2015-06-12 15:58:26 +02:00

2187 lines
76 KiB
Python
Executable File

# @author zfedoran / http://github.com/zfedoran
import os
import sys
import math
import operator
import re
import json
import types
import shutil
# #####################################################
# Globals
# #####################################################
option_triangulate = True
option_textures = True
option_copy_textures = True
option_prefix = True
option_geometry = False
option_forced_y_up = False
option_default_camera = False
option_default_light = False
option_pretty_print = False
converter = None
inputFolder = ""
outputFolder = ""
# #####################################################
# Pretty Printing Hacks
# #####################################################
# Force an array to be printed fully on a single line
class NoIndent(object):
def __init__(self, value, separator = ','):
self.separator = separator
self.value = value
def encode(self):
if not self.value:
return None
return '[ %s ]' % self.separator.join(str(f) for f in self.value)
# Force an array into chunks rather than printing each element on a new line
class ChunkedIndent(object):
def __init__(self, value, chunk_size = 15, force_rounding = False):
self.value = value
self.size = chunk_size
self.force_rounding = force_rounding
def encode(self):
# Turn the flat array into an array of arrays where each subarray is of
# length chunk_size. Then string concat the values in the chunked
# arrays, delimited with a ', ' and round the values finally append
# '{CHUNK}' so that we can find the strings with regex later
if not self.value:
return None
if self.force_rounding:
return ['{CHUNK}%s' % ', '.join(str(round(f, 6)) for f in self.value[i:i+self.size]) for i in range(0, len(self.value), self.size)]
else:
return ['{CHUNK}%s' % ', '.join(str(f) for f in self.value[i:i+self.size]) for i in range(0, len(self.value), self.size)]
# This custom encoder looks for instances of NoIndent or ChunkedIndent.
# When it finds
class CustomEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, NoIndent) or isinstance(obj, ChunkedIndent):
return obj.encode()
else:
return json.JSONEncoder.default(self, obj)
def executeRegexHacks(output_string):
# turn strings of arrays into arrays (remove the double quotes)
output_string = re.sub(':\s*\"(\[.*\])\"', r': \1', output_string)
output_string = re.sub('(\n\s*)\"(\[.*\])\"', r'\1\2', output_string)
output_string = re.sub('(\n\s*)\"{CHUNK}(.*)\"', r'\1\2', output_string)
# replace '0metadata' with metadata
output_string = re.sub('0metadata', r'metadata', output_string)
# replace 'zchildren' with children
output_string = re.sub('zchildren', r'children', output_string)
# add an extra newline after '"children": {'
output_string = re.sub('(children.*{\s*\n)', r'\1\n', output_string)
# add an extra newline after '},'
output_string = re.sub('},\s*\n', r'},\n\n', output_string)
# add an extra newline after '\n\s*],'
output_string = re.sub('(\n\s*)],\s*\n', r'\1],\n\n', output_string)
return output_string
# #####################################################
# Object Serializers
# #####################################################
# FbxVector2 is not JSON serializable
def serializeVector2(v, round_vector = False):
# JSON does not support NaN or Inf
if math.isnan(v[0]) or math.isinf(v[0]):
v[0] = 0
if math.isnan(v[1]) or math.isinf(v[1]):
v[1] = 0
if round_vector or option_pretty_print:
v = (round(v[0], 5), round(v[1], 5))
if option_pretty_print:
return NoIndent([v[0], v[1]], ', ')
else:
return [v[0], v[1]]
# FbxVector3 is not JSON serializable
def serializeVector3(v, round_vector = False):
# JSON does not support NaN or Inf
if math.isnan(v[0]) or math.isinf(v[0]):
v[0] = 0
if math.isnan(v[1]) or math.isinf(v[1]):
v[1] = 0
if math.isnan(v[2]) or math.isinf(v[2]):
v[2] = 0
if round_vector or option_pretty_print:
v = (round(v[0], 5), round(v[1], 5), round(v[2], 5))
if option_pretty_print:
return NoIndent([v[0], v[1], v[2]], ', ')
else:
return [v[0], v[1], v[2]]
# FbxVector4 is not JSON serializable
def serializeVector4(v, round_vector = False):
# JSON does not support NaN or Inf
if math.isnan(v[0]) or math.isinf(v[0]):
v[0] = 0
if math.isnan(v[1]) or math.isinf(v[1]):
v[1] = 0
if math.isnan(v[2]) or math.isinf(v[2]):
v[2] = 0
if math.isnan(v[3]) or math.isinf(v[3]):
v[3] = 0
if round_vector or option_pretty_print:
v = (round(v[0], 5), round(v[1], 5), round(v[2], 5), round(v[3], 5))
if option_pretty_print:
return NoIndent([v[0], v[1], v[2], v[3]], ', ')
else:
return [v[0], v[1], v[2], v[3]]
# #####################################################
# Helpers
# #####################################################
def getRadians(v):
return ((v[0]*math.pi)/180, (v[1]*math.pi)/180, (v[2]*math.pi)/180)
def getHex(c):
color = (int(c[0]*255) << 16) + (int(c[1]*255) << 8) + int(c[2]*255)
return int(color)
def setBit(value, position, on):
if on:
mask = 1 << position
return (value | mask)
else:
mask = ~(1 << position)
return (value & mask)
def generate_uvs(uv_layers):
layers = []
for uvs in uv_layers:
tmp = []
for uv in uvs:
tmp.append(uv[0])
tmp.append(uv[1])
if option_pretty_print:
layer = ChunkedIndent(tmp)
else:
layer = tmp
layers.append(layer)
return layers
# #####################################################
# Object Name Helpers
# #####################################################
def hasUniqueName(o, class_id):
scene = o.GetScene()
object_name = o.GetName()
object_id = o.GetUniqueID()
object_count = scene.GetSrcObjectCount(class_id)
for i in range(object_count):
other = scene.GetSrcObject(class_id, i)
other_id = other.GetUniqueID()
other_name = other.GetName()
if other_id == object_id:
continue
if other_name == object_name:
return False
return True
def getObjectName(o, force_prefix = False):
if not o:
return ""
object_name = o.GetName()
object_id = o.GetUniqueID()
if not force_prefix:
force_prefix = not hasUniqueName(o, FbxNode.ClassId)
prefix = ""
if option_prefix or force_prefix:
prefix = "Object_%s_" % object_id
return prefix + object_name
def getMaterialName(o, force_prefix = False):
object_name = o.GetName()
object_id = o.GetUniqueID()
if not force_prefix:
force_prefix = not hasUniqueName(o, FbxSurfaceMaterial.ClassId)
prefix = ""
if option_prefix or force_prefix:
prefix = "Material_%s_" % object_id
return prefix + object_name
def getTextureName(t, force_prefix = False):
if type(t) is FbxFileTexture:
texture_file = t.GetFileName()
texture_id = os.path.splitext(os.path.basename(texture_file))[0]
else:
texture_id = t.GetName()
if texture_id == "_empty_":
texture_id = ""
prefix = ""
if option_prefix or force_prefix:
prefix = "Texture_%s_" % t.GetUniqueID()
if len(texture_id) == 0:
prefix = prefix[0:len(prefix)-1]
return prefix + texture_id
def getMtlTextureName(texture_name, texture_id, force_prefix = False):
texture_name = os.path.splitext(texture_name)[0]
prefix = ""
if option_prefix or force_prefix:
prefix = "Texture_%s_" % texture_id
return prefix + texture_name
def getPrefixedName(o, prefix):
return (prefix + '_%s_') % o.GetUniqueID() + o.GetName()
# #####################################################
# Triangulation
# #####################################################
def triangulate_node_hierarchy(node):
node_attribute = node.GetNodeAttribute();
if node_attribute:
if node_attribute.GetAttributeType() == FbxNodeAttribute.eMesh or \
node_attribute.GetAttributeType() == FbxNodeAttribute.eNurbs or \
node_attribute.GetAttributeType() == FbxNodeAttribute.eNurbsSurface or \
node_attribute.GetAttributeType() == FbxNodeAttribute.ePatch:
converter.TriangulateInPlace(node);
child_count = node.GetChildCount()
for i in range(child_count):
triangulate_node_hierarchy(node.GetChild(i))
def triangulate_scene(scene):
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
