Doodle3D-Slicer/three.js-master/examples/js/loaders/VRMLLoader.js
2017-06-22 13:21:07 +02:00

840 lines
19 KiB
JavaScript
Executable File

/**
* @author mrdoob / http://mrdoob.com/
*/
THREE.VRMLLoader = function () {};
THREE.VRMLLoader.prototype = {
constructor: THREE.VRMLLoader,
// for IndexedFaceSet support
isRecordingPoints: false,
isRecordingFaces: false,
points: [],
indexes : [],
// for Background support
isRecordingAngles: false,
isRecordingColors: false,
angles: [],
colors: [],
recordingFieldname: null,
load: function ( url, callback ) {
var scope = this;
var request = new XMLHttpRequest();
request.addEventListener( 'load', function ( event ) {
var object = scope.parse( event.target.responseText );
scope.dispatchEvent( { type: 'load', content: object } );
if ( callback ) callback( object );
}, false );
request.addEventListener( 'progress', function ( event ) {
scope.dispatchEvent( { type: 'progress', loaded: event.loaded, total: event.total } );
}, false );
request.addEventListener( 'error', function () {
scope.dispatchEvent( { type: 'error', message: 'Couldn\'t load URL [' + url + ']' } );
}, false );
request.open( 'GET', url, true );
request.send( null );
},
parse: function ( data ) {
var parseV1 = function ( lines, scene ) {
console.warn( 'VRML V1.0 not supported yet' );
};
var parseV2 = function ( lines, scene ) {
var defines = {};
var float_pattern = /(\b|\-|\+)([\d\.e]+)/;
var float3_pattern = /([\d\.\+\-e]+)\s+([\d\.\+\-e]+)\s+([\d\.\+\-e]+)/g;
/**
* Interpolates colors a and b following their relative distance
* expressed by t.
*
* @param float a
* @param float b
* @param float t
* @returns {Color}
*/
var interpolateColors = function(a, b, t) {
var deltaR = a.r - b.r;
var deltaG = a.g - b.g;
var deltaB = a.b - b.b;
var c = new THREE.Color();
c.r = a.r - t * deltaR;
c.g = a.g - t * deltaG;
c.b = a.b - t * deltaB;
return c;
};
/**
* Vertically paints the faces interpolating between the
* specified colors at the specified angels. This is used for the Background
* node, but could be applied to other nodes with multiple faces as well.
*
* When used with the Background node, default is directionIsDown is true if
* interpolating the skyColor down from the Zenith. When interpolationg up from
* the Nadir i.e. interpolating the groundColor, the directionIsDown is false.
*
* The first angle is never specified, it is the Zenith (0 rad). Angles are specified
* in radians. The geometry is thought a sphere, but could be anything. The color interpolation
* is linear along the Y axis in any case.
*
* You must specify one more color than you have angles at the beginning of the colors array.
* This is the color of the Zenith (the top of the shape).
*
* @param geometry
* @param radius
* @param angles
* @param colors
* @param boolean directionIsDown Whether to work bottom up or top down.
*/
var paintFaces = function (geometry, radius, angles, colors, directionIsDown) {
var f, n, p, vertexIndex, color;
var direction = directionIsDown ? 1 : -1;
var faceIndices = [ 'a', 'b', 'c', 'd' ];
var coord = [ ], aColor, bColor, t = 1, A = {}, B = {}, applyColor = false, colorIndex;
for ( var k = 0; k < angles.length; k ++ ) {
var vec = { };
// push the vector at which the color changes
vec.y = direction * ( Math.cos( angles[k] ) * radius);
vec.x = direction * ( Math.sin( angles[k] ) * radius);
coord.push( vec );
}
// painting the colors on the faces
for ( var i = 0; i < geometry.faces.length ; i ++ ) {
f = geometry.faces[ i ];
n = ( f instanceof THREE.Face3 ) ? 3 : 4;
for ( var j = 0; j < n; j ++ ) {
vertexIndex = f[ faceIndices[ j ] ];
p = geometry.vertices[ vertexIndex ];
for ( var index = 0; index < colors.length; index ++ ) {
// linear interpolation between aColor and bColor, calculate proportion
// A is previous point (angle)
if ( index === 0 ) {
A.x = 0;
A.y = directionIsDown ? radius : -1 * radius;
} else {
A.x = coord[ index - 1 ].x;
A.y = coord[ index - 1 ].y;
}
// B is current point (angle)
B = coord[index];
if ( undefined !== B ) {
// p has to be between the points A and B which we interpolate
applyColor = directionIsDown ? p.y <= A.y && p.y > B.y : p.y >= A.y && p.y < B.y;
if (applyColor) {
bColor = colors[ index + 1 ];
aColor = colors[ index ];
// below is simple linear interpolation
t = Math.abs( p.y - A.y ) / ( A.y - B.y );
// to make it faster, you can only calculate this if the y coord changes, the color is the same for points with the same y
color = interpolateColors( aColor, bColor, t );
f.vertexColors[ j ] = color;
}
} else if ( undefined === f.vertexColors[ j ] ) {
colorIndex = directionIsDown ? colors.length - 1 : 0;
f.vertexColors[ j ] = colors[ colorIndex ];
}
}
}
}
};
var parseProperty = function (node, line) {
var parts = [], part, property = {}, fieldName;
/**
