiveCamera',
|
|
'fov': fov,
|
|
'aspect': aspect,
|
|
'near': near,
|
|
'far': far,
|
|
'position': serializeVector3( position )
|
|
|
|
}
|
|
|
|
elif projection == "orthogonal":
|
|
|
|
left = ""
|
|
right = ""
|
|
top = ""
|
|
bottom = ""
|
|
|
|
output = {
|
|
|
|
'type': 'PerspectiveCamera',
|
|
'left': left,
|
|
'right': right,
|
|
'top': top,
|
|
'bottom': bottom,
|
|
'near': near,
|
|
'far': far,
|
|
'position': serializeVector3( position )
|
|
|
|
}
|
|
|
|
return output
|
|
|
|
# #####################################################
|
|
# Generate Camera Names
|
|
# #####################################################
|
|
def generate_camera_name_list_from_hierarchy(node, camera_list):
|
|
if node.GetNodeAttribute() == None:
|
|
pass
|
|
else:
|
|
attribute_type = (node.GetNodeAttribute().GetAttributeType())
|
|
if attribute_type == FbxNodeAttribute.eCamera:
|
|
camera_string = getObjectName(node)
|
|
camera_list.append(camera_string)
|
|
for i in range(node.GetChildCount()):
|
|
generate_camera_name_list_from_hierarchy(node.GetChild(i), camera_list)
|
|
|
|
def generate_camera_name_list(scene):
|
|
camera_list = []
|
|
node = scene.GetRootNode()
|
|
if node:
|
|
for i in range(node.GetChildCount()):
|
|
generate_camera_name_list_from_hierarchy(node.GetChild(i), camera_list)
|
|
return camera_list
|
|
|
|
# #####################################################
|
|
# Generate Mesh Node Object
|
|
# #####################################################
|
|
def generate_mesh_object(node):
|
|
mesh = node.GetNodeAttribute()
|
|
transform = node.EvaluateLocalTransform()
|
|
position = transform.GetT()
|
|
scale = transform.GetS()
|
|
rotation = getRadians(transform.GetR())
|
|
quaternion = transform.GetQ()
|
|
|
|
material_count = node.GetMaterialCount()
|
|
material_name = ""
|
|
|
|
if material_count > 0:
|
|
material_names = []
|
|
for l in range(mesh.GetLayerCount()):
|
|
materials = mesh.GetLayer(l).GetMaterials()
|
|
if materials:
|
|
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
|
|
#Materials are in an undefined external table
|
|
continue
|
|
for i in range(material_count):
|
|
material = node.GetMaterial(i)
|
|
material_names.append( getMaterialName(material) )
|
|
|
|
if not material_count > 1 and not len(material_names) > 0:
|
|
material_names.append('')
|
|
|
|
#If this mesh has more than one material, use a proxy material
|
|
material_name = getMaterialName( node, True) if material_count > 1 else material_names[0]
|
|
|
|
output = {
|
|
'geometry': getPrefixedName( node, 'Geometry' ),
|
|
'material': material_name,
|
|
'position': serializeVector3( position ),
|
|
'quaternion': serializeVector4( quaternion ),
|
|
'scale': serializeVector3( scale ),
|
|
'visible': True,
|
|
}
|
|
|
|
return output
|
|
|
|
# #####################################################
|
|
# Generate Node Object
|
|
# #####################################################
|
|
def generate_object(node):
|
|
node_types = ["Unknown", "Null", "Marker", "Skeleton", "Mesh", "Nurbs", "Patch", "Camera",
|
|
"CameraStereo", "CameraSwitcher", "Light", "OpticalReference", "OpticalMarker", "NurbsCurve",
|
|
"TrimNurbsSurface", "Boundary", "NurbsSurface", "Shape", "LODGroup", "SubDiv", "CachedEffect", "Line"]
|
|
|
|
transform = node.EvaluateLocalTransform()
|
|
position = transform.GetT()
|
|
scale = transform.GetS()
|
|
rotation = getRadians(transform.GetR())
|
|
quaternion = transform.GetQ()
|
|
|
|
node_type = ""
|
|
if node.GetNodeAttribute() == None:
|
|
node_type = "Null"
|
|