triangulate_node_hierarchy(node.GetChild(i))
# #####################################################
# Generate Material Object
# #####################################################
def generate_texture_bindings(material_property, material_params):
# FBX to Three.js texture types
binding_types = {
"DiffuseColor": "map",
"DiffuseFactor": "diffuseFactor",
"EmissiveColor": "emissiveMap",
"EmissiveFactor": "emissiveFactor",
"AmbientColor": "lightMap", # "ambientMap",
"AmbientFactor": "ambientFactor",
"SpecularColor": "specularMap",
"SpecularFactor": "specularFactor",
"ShininessExponent": "shininessExponent",
"NormalMap": "normalMap",
"Bump": "bumpMap",
"TransparentColor": "transparentMap",
"TransparencyFactor": "transparentFactor",
"ReflectionColor": "reflectionMap",
"ReflectionFactor": "reflectionFactor",
"DisplacementColor": "displacementMap",
"VectorDisplacementColor": "vectorDisplacementMap"
}
if material_property.IsValid():
#Here we have to check if it's layeredtextures, or just textures:
layered_texture_count = material_property.GetSrcObjectCount(FbxLayeredTexture.ClassId)
if layered_texture_count > 0:
for j in range(layered_texture_count):
layered_texture = material_property.GetSrcObject(FbxLayeredTexture.ClassId, j)
texture_count = layered_texture.GetSrcObjectCount(FbxTexture.ClassId)
for k in range(texture_count):
texture = layered_texture.GetSrcObject(FbxTexture.ClassId,k)
if texture:
texture_id = getTextureName(texture, True)
material_params[binding_types[str(material_property.GetName())]] = texture_id
else:
# no layered texture simply get on the property
texture_count = material_property.GetSrcObjectCount(FbxTexture.ClassId)
for j in range(texture_count):
texture = material_property.GetSrcObject(FbxTexture.ClassId,j)
if texture:
texture_id = getTextureName(texture, True)
material_params[binding_types[str(material_property.GetName())]] = texture_id
def generate_material_object(material):
#Get the implementation to see if it's a hardware shader.
implementation = GetImplementation(material, "ImplementationHLSL")
implementation_type = "HLSL"
if not implementation:
implementation = GetImplementation(material, "ImplementationCGFX")
implementation_type = "CGFX"
output = None
material_params = None
material_type = None
if implementation:
print("Shader materials are not supported")
elif material.GetClassId().Is(FbxSurfaceLambert.ClassId):
ambient = getHex(material.Ambient.Get())
diffuse = getHex(material.Diffuse.Get())
emissive = getHex(material.Emissive.Get())
opacity = 1.0 - material.TransparencyFactor.Get()
opacity = 1.0 if opacity == 0 else opacity
opacity = opacity
transparent = False
reflectivity = 1
material_type = 'MeshBasicMaterial'
# material_type = 'MeshLambertMaterial'
material_params = {
'color' : diffuse,
'ambient' : ambient,
'emissive' : emissive,
'reflectivity' : reflectivity,
'transparent' : transparent,
'opacity' : opacity
}
elif material.GetClassId().Is(FbxSurfacePhong.ClassId):
ambient = getHex(material.Ambient.Get())
diffuse = getHex(material.Diffuse.Get())
emissive = getHex(material.Emissive.Get())
specular = getHex(material.Specular.Get())
opacity = 1.0 - material.TransparencyFactor.Get()
opacity = 1.0 if opacity == 0 else opacity
opacity = opacity
shininess = material.Shininess.Get()
transparent = False
reflectivity = 1
bumpScale = 1
material_type = 'MeshPhongMaterial'
material_params = {
'color' : diffuse,
'ambient' : ambient,
'emissive' : emissive,
'specular' : specular,
'shininess' : shininess,
'bumpScale' : bumpScale,
'reflectivity' : reflectivity,
'transparent' : transparent,
'opacity' : opacity
}
else:
print "Unknown type of Material", getMaterialName(material)
# default to Lambert Material if the current Material type cannot be handeled
if not material_type:
ambient = getHex((0,0,0))
diffuse = getHex((0.5,0.5,0.5))
emissive = getHex((0,0,0))
opacity = 1
transparent = False
reflectivity = 1
material_type = 'MeshLambertMaterial'
material_params = {
'color' : diffuse,
'ambient' : ambient,
'emissive' : emissive,
'reflectivity' : reflectivity,
'transparent' : transparent,
'opacity' : opacity
}
if option_textures:
texture_count = FbxLayerElement.sTypeTextureCount()
for texture_index in range(texture_count):
material_property = material.FindProperty(FbxLayerElement.sTextureChannelNames(texture_index))
generate_texture_bindings(material_property, material_params)
material_params['wireframe'] = False
material_params['wireframeLinewidth'] = 1
output = {
'type' : material_type,
'parameters' : material_params
}
return output
def generate_proxy_material_object(node, material_names):
material_type = 'MeshFaceMaterial'
material_params = {
'materials' : material_names
}
output = {
'type' : material_type,
'parameters' : material_params
}
return output
# #####################################################
# Find Scene Materials
# #####################################################
def extract_materials_from_node(node, material_dict):
name = node.GetName()
mesh = node.GetNodeAttribute()
node = None
if mesh:
node = mesh.GetNode()
if node:
material_count = node.GetMaterialCount()
material_names = []
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
#Materials are in an undefined external table
continue
for i in range(material_count):
material = node.GetMaterial(i)
material_names.append(getMaterialName(material))
if material_count > 1:
proxy_material = generate_proxy_material_object(node, material_names)
proxy_name = getMaterialName(node, True)
material_dict[proxy_name] = proxy_material
def generate_materials_from_hierarchy(node, material_dict):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh:
extract_materials_from_node(node, material_dict)
for i in range(node.GetChildCount()):
generate_materials_from_hierarchy(node.GetChild(i), material_dict)
def generate_material_dict(scene):
material_dict = {}
# generate all materials for this scene
material_count = scene.GetSrcObjectCount(FbxSurfaceMaterial.ClassId)
for i in range(material_count):
material = scene.GetSrcObject(FbxSurfaceMaterial.ClassId, i)
material_object = generate_material_object(material)
material_name = getMaterialName(material)
material_dict[material_name] = material_object
# generate material porxies
# Three.js does not support meshs with multiple materials, however it does
# support materials with multiple submaterials
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_materials_from_hierarchy(node.GetChild(i), material_dict)
return material_dict
# #####################################################
# Generate Texture Object
# #####################################################
def generate_texture_object(texture):
#TODO: extract more texture properties
wrap_u = texture.GetWrapModeU()
wrap_v = texture.GetWrapModeV()
offset = texture.GetUVTranslation()
if type(texture) is FbxFileTexture:
url = texture.GetFileName()
else:
url = getTextureName( texture )
#url = replace_inFolder2OutFolder( url )
#print( url )
index = url.rfind( '/' )
if index == -1:
index = url.rfind( '\\' )
filename = url[ index+1 : len(url) ]
output = {
'url': filename,
'fullpath': url,
'repeat': serializeVector2( (1,1) ),
'offset': serializeVector2( texture.GetUVTranslation() ),
'magFilter': 'LinearFilter',
'minFilter': 'LinearMipMapLinearFilter',
'anisotropy': True
}
return output
# #####################################################
# Replace Texture input path to output
# #####################################################
def replace_inFolder2OutFolder(url):
folderIndex = url.find(inputFolder)
if folderIndex != -1:
url = url[ folderIndex+len(inputFolder): ]
url = outputFolder + url
return url
# #####################################################
# Replace Texture output path to input
# #####################################################
def replace_OutFolder2inFolder(url):