* Expression for matching relevant information, such as a name or value, but not the separators
* @type {RegExp}
*/
var regex = /[^\s,\[\]]+/g;
var point, index, angles, colors;
while (null != ( part = regex.exec(line) ) ) {
parts.push(part[0]);
}
fieldName = parts[0];
// trigger several recorders
switch (fieldName) {
case 'skyAngle':
case 'groundAngle':
this.recordingFieldname = fieldName;
this.isRecordingAngles = true;
this.angles = [];
break;
case 'skyColor':
case 'groundColor':
this.recordingFieldname = fieldName;
this.isRecordingColors = true;
this.colors = [];
break;
case 'point':
this.recordingFieldname = fieldName;
this.isRecordingPoints = true;
this.points = [];
break;
case 'coordIndex':
this.recordingFieldname = fieldName;
this.isRecordingFaces = true;
this.indexes = [];
break;
}
if (this.isRecordingFaces) {
// the parts hold the indexes as strings
if (parts.length > 0) {
index = [];
for (var ind = 0; ind < parts.length; ind ++) {
// the part should either be positive integer or -1
if (!/(-?\d+)/.test( parts[ind]) ) {
continue;
}
// end of current face
if (parts[ind] === "-1") {
if (index.length > 0) {
this.indexes.push(index);
}
// start new one
index = [];
} else {
index.push(parseInt( parts[ind]) );
}
}
}
// end
if (/]/.exec(line)) {
this.isRecordingFaces = false;
node.coordIndex = this.indexes;
}
} else if (this.isRecordingPoints) {
while ( null !== ( parts = float3_pattern.exec(line) ) ) {
point = {
x: parseFloat(parts[1]),
y: parseFloat(parts[2]),
z: parseFloat(parts[3])
};
this.points.push(point);
}
// end
if ( /]/.exec(line) ) {
this.isRecordingPoints = false;
node.points = this.points;
}
} else if ( this.isRecordingAngles ) {
// the parts hold the angles as strings
if ( parts.length > 0 ) {
for ( var ind = 0; ind < parts.length; ind ++ ) {
// the part should be a float
if ( ! float_pattern.test( parts[ind] ) ) {
continue;
}
this.angles.push( parseFloat( parts[ind] ) );
}
}
// end
if ( /]/.exec(line) ) {
this.isRecordingAngles = false;
node[this.recordingFieldname] = this.angles;
}
} else if (this.isRecordingColors) {
while ( null !== ( parts = float3_pattern.exec(line) ) ) {
color = {
r: parseFloat(parts[1]),
g: parseFloat(parts[2]),
b: parseFloat(parts[3])
};
this.colors.push(color);
}
// end
if (/]/.exec(line)) {
this.isRecordingColors = false;
node[this.recordingFieldname] = this.colors;
}
} else if ( parts[parts.length - 1] !== 'NULL' && fieldName !== 'children') {
switch (fieldName) {
case 'diffuseColor':
case 'emissiveColor':
case 'specularColor':
case 'color':
if (parts.length != 4) {
console.warn('Invalid color format detected for ' + fieldName );
break;
}
property = {
r: parseFloat(parts[1]),
g: parseFloat(parts[2]),
b: parseFloat(parts[3])
}
break;
case 'translation':
case 'scale':
case 'size':
if (parts.length != 4) {
console.warn('Invalid vector format detected for ' + fieldName);
break;
}
property = {
x: parseFloat(parts[1]),
y: parseFloat(parts[2]),
z: parseFloat(parts[3])
}
break;
case 'radius':
case 'topRadius':
case 'bottomRadius':
case 'height':
case 'transparency':
case 'shininess':
case 'ambientIntensity':
if (parts.length != 2) {
console.warn('Invalid single float value specification detected for ' + fieldName);
break;
}
property = parseFloat(parts[1]);
break;
case 'rotation':
if (parts.length != 5) {
console.warn('Invalid quaternion format detected for ' + fieldName);
break;
}
property = {
x: parseFloat(parts[1]),
y: parseFloat(parts[2]),
z: parseFloat(parts[3]),
w: parseFloat(parts[4])
}
break;
case 'ccw':
case 'solid':
case 'colorPerVertex':
case 'convex':
if (parts.length != 2) {
console.warn('Invalid format detected for ' + fieldName);
break;
}
property = parts[1] === 'TRUE' ? true : false;
break;
}
node[fieldName] = property;
}
return property;
};
var getTree = function ( lines ) {
var tree = { 'string': 'Scene', children: [] };
var current = tree;
var matches;
var specification;
for ( var i = 0; i < lines.length; i ++ ) {
var comment = '';
var line = lines[ i ];
// omit whitespace only lines
if ( null !== ( result = /^\s+?$/g.exec( line ) ) ) {
continue;
}
line = line.trim();
// skip empty lines
if (line === '') {
continue;
}
if ( /#/.exec( line ) ) {
var parts = line.split('#');
// discard everything after the #, it is a comment
line = parts[0];
// well, let's also keep the comment
comment = parts[1];
}
if ( matches = /([^\s]*){1}\s?{/.exec( line ) ) { // first subpattern should match the Node name
var block = { 'nodeType' : matches[1], 'string': line, 'parent': current, 'children': [],'comment' : comment };
current.children.push( block );
current = block;
if ( /}/.exec( line ) ) {
// example: geometry Box { size 1 1 1 } # all on the same line
specification = /{(.*)}/.exec( line )[ 1 ];
// todo: remove once new parsing is complete?