else:
|
|
node_type = node_types[node.GetNodeAttribute().GetAttributeType()]
|
|
|
|
name = getObjectName( node )
|
|
output = {
|
|
'fbx_type': node_type,
|
|
'position': serializeVector3( position ),
|
|
'quaternion': serializeVector4( quaternion ),
|
|
'scale': serializeVector3( scale ),
|
|
'visible': True
|
|
}
|
|
|
|
return output
|
|
|
|
# #####################################################
|
|
# Parse Scene Node Objects
|
|
# #####################################################
|
|
def generate_object_hierarchy(node, object_dict):
|
|
object_count = 0
|
|
if node.GetNodeAttribute() == None:
|
|
object_data = generate_object(node)
|
|
else:
|
|
attribute_type = (node.GetNodeAttribute().GetAttributeType())
|
|
if attribute_type == FbxNodeAttribute.eMesh:
|
|
object_data = generate_mesh_object(node)
|
|
elif attribute_type == FbxNodeAttribute.eLight:
|
|
object_data = generate_light_object(node)
|
|
elif attribute_type == FbxNodeAttribute.eCamera:
|
|
object_data = generate_camera_object(node)
|
|
else:
|
|
object_data = generate_object(node)
|
|
|
|
object_count += 1
|
|
object_name = getObjectName(node)
|
|
|
|
object_children = {}
|
|
for i in range(node.GetChildCount()):
|
|
object_count += generate_object_hierarchy(node.GetChild(i), object_children)
|
|
|
|
if node.GetChildCount() > 0:
|
|
# Having 'children' above other attributes is hard to read.
|
|
# We can send it to the bottom using the last letter of the alphabet 'z'.
|
|
# This letter is removed from the final output.
|
|
if option_pretty_print:
|
|
object_data['zchildren'] = object_children
|
|
else:
|
|
object_data['children'] = object_children
|
|
|
|
object_dict[object_name] = object_data
|
|
|
|
return object_count
|
|
|
|
def generate_scene_objects(scene):
|
|
object_count = 0
|
|
object_dict = {}
|
|
|
|
ambient_light = generate_ambient_light(scene)
|
|
if ambient_light:
|
|
object_dict['AmbientLight'] = ambient_light
|
|
object_count += 1
|
|
|
|
if option_default_light:
|
|
default_light = generate_default_light()
|
|
object_dict['DefaultLight'] = default_light
|
|
object_count += 1
|
|
|
|
if option_default_camera:
|
|
default_camera = generate_default_camera()
|
|
object_dict['DefaultCamera'] = default_camera
|
|
object_count += 1
|
|
|
|
node = scene.GetRootNode()
|
|
if node:
|
|
for i in range(node.GetChildCount()):
|
|
object_count += generate_object_hierarchy(node.GetChild(i), object_dict)
|
|
|
|
return object_dict, object_count
|
|
|
|
# #####################################################
|
|
# Generate Scene Output
|
|
# #####################################################
|
|
def extract_scene(scene, filename):
|
|
global_settings = scene.GetGlobalSettings()
|
|
objects, nobjects = generate_scene_objects(scene)
|
|
|
|
textures = generate_texture_dict(scene)
|
|
materials = generate_material_dict(scene)
|
|
geometries = generate_geometry_dict(scene)
|
|
embeds = generate_embed_dict(scene)
|
|
|
|
ntextures = len(textures)
|
|
nmaterials = len(materials)
|
|
ngeometries = len(geometries)
|
|
|
|
position = serializeVector3( (0,0,0) )
|
|
rotation = serializeVector3( (0,0,0) )
|
|
scale = serializeVector3( (1,1,1) )
|
|
|
|
camera_names = generate_camera_name_list(scene)
|
|
scene_settings = scene.GetGlobalSettings()
|
|
|
|
# This does not seem to be any help here
|
|
# global_settings.GetDefaultCamera()
|
|
|
|
defcamera = camera_names[0] if len(camera_names) > 0 else ""
|
|
if option_default_camera:
|
|
defcamera = 'default_camera'
|
|
|
|
metadata = {
|
|
'formatVersion': 3.2,