folderIndex = url.find(outputFolder)
if folderIndex != -1:
url = url[ folderIndex+len(outputFolder): ]
url = inputFolder + url
return url
# #####################################################
# Find Scene Textures
# #####################################################
def extract_material_textures(material_property, texture_dict):
if material_property.IsValid():
#Here we have to check if it's layeredtextures, or just textures:
layered_texture_count = material_property.GetSrcObjectCount(FbxLayeredTexture.ClassId)
if layered_texture_count > 0:
for j in range(layered_texture_count):
layered_texture = material_property.GetSrcObject(FbxLayeredTexture.ClassId, j)
texture_count = layered_texture.GetSrcObjectCount(FbxTexture.ClassId)
for k in range(texture_count):
texture = layered_texture.GetSrcObject(FbxTexture.ClassId,k)
if texture:
texture_object = generate_texture_object(texture)
texture_name = getTextureName( texture, True )
texture_dict[texture_name] = texture_object
else:
# no layered texture simply get on the property
texture_count = material_property.GetSrcObjectCount(FbxTexture.ClassId)
for j in range(texture_count):
texture = material_property.GetSrcObject(FbxTexture.ClassId,j)
if texture:
texture_object = generate_texture_object(texture)
texture_name = getTextureName( texture, True )
texture_dict[texture_name] = texture_object
def extract_textures_from_node(node, texture_dict):
name = node.GetName()
mesh = node.GetNodeAttribute()
#for all materials attached to this mesh
material_count = mesh.GetNode().GetSrcObjectCount(FbxSurfaceMaterial.ClassId)
for material_index in range(material_count):
material = mesh.GetNode().GetSrcObject(FbxSurfaceMaterial.ClassId, material_index)
#go through all the possible textures types
if material:
texture_count = FbxLayerElement.sTypeTextureCount()
for texture_index in range(texture_count):
material_property = material.FindProperty(FbxLayerElement.sTextureChannelNames(texture_index))
extract_material_textures(material_property, texture_dict)
def generate_textures_from_hierarchy(node, texture_dict):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh:
extract_textures_from_node(node, texture_dict)
for i in range(node.GetChildCount()):
generate_textures_from_hierarchy(node.GetChild(i), texture_dict)
def generate_texture_dict(scene):
if not option_textures:
return {}
texture_dict = {}
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_textures_from_hierarchy(node.GetChild(i), texture_dict)
return texture_dict
# #####################################################
# Extract Fbx SDK Mesh Data
# #####################################################
def extract_fbx_vertex_positions(mesh):
control_points_count = mesh.GetControlPointsCount()
control_points = mesh.GetControlPoints()
positions = []
for i in range(control_points_count):
tmp = control_points[i]
tmp = [tmp[0], tmp[1], tmp[2]]
positions.append(tmp)
node = mesh.GetNode()
if node:
t = node.GeometricTranslation.Get()
t = FbxVector4(t[0], t[1], t[2], 1)
r = node.GeometricRotation.Get()
r = FbxVector4(r[0], r[1], r[2], 1)
s = node.GeometricScaling.Get()
s = FbxVector4(s[0], s[1], s[2], 1)
hasGeometricTransform = False
if t[0] != 0 or t[1] != 0 or t[2] != 0 or \
r[0] != 0 or r[1] != 0 or r[2] != 0 or \
s[0] != 1 or s[1] != 1 or s[2] != 1:
hasGeometricTransform = True
if hasGeometricTransform:
geo_transform = FbxMatrix(t,r,s)
else:
geo_transform = FbxMatrix()
transform = None
if option_geometry:
# FbxMeshes are local to their node, we need the vertices in global space
# when scene nodes are not exported
transform = node.EvaluateGlobalTransform()
transform = FbxMatrix(transform) * geo_transform
elif hasGeometricTransform:
transform = geo_transform
if transform:
for i in range(len(positions)):
v = positions[i]
position = FbxVector4(v[0], v[1], v[2])
position = transform.MultNormalize(position)
positions[i] = [position[0], position[1], position[2]]
return positions
def extract_fbx_vertex_normals(mesh):
# eNone The mapping is undetermined.
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
# eByPolygon There can be only one mapping coordinate for the whole polygon.
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
# eAllSame There can be only one mapping coordinate for the whole surface.
layered_normal_indices = []
layered_normal_values = []
poly_count = mesh.GetPolygonCount()
control_points = mesh.GetControlPoints()
for l in range(mesh.GetLayerCount()):
mesh_normals = mesh.GetLayer(l).GetNormals()
if not mesh_normals:
continue
normals_array = mesh_normals.GetDirectArray()
normals_count = normals_array.GetCount()
if normals_count == 0:
continue
normal_indices = []
normal_values = []
# values
for i in range(normals_count):
normal = normals_array.GetAt(i)
normal = [normal[0], normal[1], normal[2]]
normal_values.append(normal)
node = mesh.GetNode()
if node:
t = node.GeometricTranslation.Get()
t = FbxVector4(t[0], t[1], t[2], 1)
r = node.GeometricRotation.Get()
r = FbxVector4(r[0], r[1], r[2], 1)
s = node.GeometricScaling.Get()
s = FbxVector4(s[0], s[1], s[2], 1)
hasGeometricTransform = False
if t[0] != 0 or t[1] != 0 or t[2] != 0 or \
r[0] != 0 or r[1] != 0 or r[2] != 0 or \
s[0] != 1 or s[1] != 1 or s[2] != 1:
hasGeometricTransform = True
if hasGeometricTransform:
geo_transform = FbxMatrix(t,r,s)
else:
geo_transform = FbxMatrix()
transform = None
if option_geometry:
# FbxMeshes are local to their node, we need the vertices in global space
# when scene nodes are not exported
transform = node.EvaluateGlobalTransform()
transform = FbxMatrix(transform) * geo_transform
elif hasGeometricTransform:
transform = geo_transform
if transform:
t = FbxVector4(0,0,0,1)
transform.SetRow(3, t)
for i in range(len(normal_values)):
n = normal_values[i]
normal = FbxVector4(n[0], n[1], n[2])
normal = transform.MultNormalize(normal)
normal.Normalize()
normal = [normal[0], normal[1], normal[2]]
normal_values[i] = normal
# indices
vertexId = 0
for p in range(poly_count):
poly_size = mesh.GetPolygonSize(p)
poly_normals = []
for v in range(poly_size):
control_point_index = mesh.GetPolygonVertex(p, v)
# mapping mode is by control points. The mesh should be smooth and soft.
# we can get normals by retrieving each control point
if mesh_normals.GetMappingMode() == FbxLayerElement.eByControlPoint:
# reference mode is direct, the normal index is same as vertex index.
# get normals by the index of control vertex
if mesh_normals.GetReferenceMode() == FbxLayerElement.eDirect:
poly_normals.append(control_point_index)
elif mesh_normals.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_normals.GetIndexArray().GetAt(control_point_index)
poly_normals.append(index)
# mapping mode is by polygon-vertex.
# we can get normals by retrieving polygon-vertex.
elif mesh_normals.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
if mesh_normals.GetReferenceMode() == FbxLayerElement.eDirect:
poly_normals.append(vertexId)
elif mesh_normals.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_normals.GetIndexArray().GetAt(vertexId)
poly_normals.append(index)
elif mesh_normals.GetMappingMode() == FbxLayerElement.eByPolygon or \
mesh_normals.GetMappingMode() == FbxLayerElement.eAllSame or \
mesh_normals.GetMappingMode() == FbxLayerElement.eNone:
print("unsupported normal mapping mode for polygon vertex")
vertexId += 1
normal_indices.append(poly_normals)
layered_normal_values.append(normal_values)
layered_normal_indices.append(normal_indices)
normal_values = []
normal_indices = []
# Three.js only supports one layer of normals
if len(layered_normal_values) > 0:
normal_values = layered_normal_values[0]
normal_indices = layered_normal_indices[0]
return normal_values, normal_indices
def extract_fbx_vertex_colors(mesh):
# eNone The mapping is undetermined.
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
# eByPolygon There can be only one mapping coordinate for the whole polygon.
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
# eAllSame There can be only one mapping coordinate for the whole surface.
layered_color_indices = []
layered_color_values = []
poly_count = mesh.GetPolygonCount()
control_points = mesh.GetControlPoints()
for l in range(mesh.GetLayerCount()):
mesh_colors = mesh.GetLayer(l).GetVertexColors()
if not mesh_colors:
continue
colors_array = mesh_colors.GetDirectArray()
colors_count = colors_array.GetCount()
if colors_count == 0:
continue
color_indices = []
color_values = []
# values
for i in range(colors_count):
color = colors_array.GetAt(i)
color = [color.mRed, color.mGreen, color.mBlue, color.mAlpha]
color_values.append(color)
# indices
vertexId = 0
for p in range(poly_count):
poly_size = mesh.GetPolygonSize(p)
poly_colors = []
for v in range(poly_size):
control_point_index = mesh.GetPolygonVertex(p, v)
if mesh_colors.GetMappingMode() == FbxLayerElement.eByControlPoint:
if mesh_colors.GetReferenceMode() == FbxLayerElement.eDirect:
poly_colors.append(control_point_index)
elif mesh_colors.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_colors.GetIndexArray().GetAt(control_point_index)
poly_colors.append(index)
elif mesh_colors.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
if mesh_colors.GetReferenceMode() == FbxLayerElement.eDirect:
poly_colors.append(vertexId)
elif mesh_colors.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_colors.GetIndexArray().GetAt(vertexId)
poly_colors.append(index)
elif mesh_colors.GetMappingMode() == FbxLayerElement.eByPolygon or \
mesh_colors.GetMappingMode() == FbxLayerElement.eAllSame or \
mesh_colors.GetMappingMode() == FbxLayerElement.eNone:
print("unsupported color mapping mode for polygon vertex")
vertexId += 1
color_indices.append(poly_colors)
layered_color_indices.append( color_indices )
layered_color_values.append( color_values )
color_values = []
color_indices = []
# Three.js only supports one layer of colors
if len(layered_color_values) > 0:
color_values = layered_color_values[0]
color_indices = layered_color_indices[0]
'''
# The Fbx SDK defaults mesh.Color to (0.8, 0.8, 0.8)
# This causes most models to receive incorrect vertex colors
if len(color_values) == 0:
color = mesh.Color.Get()
color_values = [[color[0], color[1], color[2]]]
color_indices = []
for p in range(poly_count):
poly_size = mesh.GetPolygonSize(p)
color_indices.append([0] * poly_size)
'''
return color_values, color_indices
def extract_fbx_vertex_uvs(mesh):
# eNone The mapping is undetermined.
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
# eByPolygon There can be only one mapping coordinate for the whole polygon.
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
# eAllSame There can be only one mapping coordinate for the whole surface.
layered_uv_indices = []
layered_uv_values = []
poly_count = mesh.GetPolygonCount()
control_points = mesh.GetControlPoints()
for l in range(mesh.GetLayerCount()):
mesh_uvs = mesh.GetLayer(l).GetUVs()
if not mesh_uvs:
continue
uvs_array = mesh_uvs.GetDirectArray()
uvs_count = uvs_array.GetCount()
if uvs_count == 0:
continue
uv_indices = []
uv_values = []
# values
for i in range(uvs_count):
uv = uvs_array.GetAt(i)
uv = [uv[0], uv[1]]
uv_values.append(uv)
# indices
vertexId = 0
for p in range(poly_count):
poly_size = mesh.GetPolygonSize(p)
poly_uvs = []
for v in range(poly_size):
control_point_index = mesh.GetPolygonVertex(p, v)
if mesh_uvs.GetMappingMode() == FbxLayerElement.eByControlPoint:
if mesh_uvs.GetReferenceMode() == FbxLayerElement.eDirect:
poly_uvs.append(control_point_index)
elif mesh_uvs.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_uvs.GetIndexArray().GetAt(control_point_index)
poly_uvs.append(index)
elif mesh_uvs.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
uv_texture_index = mesh_uvs.GetIndexArray().GetAt(vertexId)
if mesh_uvs.GetReferenceMode() == FbxLayerElement.eDirect or \
mesh_uvs.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
poly_uvs.append(uv_texture_index)
elif mesh_uvs.GetMappingMode() == FbxLayerElement.eByPolygon or \
mesh_uvs.GetMappingMode() == FbxLayerElement.eAllSame or \
mesh_uvs.GetMappingMode() == FbxLayerElement.eNone:
print("unsupported uv mapping mode for polygon vertex")
vertexId += 1
uv_indices.append(poly_uvs)
layered_uv_values.append(uv_values)
layered_uv_indices.append(uv_indices)
return layered_uv_values, layered_uv_indices
# #####################################################
# Process Mesh Geometry
# #####################################################
def generate_normal_key(normal):
return (round(normal[0], 6), round(normal[1], 6), round(normal[2], 6))
def generate_color_key(color):
return getHex(color)
def generate_uv_key(uv):
return (round(uv[0], 6), round(uv[1], 6))
def append_non_duplicate_uvs(source_uvs, dest_uvs, counts):
source_layer_count = len(source_uvs)
for layer_index in range(source_layer_count):
dest_layer_count = len(dest_uvs)
if dest_layer_count <= layer_index:
dest_uv_layer = {}
count = 0
dest_uvs.append(dest_uv_layer)
counts.append(count)
else:
dest_uv_layer = dest_uvs[layer_index]
count = counts[layer_index]
source_uv_layer = source_uvs[layer_index]
for uv in source_uv_layer:
key = generate_uv_key(uv)
if key not in dest_uv_layer:
dest_uv_layer[key] = count
count += 1
counts[layer_index] = count
return counts
def generate_unique_normals_dictionary(mesh_list):
normals_dictionary = {}
nnormals = 0
# Merge meshes, remove duplicate data
for mesh in mesh_list:
node = mesh.GetNode()
normal_values, normal_indices = extract_fbx_vertex_normals(mesh)
if len(normal_values) > 0:
for normal in normal_values:
key = generate_normal_key(normal)
if key not in normals_dictionary:
normals_dictionary[key] = nnormals
nnormals += 1
return normals_dictionary
def generate_unique_colors_dictionary(mesh_list):
colors_dictionary = {}
ncolors = 0
# Merge meshes, remove duplicate data
for mesh in mesh_list:
color_values, color_indices = extract_fbx_vertex_colors(mesh)
if len(color_values) > 0:
for color in color_values:
key = generate_color_key(color)
if key not in colors_dictionary:
colors_dictionary[key] = ncolors
ncolors += 1
return colors_dictionary
def generate_unique_uvs_dictionary_layers(mesh_list):
uvs_dictionary_layers = []
nuvs_list = []
# Merge meshes, remove duplicate data
for mesh in mesh_list:
uv_values, uv_indices = extract_fbx_vertex_uvs(mesh)
if len(uv_values) > 0:
nuvs_list = append_non_duplicate_uvs(uv_values, uvs_dictionary_layers, nuvs_list)
return uvs_dictionary_layers
def generate_normals_from_dictionary(normals_dictionary):
normal_values = []
for key, index in sorted(normals_dictionary.items(), key = operator.itemgetter(1)):
normal_values.append(key)
return normal_values
def generate_colors_from_dictionary(colors_dictionary):
color_values = []
for key, index in sorted(colors_dictionary.items(), key = operator.itemgetter(1)):
color_values.append(key)
return color_values
def generate_uvs_from_dictionary_layers(uvs_dictionary_layers):
uv_values = []
for uvs_dictionary in uvs_dictionary_layers:
uv_values_layer = []
for key, index in sorted(uvs_dictionary.items(), key = operator.itemgetter(1)):
uv_values_layer.append(key)
uv_values.append(uv_values_layer)
return uv_values
def generate_normal_indices_for_poly(poly_index, mesh_normal_values, mesh_normal_indices, normals_to_indices):
if len(mesh_normal_indices) <= 0:
return []
poly_normal_indices = mesh_normal_indices[poly_index]