|
|
'type': 'scene',
|
|
'generatedBy': 'convert-to-threejs.py',
|
|
'objects': nobjects,
|
|
'geometries': ngeometries,
|
|
'materials': nmaterials,
|
|
'textures': ntextures
|
|
}
|
|
|
|
transform = {
|
|
'position' : position,
|
|
'rotation' : rotation,
|
|
'scale' : scale
|
|
}
|
|
|
|
defaults = {
|
|
'bgcolor' : 0,
|
|
'camera' : defcamera,
|
|
'fog' : ''
|
|
}
|
|
|
|
output = {
|
|
'objects': objects,
|
|
'geometries': geometries,
|
|
'materials': materials,
|
|
'textures': textures,
|
|
'embeds': embeds,
|
|
'transform': transform,
|
|
'defaults': defaults,
|
|
}
|
|
|
|
if option_pretty_print:
|
|
output['0metadata'] = metadata
|
|
else:
|
|
output['metadata'] = metadata
|
|
|
|
return output
|
|
|
|
# #####################################################
|
|
# Generate Non-Scene Output
|
|
# #####################################################
|
|
def extract_geometry(scene, filename):
|
|
output = generate_non_scene_output(scene)
|
|
return output
|
|
|
|
# #####################################################
|
|
# File Helpers
|
|
# #####################################################
|
|
def write_file(filepath, content):
|
|
index = filepath.rfind('/')
|
|
dir = filepath[0:index]
|
|
|
|
#if not os.path.exists(dir):
|
|
#os.makedirs(dir)
|
|
|
|
out = open(filepath, "w")
|
|
out.write(content.encode('utf8', 'replace'))
|
|
out.close()
|
|
|
|
def read_file(filepath):
|
|
f = open(filepath)
|
|
content = f.readlines()
|
|
f.close()
|
|
return content
|
|
|
|
def copy_textures(textures):
|
|
texture_dict = {}
|
|
|
|
for key in textures:
|
|
url = textures[key]['fullpath']
|
|
#src = replace_OutFolder2inFolder(url)
|
|
|
|
#print( src )
|
|
#print( url )
|
|
|
|
if url in texture_dict: # texture has been copied
|
|
continue
|
|
|
|
if not os.path.exists(url):
|
|
print("copy_texture error: we can't find this texture at " + url)
|
|
continue
|
|
|
|
try:
|
|
index = url.rfind('/')
|
|
if index == -1:
|
|
index = url.rfind( '\\' )
|
|
filename = url[index+1:len(url)]
|
|
saveFolder = "maps"
|
|
saveFilename = saveFolder + "/" + filename
|
|
#print( src )
|
|
#print( url )
|
|
#print( saveFilename )
|
|
if not os.path.exists(saveFolder):
|
|
os.makedirs(saveFolder)
|
|
shutil.copyfile(url, saveFilename)
|
|
texture_dict[url] = True
|
|
except IOError as e:
|
|
print "I/O error({0}): {1} {2}".format(e.errno, e.strerror, url)
|
|
|
|
def findFilesWithExt(directory, ext, include_path = True):
|
|
ext = ext.lower()
|
|
found = []
|
|
for root, dirs, files in os.walk(directory):
|
|
for filename in files:
|
|
current_ext = os.path.splitext(filename)[1].lower()
|
|
if current_ext == ext:
|
|
if include_path:
|
|
found.append(os.path.join(root, filename))
|
|
else:
|
|
found.append(filename)
|
|
return found
|
|
|
|
# #####################################################
|
|
# main
|
|
# #####################################################
|
|
if __name__ == "__main__":
|
|
from optparse import OptionParser
|
|
|
|
try:
|
|
from FbxCommon import *
|
|
except ImportError:
|
|
import platform
|
|
msg = 'Could not locate the python FBX SDK!\n'
|
|
msg += 'You need to copy the FBX SDK into your python install folder such as '
|
|
if platform.system() == 'Windows' or platform.system() == 'Microsoft':
|
|
msg += '"Python26/Lib/site-packages"'
|
|
elif platform.system() == 'Linux':
|
|
msg += '"/usr/local/lib/python2.6/site-packages"'
|
|
elif platform.system() == 'Darwin':
|
|
msg += '"/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages"'
|
|
msg += ' folder.'