poly_size = len(poly_normal_indices)
output_poly_normal_indices = []
for v in range(poly_size):
normal_index = poly_normal_indices[v]
normal_value = mesh_normal_values[normal_index]
key = generate_normal_key(normal_value)
output_index = normals_to_indices[key]
output_poly_normal_indices.append(output_index)
return output_poly_normal_indices
def generate_color_indices_for_poly(poly_index, mesh_color_values, mesh_color_indices, colors_to_indices):
if len(mesh_color_indices) <= 0:
return []
poly_color_indices = mesh_color_indices[poly_index]
poly_size = len(poly_color_indices)
output_poly_color_indices = []
for v in range(poly_size):
color_index = poly_color_indices[v]
color_value = mesh_color_values[color_index]
key = generate_color_key(color_value)
output_index = colors_to_indices[key]
output_poly_color_indices.append(output_index)
return output_poly_color_indices
def generate_uv_indices_for_poly(poly_index, mesh_uv_values, mesh_uv_indices, uvs_to_indices):
if len(mesh_uv_indices) <= 0:
return []
poly_uv_indices = mesh_uv_indices[poly_index]
poly_size = len(poly_uv_indices)
output_poly_uv_indices = []
for v in range(poly_size):
uv_index = poly_uv_indices[v]
uv_value = mesh_uv_values[uv_index]
key = generate_uv_key(uv_value)
output_index = uvs_to_indices[key]
output_poly_uv_indices.append(output_index)
return output_poly_uv_indices
def process_mesh_vertices(mesh_list):
vertex_offset = 0
vertex_offset_list = [0]
vertices = []
for mesh in mesh_list:
node = mesh.GetNode()
mesh_vertices = extract_fbx_vertex_positions(mesh)
vertices.extend(mesh_vertices[:])
vertex_offset += len(mesh_vertices)
vertex_offset_list.append(vertex_offset)
return vertices, vertex_offset_list
def process_mesh_materials(mesh_list):
material_offset = 0
material_offset_list = [0]
materials_list = []
#TODO: remove duplicate mesh references
for mesh in mesh_list:
node = mesh.GetNode()
material_count = node.GetMaterialCount()
if material_count > 0:
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
#Materials are in an undefined external table
continue
for i in range(material_count):
material = node.GetMaterial(i)
materials_list.append( material )
material_offset += material_count
material_offset_list.append(material_offset)
return materials_list, material_offset_list
def process_mesh_polygons(mesh_list, normals_to_indices, colors_to_indices, uvs_to_indices_list, vertex_offset_list, material_offset_list):
faces = []
for mesh_index in range(len(mesh_list)):
mesh = mesh_list[mesh_index]
flipWindingOrder = False
node = mesh.GetNode()
if node:
local_scale = node.EvaluateLocalScaling()
if local_scale[0] < 0 or local_scale[1] < 0 or local_scale[2] < 0:
flipWindingOrder = True
poly_count = mesh.GetPolygonCount()
control_points = mesh.GetControlPoints()
normal_values, normal_indices = extract_fbx_vertex_normals(mesh)
color_values, color_indices = extract_fbx_vertex_colors(mesh)
uv_values_layers, uv_indices_layers = extract_fbx_vertex_uvs(mesh)
for poly_index in range(poly_count):
poly_size = mesh.GetPolygonSize(poly_index)
face_normals = generate_normal_indices_for_poly(poly_index, normal_values, normal_indices, normals_to_indices)
face_colors = generate_color_indices_for_poly(poly_index, color_values, color_indices, colors_to_indices)
face_uv_layers = []
for l in range(len(uv_indices_layers)):
uv_values = uv_values_layers[l]
uv_indices = uv_indices_layers[l]
face_uv_indices = generate_uv_indices_for_poly(poly_index, uv_values, uv_indices, uvs_to_indices_list[l])
face_uv_layers.append(face_uv_indices)
face_vertices = []
for vertex_index in range(poly_size):
control_point_index = mesh.GetPolygonVertex(poly_index, vertex_index)
face_vertices.append(control_point_index)
#TODO: assign a default material to any mesh without one
if len(material_offset_list) <= mesh_index:
material_offset = 0
else:
material_offset = material_offset_list[mesh_index]
vertex_offset = vertex_offset_list[mesh_index]
if poly_size > 4:
new_face_normals = []
new_face_colors = []
new_face_uv_layers = []
for i in range(poly_size - 2):
new_face_vertices = [face_vertices[0], face_vertices[i+1], face_vertices[i+2]]
if len(face_normals):
new_face_normals = [face_normals[0], face_normals[i+1], face_normals[i+2]]
if len(face_colors):
new_face_colors = [face_colors[0], face_colors[i+1], face_colors[i+2]]
if len(face_uv_layers):
new_face_uv_layers = []
for layer in face_uv_layers:
new_face_uv_layers.append([layer[0], layer[i+1], layer[i+2]])
face = generate_mesh_face(mesh,
poly_index,
new_face_vertices,
new_face_normals,
new_face_colors,
new_face_uv_layers,
vertex_offset,
material_offset,
flipWindingOrder)
faces.append(face)
else:
face = generate_mesh_face(mesh,
poly_index,
face_vertices,
face_normals,
face_colors,
face_uv_layers,
vertex_offset,
material_offset,
flipWindingOrder)
faces.append(face)
return faces
def generate_mesh_face(mesh, polygon_index, vertex_indices, normals, colors, uv_layers, vertex_offset, material_offset, flipOrder):
isTriangle = ( len(vertex_indices) == 3 )
nVertices = 3 if isTriangle else 4
hasMaterial = False
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
hasMaterial = True
break
hasFaceUvs = False
hasFaceVertexUvs = len(uv_layers) > 0
hasFaceNormals = False
hasFaceVertexNormals = len(normals) > 0
hasFaceColors = False
hasFaceVertexColors = len(colors) > 0
faceType = 0
faceType = setBit(faceType, 0, not isTriangle)
faceType = setBit(faceType, 1, hasMaterial)
faceType = setBit(faceType, 2, hasFaceUvs)
faceType = setBit(faceType, 3, hasFaceVertexUvs)
faceType = setBit(faceType, 4, hasFaceNormals)
faceType = setBit(faceType, 5, hasFaceVertexNormals)
faceType = setBit(faceType, 6, hasFaceColors)
faceType = setBit(faceType, 7, hasFaceVertexColors)
faceData = []
# order is important, must match order in JSONLoader
# face type
# vertex indices
# material index
# face uvs index
# face vertex uvs indices
# face color index
# face vertex colors indices
faceData.append(faceType)
if flipOrder:
if nVertices == 3:
vertex_indices = [vertex_indices[0], vertex_indices[2], vertex_indices[1]]
if hasFaceVertexNormals:
normals = [normals[0], normals[2], normals[1]]
if hasFaceVertexColors:
colors = [colors[0], colors[2], colors[1]]
if hasFaceVertexUvs:
tmp = []
for polygon_uvs in uv_layers:
tmp.append([polygon_uvs[0], polygon_uvs[2], polygon_uvs[1]])
uv_layers = tmp
else:
vertex_indices = [vertex_indices[0], vertex_indices[3], vertex_indices[2], vertex_indices[1]]
if hasFaceVertexNormals:
normals = [normals[0], normals[3], normals[2], normals[1]]
if hasFaceVertexColors:
colors = [colors[0], colors[3], colors[2], colors[1]]
if hasFaceVertexUvs:
tmp = []
for polygon_uvs in uv_layers:
tmp.append([polygon_uvs[0], polygon_uvs[3], polygon_uvs[2], polygon_uvs[3]])
uv_layers = tmp
for i in range(nVertices):
index = vertex_indices[i] + vertex_offset
faceData.append(index)
if hasMaterial:
material_id = 0
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
material_id = materials.GetIndexArray().GetAt(polygon_index)
break
material_id += material_offset
faceData.append( material_id )
if hasFaceVertexUvs:
for polygon_uvs in uv_layers:
for i in range(nVertices):
index = polygon_uvs[i]
faceData.append(index)
if hasFaceVertexNormals:
for i in range(nVertices):
index = normals[i]
faceData.append(index)
if hasFaceVertexColors:
for i in range(nVertices):
index = colors[i]
faceData.append(index)
return faceData
# #####################################################
# Generate Mesh Object (for scene output format)
# #####################################################
def generate_scene_output(node):