|
|
print(msg)
|
|
sys.exit(1)
|
|
|
|
usage = "Usage: %prog [source_file.fbx] [output_file.js] [options]"
|
|
parser = OptionParser(usage=usage)
|
|
|
|
parser.add_option('-t', '--triangulate', action='store_true', dest='triangulate', help="force quad geometry into triangles", default=False)
|
|
parser.add_option('-x', '--ignore-textures', action='store_true', dest='notextures', help="don't include texture references in output file", default=False)
|
|
parser.add_option('-n', '--no-texture-copy', action='store_true', dest='notexturecopy', help="don't copy texture files", default=False)
|
|
parser.add_option('-u', '--force-prefix', action='store_true', dest='prefix', help="prefix all object names in output file to ensure uniqueness", default=False)
|
|
parser.add_option('-f', '--flatten-scene', action='store_true', dest='geometry', help="merge all geometries and apply node transforms", default=False)
|
|
parser.add_option('-y', '--force-y-up', action='store_true', dest='forceyup', help="ensure that the y axis shows up", default=False)
|
|
parser.add_option('-c', '--add-camera', action='store_true', dest='defcamera', help="include default camera in output scene", default=False)
|
|
parser.add_option('-l', '--add-light', action='store_true', dest='deflight', help="include default light in output scene", default=False)
|
|
parser.add_option('-p', '--pretty-print', action='store_true', dest='pretty', help="prefix all object names in output file", default=False)
|
|
|
|
(options, args) = parser.parse_args()
|
|
|
|
option_triangulate = options.triangulate
|
|
option_textures = True if not options.notextures else False
|
|
option_copy_textures = True if not options.notexturecopy else False
|
|
option_prefix = options.prefix
|
|
option_geometry = options.geometry
|
|
option_forced_y_up = options.forceyup
|
|
option_default_camera = options.defcamera
|
|
option_default_light = options.deflight
|
|
option_pretty_print = options.pretty
|
|
|
|
# Prepare the FBX SDK.
|
|
sdk_manager, scene = InitializeSdkObjects()
|
|
converter = FbxGeometryConverter(sdk_manager)
|
|
|
|
# The converter takes an FBX file as an argument.
|
|
if len(args) > 1:
|
|
print("\nLoading file: %s" % args[0])
|
|
result = LoadScene(sdk_manager, scene, args[0])
|
|
else:
|
|
result = False
|
|
print("\nUsage: convert_fbx_to_threejs [source_file.fbx] [output_file.js]\n")
|
|
|
|
if not result:
|
|
print("\nAn error occurred while loading the file...")
|
|
else:
|
|
if option_triangulate:
|
|
print("\nForcing geometry to triangles")
|
|
triangulate_scene(scene)
|
|
|
|
axis_system = FbxAxisSystem.MayaYUp
|
|
|
|
if not option_forced_y_up:
|
|
# According to asset's coordinate to convert scene
|
|
upVector = scene.GetGlobalSettings().GetAxisSystem().GetUpVector();
|
|
if upVector[0] == 3:
|
|
axis_system = FbxAxisSystem.MayaZUp
|
|
|
|
axis_system.ConvertScene(scene)
|
|
|
|
inputFolder = args[0].replace( "\\", "/" );
|
|
index = args[0].rfind( "/" );
|
|
inputFolder = inputFolder[:index]
|
|
|
|
outputFolder = args[1].replace( "\\", "/" );
|
|
index = args[1].rfind( "/" );
|
|
outputFolder = outputFolder[:index]
|
|
|
|
if option_geometry:
|
|
output_content = extract_geometry(scene, os.path.basename(args[0]))
|
|
else:
|
|
output_content = extract_scene(scene, os.path.basename(args[0]))
|
|
|
|
if option_pretty_print:
|
|
output_string = json.dumps(output_content, indent=4, cls=CustomEncoder, separators=(',', ': '), sort_keys=True)
|
|
output_string = executeRegexHacks(output_string)
|
|
else:
|
|
output_string = json.dumps(output_content, separators=(',', ': '), sort_keys=True)
|
|
|
|
|
|
output_path = os.path.join(os.getcwd(), args[1])
|
|
write_file(output_path, output_string)
|
|
|
|
if option_copy_textures:
|
|
copy_textures( output_content['textures'] )
|
|
|
|
print("\nExported Three.js file to:\n%s\n" % output_path)
|
|
|
|
# Destroy all objects created by the FBX SDK.
|
|
sdk_manager.Destroy()
|
|
sys.exit(0) |