mesh = node.GetNodeAttribute()
# This is done in order to keep the scene output and non-scene output code DRY
mesh_list = [ mesh ]
# Extract the mesh data into arrays
vertices, vertex_offsets = process_mesh_vertices(mesh_list)
materials, material_offsets = process_mesh_materials(mesh_list)
normals_to_indices = generate_unique_normals_dictionary(mesh_list)
colors_to_indices = generate_unique_colors_dictionary(mesh_list)
uvs_to_indices_list = generate_unique_uvs_dictionary_layers(mesh_list)
normal_values = generate_normals_from_dictionary(normals_to_indices)
color_values = generate_colors_from_dictionary(colors_to_indices)
uv_values = generate_uvs_from_dictionary_layers(uvs_to_indices_list)
# Generate mesh faces for the Three.js file format
faces = process_mesh_polygons(mesh_list,
normals_to_indices,
colors_to_indices,
uvs_to_indices_list,
vertex_offsets,
material_offsets)
# Generate counts for uvs, vertices, normals, colors, and faces
nuvs = []
for layer_index, uvs in enumerate(uv_values):
nuvs.append(str(len(uvs)))
nvertices = len(vertices)
nnormals = len(normal_values)
ncolors = len(color_values)
nfaces = len(faces)
# Flatten the arrays, currently they are in the form of [[0, 1, 2], [3, 4, 5], ...]
vertices = [val for v in vertices for val in v]
normal_values = [val for n in normal_values for val in n]
color_values = [c for c in color_values]
faces = [val for f in faces for val in f]
uv_values = generate_uvs(uv_values)
# Disable automatic json indenting when pretty printing for the arrays
if option_pretty_print:
nuvs = NoIndent(nuvs)
vertices = ChunkedIndent(vertices, 15, True)
normal_values = ChunkedIndent(normal_values, 15, True)
color_values = ChunkedIndent(color_values, 15)
faces = ChunkedIndent(faces, 30)
metadata = {
'vertices' : nvertices,
'normals' : nnormals,
'colors' : ncolors,
'faces' : nfaces,
'uvs' : nuvs
}
output = {
'scale' : 1,
'materials' : [],
'vertices' : vertices,
'normals' : [] if nnormals <= 0 else normal_values,
'colors' : [] if ncolors <= 0 else color_values,
'uvs' : uv_values,
'faces' : faces
}
if option_pretty_print:
output['0metadata'] = metadata
else:
output['metadata'] = metadata
return output
# #####################################################
# Generate Mesh Object (for non-scene output)
# #####################################################
def generate_non_scene_output(scene):
mesh_list = generate_mesh_list(scene)
# Extract the mesh data into arrays
vertices, vertex_offsets = process_mesh_vertices(mesh_list)
materials, material_offsets = process_mesh_materials(mesh_list)
normals_to_indices = generate_unique_normals_dictionary(mesh_list)
colors_to_indices = generate_unique_colors_dictionary(mesh_list)
uvs_to_indices_list = generate_unique_uvs_dictionary_layers(mesh_list)
normal_values = generate_normals_from_dictionary(normals_to_indices)
color_values = generate_colors_from_dictionary(colors_to_indices)
uv_values = generate_uvs_from_dictionary_layers(uvs_to_indices_list)
# Generate mesh faces for the Three.js file format
faces = process_mesh_polygons(mesh_list,
normals_to_indices,
colors_to_indices,
uvs_to_indices_list,
vertex_offsets,
material_offsets)
# Generate counts for uvs, vertices, normals, colors, and faces
nuvs = []
for layer_index, uvs in enumerate(uv_values):
nuvs.append(str(len(uvs)))
nvertices = len(vertices)
nnormals = len(normal_values)
ncolors = len(color_values)
nfaces = len(faces)
# Flatten the arrays, currently they are in the form of [[0, 1, 2], [3, 4, 5], ...]
vertices = [val for v in vertices for val in v]
normal_values = [val for n in normal_values for val in n]
color_values = [c for c in color_values]
faces = [val for f in faces for val in f]
uv_values = generate_uvs(uv_values)
# Disable json indenting when pretty printing for the arrays
if option_pretty_print:
nuvs = NoIndent(nuvs)
vertices = NoIndent(vertices)
normal_values = NoIndent(normal_values)
color_values = NoIndent(color_values)
faces = NoIndent(faces)
metadata = {
'formatVersion' : 3,
'type' : 'geometry',
'generatedBy' : 'convert-to-threejs.py',
'vertices' : nvertices,
'normals' : nnormals,
'colors' : ncolors,
'faces' : nfaces,
'uvs' : nuvs
}
output = {
'scale' : 1,
'materials' : [],
'vertices' : vertices,
'normals' : [] if nnormals <= 0 else normal_values,
'colors' : [] if ncolors <= 0 else color_values,
'uvs' : uv_values,
'faces' : faces
}
if option_pretty_print:
output['0metadata'] = metadata
else:
output['metadata'] = metadata
return output
def generate_mesh_list_from_hierarchy(node, mesh_list):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh or \
attribute_type == FbxNodeAttribute.eNurbs or \
attribute_type == FbxNodeAttribute.eNurbsSurface or \
attribute_type == FbxNodeAttribute.ePatch:
if attribute_type != FbxNodeAttribute.eMesh:
converter.TriangulateInPlace(node);
mesh_list.append(node.GetNodeAttribute())
for i in range(node.GetChildCount()):
generate_mesh_list_from_hierarchy(node.GetChild(i), mesh_list)
def generate_mesh_list(scene):
mesh_list = []
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_mesh_list_from_hierarchy(node.GetChild(i), mesh_list)
return mesh_list
# #####################################################
# Generate Embed Objects
# #####################################################
def generate_embed_dict_from_hierarchy(node, embed_dict):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh or \
attribute_type == FbxNodeAttribute.eNurbs or \
attribute_type == FbxNodeAttribute.eNurbsSurface or \
attribute_type == FbxNodeAttribute.ePatch:
if attribute_type != FbxNodeAttribute.eMesh:
converter.TriangulateInPlace(node);
embed_object = generate_scene_output(node)
embed_name = getPrefixedName(node, 'Embed')
embed_dict[embed_name] = embed_object
for i in range(node.GetChildCount()):
generate_embed_dict_from_hierarchy(node.GetChild(i), embed_dict)
def generate_embed_dict(scene):
embed_dict = {}
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_embed_dict_from_hierarchy(node.GetChild(i), embed_dict)
return embed_dict
# #####################################################
# Generate Geometry Objects
# #####################################################
def generate_geometry_object(node):
output = {
'type' : 'embedded',
'id' : getPrefixedName( node, 'Embed' )
}
return output
def generate_geometry_dict_from_hierarchy(node, geometry_dict):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh:
geometry_object = generate_geometry_object(node)
geometry_name = getPrefixedName( node, 'Geometry' )
geometry_dict[geometry_name] = geometry_object
for i in range(node.GetChildCount()):
generate_geometry_dict_from_hierarchy(node.GetChild(i), geometry_dict)
def generate_geometry_dict(scene):
geometry_dict = {}
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_geometry_dict_from_hierarchy(node.GetChild(i), geometry_dict)
return geometry_dict
# #####################################################
# Generate Light Node Objects
# #####################################################
def generate_default_light():
direction = (1,1,1)
color = (1,1,1)
intensity = 80.0
output = {
'type': 'DirectionalLight',
'color': getHex(color),
'intensity': intensity/100.00,
'direction': serializeVector3( direction ),
'target': getObjectName( None )
}
return output
def generate_light_object(node):
light = node.GetNodeAttribute()
light_types = ["point", "directional", "spot", "area", "volume"]
light_type = light_types[light.LightType.Get()]
transform = node.EvaluateLocalTransform()
position = transform.GetT()
output = None
if light_type == "directional":
# Three.js directional lights emit light from a point in 3d space to a target node or the origin.
# When there is no target, we need to take a point, one unit away from the origin, and move it
# into the right location so that the origin acts like the target
if node.GetTarget():
direction = position
else:
translation = FbxVector4(0,0,0,0)
scale = FbxVector4(1,1,1,1)
rotation = transform.GetR()
matrix = FbxMatrix(translation, rotation, scale)
direction = matrix.MultNormalize(FbxVector4(0,1,0,1))
output = {
'type': 'DirectionalLight',
'color': getHex(light.Color.Get()),
'intensity': light.Intensity.Get()/100.0,
'direction': serializeVector3( direction ),
'target': getObjectName( node.GetTarget() )
}
elif light_type == "point":
output = {
'type': 'PointLight',
'color': getHex(light.Color.Get()),
'intensity': light.Intensity.Get()/100.0,
'position': serializeVector3( position ),
'distance': light.FarAttenuationEnd.Get()
}
elif light_type == "spot":
output = {
'type': 'SpotLight',
'color': getHex(light.Color.Get()),
'intensity': light.Intensity.Get()/100.0,
'position': serializeVector3( position ),
'distance': light.FarAttenuationEnd.Get(),
'angle': light.OuterAngle.Get()*math.pi/180,
'exponent': light.DecayType.Get(),
'target': getObjectName( node.GetTarget() )
}
return output
def generate_ambient_light(scene):
scene_settings = scene.GetGlobalSettings()
ambient_color = scene_settings.GetAmbientColor()
ambient_color = (ambient_color.mRed, ambient_color.mGreen, ambient_color.mBlue)
if ambient_color[0] == 0 and ambient_color[1] == 0 and ambient_color[2] == 0:
return None
output = {
'type': 'AmbientLight',
'color': getHex(ambient_color)
}
return output
# #####################################################
# Generate Camera Node Objects
# #####################################################
def generate_default_camera():
position = (100, 100, 100)
near = 0.1
far = 1000
fov = 75
output = {
'type': 'PerspectiveCamera',
'fov': fov,
'near': near,
'far': far,
'position': serializeVector3( position )
}
return output
def generate_camera_object(node):
camera = node.GetNodeAttribute()
position = camera.Position.Get()
projection_types = [ "perspective", "orthogonal" ]
projection = projection_types[camera.ProjectionType.Get()]
near = camera.NearPlane.Get()
far = camera.FarPlane.Get()
name = getObjectName( node )
output = {}
if projection == "perspective":
aspect = camera.PixelAspectRatio.Get()
fov = camera.FieldOfView.Get()
output = {
'type': 'PerspectiveCamera',
'fov': fov,
'aspect': aspect,
'near': near,
'far': far,
'position': serializeVector3( position )
}
elif projection == "orthogonal":
left = ""
right = ""
top = ""
bottom = ""
output = {
'type': 'PerspectiveCamera',
'left': left,
'right': right,
'top': top,
'bottom': bottom,
'near': near,
'far': far,
'position': serializeVector3( position )
}
return output
# #####################################################
# Generate Camera Names
# #####################################################
def generate_camera_name_list_from_hierarchy(node, camera_list):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eCamera:
camera_string = getObjectName(node)
camera_list.append(camera_string)
for i in range(node.GetChildCount()):
generate_camera_name_list_from_hierarchy(node.GetChild(i), camera_list)
def generate_camera_name_list(scene):
camera_list = []
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_camera_name_list_from_hierarchy(node.GetChild(i), camera_list)
return camera_list
# #####################################################
# Generate Mesh Node Object
# #####################################################
def generate_mesh_object(node):
mesh = node.GetNodeAttribute()
transform = node.EvaluateLocalTransform()
position = transform.GetT()
scale = transform.GetS()
rotation = getRadians(transform.GetR())
quaternion = transform.GetQ()
material_count = node.GetMaterialCount()
material_name = ""
if material_count > 0:
material_names = []
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
#Materials are in an undefined external table
continue
for i in range(material_count):
material = node.GetMaterial(i)
material_names.append( getMaterialName(material) )
if not material_count > 1 and not len(material_names) > 0:
material_names.append('')
#If this mesh has more than one material, use a proxy material
material_name = getMaterialName( node, True) if material_count > 1 else material_names[0]
output = {
'geometry': getPrefixedName( node, 'Geometry' ),
'material': material_name,
'position': serializeVector3( position ),
'quaternion': serializeVector4( quaternion ),
'scale': serializeVector3( scale ),
'visible': True,
}
return output
# #####################################################
# Generate Node Object
# #####################################################
def generate_object(node):
node_types = ["Unknown", "Null", "Marker", "Skeleton", "Mesh", "Nurbs", "Patch", "Camera",
"CameraStereo", "CameraSwitcher", "Light", "OpticalReference", "OpticalMarker", "NurbsCurve",
"TrimNurbsSurface", "Boundary", "NurbsSurface", "Shape", "LODGroup", "SubDiv", "CachedEffect", "Line"]
transform = node.EvaluateLocalTransform()
position = transform.GetT()
scale = transform.GetS()
rotation = getRadians(transform.GetR())
quaternion = transform.GetQ()
node_type = ""
if node.GetNodeAttribute() == None:
node_type = "Null"
else:
node_type = node_types[node.GetNodeAttribute().GetAttributeType()]
name = getObjectName( node )
output = {
'fbx_type': node_type,
'position': serializeVector3( position ),
'quaternion': serializeVector4( quaternion ),
'scale': serializeVector3( scale ),
'visible': True
}
return output
# #####################################################
# Parse Scene Node Objects
# #####################################################
def generate_object_hierarchy(node, object_dict):
object_count = 0
if node.GetNodeAttribute() == None:
object_data = generate_object(node)
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh:
object_data = generate_mesh_object(node)
elif attribute_type == FbxNodeAttribute.eLight:
object_data = generate_light_object(node)
elif attribute_type == FbxNodeAttribute.eCamera:
object_data = generate_camera_object(node)
else:
object_data = generate_object(node)
object_count += 1
object_name = getObjectName(node)
object_children = {}
for i in range(node.GetChildCount()):
object_count += generate_object_hierarchy(node.GetChild(i), object_children)
if node.GetChildCount() > 0:
# Having 'children' above other attributes is hard to read.
# We can send it to the bottom using the last letter of the alphabet 'z'.
# This letter is removed from the final output.
if option_pretty_print:
object_data['zchildren'] = object_children
else:
object_data['children'] = object_children
object_dict[object_name] = object_data
return object_count
def generate_scene_objects(scene):
object_count = 0
object_dict = {}
ambient_light = generate_ambient_light(scene)
if ambient_light:
object_dict['AmbientLight'] = ambient_light
object_count += 1
if option_default_light:
default_light = generate_default_light()
object_dict['DefaultLight'] = default_light
object_count += 1
if option_default_camera:
default_camera = generate_default_camera()
object_dict['DefaultCamera'] = default_camera
object_count += 1
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
object_count += generate_object_hierarchy(node.GetChild(i), object_dict)
return object_dict, object_count
# #####################################################
# Generate Scene Output
# #####################################################
def extract_scene(scene, filename):
global_settings = scene.GetGlobalSettings()
objects, nobjects = generate_scene_objects(scene)
textures = generate_texture_dict(scene)
materials = generate_material_dict(scene)
geometries = generate_geometry_dict(scene)
embeds = generate_embed_dict(scene)
ntextures = len(textures)
nmaterials = len(materials)
ngeometries = len(geometries)
position = serializeVector3( (0,0,0) )
rotation = serializeVector3( (0,0,0) )
scale = serializeVector3( (1,1,1) )
camera_names = generate_camera_name_list(scene)
scene_settings = scene.GetGlobalSettings()
# This does not seem to be any help here
# global_settings.GetDefaultCamera()
defcamera = camera_names[0] if len(camera_names) > 0 else ""
if option_default_camera:
defcamera = 'default_camera'
metadata = {
'formatVersion': 3.2,
'type': 'scene',
'generatedBy': 'convert-to-threejs.py',
'objects': nobjects,
'geometries': ngeometries,
'materials': nmaterials,
'textures': ntextures
}
transform = {
'position' : position,
'rotation' : rotation,
'scale' : scale
}
defaults = {
'bgcolor' : 0,
'camera' : defcamera,
'fog' : ''
}
output = {
'objects': objects,
'geometries': geometries,
'materials': materials,
'textures': textures,
'embeds': embeds,
'transform': transform,
'defaults': defaults,
}
if option_pretty_print:
output['0metadata'] = metadata
else:
output['metadata'] = metadata
return output
# #####################################################
# Generate Non-Scene Output
# #####################################################
def extract_geometry(scene, filename):
output = generate_non_scene_output(scene)
return output
# #####################################################
# File Helpers
# #####################################################
def write_file(filepath, content):
index = filepath.rfind('/')
dir = filepath[0:index]
#if not os.path.exists(dir):
#os.makedirs(dir)
out = open(filepath, "w")
out.write(content.encode('utf8', 'replace'))
out.close()
def read_file(filepath):
f = open(filepath)
content = f.readlines()
f.close()
return content
def copy_textures(textures):
texture_dict = {}
for key in textures:
url = textures[key]['fullpath']
#src = replace_OutFolder2inFolder(url)
#print( src )
#print( url )
if url in texture_dict: # texture has been copied
continue
if not os.path.exists(url):
print("copy_texture error: we can't find this texture at " + url)
continue
try:
index = url.rfind('/')
if index == -1:
index = url.rfind( '\\' )
filename = url[index+1:len(url)]
saveFolder = "maps"
saveFilename = saveFolder + "/" + filename
#print( src )
#print( url )
#print( saveFilename )
if not os.path.exists(saveFolder):
os.makedirs(saveFolder)
shutil.copyfile(url, saveFilename)
texture_dict[url] = True
except IOError as e:
print "I/O error({0}): {1} {2}".format(e.errno, e.strerror, url)
def findFilesWithExt(directory, ext, include_path = True):
ext = ext.lower()
found = []
for root, dirs, files in os.walk(directory):
for filename in files:
current_ext = os.path.splitext(filename)[1].lower()
if current_ext == ext:
if include_path:
found.append(os.path.join(root, filename))
else:
found.append(filename)
return found
# #####################################################
# main
# #####################################################
if __name__ == "__main__":
from optparse import OptionParser
try:
from FbxCommon import *
except ImportError:
import platform
msg = 'Could not locate the python FBX SDK!\n'
msg += 'You need to copy the FBX SDK into your python install folder such as '
if platform.system() == 'Windows' or platform.system() == 'Microsoft':
msg += '"Python26/Lib/site-packages"'
elif platform.system() == 'Linux':
msg += '"/usr/local/lib/python2.6/site-packages"'
elif platform.system() == 'Darwin':
msg += '"/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages"'
msg += ' folder.'
print(msg)
sys.exit(1)
usage = "Usage: %prog [source_file.fbx] [output_file.js] [options]"
parser = OptionParser(usage=usage)
parser.add_option('-t', '--triangulate', action='store_true', dest='triangulate', help="force quad geometry into triangles", default=False)
parser.add_option('-x', '--ignore-textures', action='store_true', dest='notextures', help="don't include texture references in output file", default=False)
parser.add_option('-n', '--no-texture-copy', action='store_true', dest='notexturecopy', help="don't copy texture files", default=False)
parser.add_option('-u', '--force-prefix', action='store_true', dest='prefix', help="prefix all object names in output file to ensure uniqueness", default=False)
parser.add_option('-f', '--flatten-scene', action='store_true', dest='geometry', help="merge all geometries and apply node transforms", default=False)
parser.add_option('-y', '--force-y-up', action='store_true', dest='forceyup', help="ensure that the y axis shows up", default=False)
parser.add_option('-c', '--add-camera', action='store_true', dest='defcamera', help="include default camera in output scene", default=False)
parser.add_option('-l', '--add-light', action='store_true', dest='deflight', help="include default light in output scene", default=False)
parser.add_option('-p', '--pretty-print', action='store_true', dest='pretty', help="prefix all object names in output file", default=False)
(options, args) = parser.parse_args()
option_triangulate = options.triangulate
option_textures = True if not options.notextures else False
option_copy_textures = True if not options.notexturecopy else False
option_prefix = options.prefix
option_geometry = options.geometry
option_forced_y_up = options.forceyup
option_default_camera = options.defcamera
option_default_light = options.deflight
option_pretty_print = options.pretty
# Prepare the FBX SDK.
sdk_manager, scene = InitializeSdkObjects()
converter = FbxGeometryConverter(sdk_manager)
# The converter takes an FBX file as an argument.
if len(args) > 1:
print("\nLoading file: %s" % args[0])
result = LoadScene(sdk_manager, scene, args[0])
else:
result = False
print("\nUsage: convert_fbx_to_threejs [source_file.fbx] [output_file.js]\n")
if not result:
print("\nAn error occurred while loading the file...")
else:
if option_triangulate:
print("\nForcing geometry to triangles")
triangulate_scene(scene)
axis_system = FbxAxisSystem.MayaYUp
if not option_forced_y_up:
# According to asset's coordinate to convert scene
upVector = scene.GetGlobalSettings().GetAxisSystem().GetUpVector();
if upVector[0] == 3:
axis_system = FbxAxisSystem.MayaZUp
axis_system.ConvertScene(scene)
inputFolder = args[0].replace( "\\", "/" );
index = args[0].rfind( "/" );
inputFolder = inputFolder[:index]
outputFolder = args[1].replace( "\\", "/" );
index = args[1].rfind( "/" );
outputFolder = outputFolder[:index]
if option_geometry:
output_content = extract_geometry(scene, os.path.basename(args[0]))
else:
output_content = extract_scene(scene, os.path.basename(args[0]))
if option_pretty_print:
output_string = json.dumps(output_content, indent=4, cls=CustomEncoder, separators=(',', ': '), sort_keys=True)
output_string = executeRegexHacks(output_string)
else:
output_string = json.dumps(output_content, separators=(',', ': '), sort_keys=True)
output_path = os.path.join(os.getcwd(), args[1])
write_file(output_path, output_string)
if option_copy_textures:
copy_textures( output_content['textures'] )
print("\nExported Three.js file to:\n%s\n" % output_path)
# Destroy all objects created by the FBX SDK.
sdk_manager.Destroy()
sys.exit(0)