block.children.push( specification );
parseProperty(current, specification);
current = current.parent;
}
} else if ( /}/.exec( line ) ) {
current = current.parent;
} else if ( line !== '' ) {
parseProperty(current, line);
// todo: remove once new parsing is complete? we still do not parse geometry and appearance the new way
current.children.push( line );
}
}
return tree;
}
var parseNode = function ( data, parent ) {
// console.log( data );
if ( typeof data === 'string' ) {
if ( /USE/.exec( data ) ) {
var defineKey = /USE\s+?(\w+)/.exec( data )[ 1 ];
if (undefined == defines[defineKey]) {
console.warn(defineKey + ' is not defined.');
} else {
if ( /appearance/.exec( data ) && defineKey ) {
parent.material = defines[ defineKey ].clone();
} else if ( /geometry/.exec( data ) && defineKey ) {
parent.geometry = defines[ defineKey ].clone();
// the solid property is not cloned with clone(), is only needed for VRML loading, so we need to transfer it
if (undefined !== defines[ defineKey ].solid && defines[ defineKey ].solid === false) {
parent.geometry.solid = false;
parent.material.side = THREE.DoubleSide;
}
} else if (defineKey) {
var object = defines[ defineKey ].clone();
parent.add( object );
}
}
}
return;
}
var object = parent;
if ( 'Transform' === data.nodeType || 'Group' === data.nodeType ) {
object = new THREE.Object3D();
if ( /DEF/.exec( data.string ) ) {
object.name = /DEF\s+(\w+)/.exec( data.string )[ 1 ];
defines[ object.name ] = object;
}
if ( undefined !== data['translation'] ) {
var t = data.translation;
object.position.set(t.x, t.y, t.z);
}
if ( undefined !== data.rotation ) {
var r = data.rotation;
object.quaternion.setFromAxisAngle( new THREE.Vector3( r.x, r.y, r.z ), r.w );
}
if ( undefined !== data.scale ) {
var s = data.scale;
object.scale.set( s.x, s.y, s.z );
}
parent.add( object );
} else if ( 'Shape' === data.nodeType ) {
object = new THREE.Mesh();
if ( /DEF/.exec( data.string ) ) {
object.name = /DEF (\w+)/.exec( data.string )[ 1 ];
defines[ object.name ] = object;
}
parent.add( object );
} else if ( 'Background' === data.nodeType ) {
var segments = 20;
// sky (full sphere):
var radius = 2e4;
var skyGeometry = new THREE.SphereGeometry( radius, segments, segments );
var skyMaterial = new THREE.MeshBasicMaterial( { fog: false, side: THREE.BackSide } );
if ( data.skyColor.length > 1 ) {
paintFaces( skyGeometry, radius, data.skyAngle, data.skyColor, true );
skyMaterial.vertexColors = THREE.VertexColors
} else {
var color = data.skyColor[ 0 ];
skyMaterial.color.setRGB( color.r, color.b, color.g );
}
scene.add( new THREE.Mesh( skyGeometry, skyMaterial ) );
// ground (half sphere):
if ( data.groundColor !== undefined ) {
radius = 1.2e4;
var groundGeometry = new THREE.SphereGeometry( radius, segments, segments, 0, 2 * Math.PI, 0.5 * Math.PI, 1.5 * Math.PI );
var groundMaterial = new THREE.MeshBasicMaterial( { fog: false, side: THREE.BackSide, vertexColors: THREE.VertexColors } );
paintFaces( groundGeometry, radius, data.groundAngle, data.groundColor, false );
scene.add( new THREE.Mesh( groundGeometry, groundMaterial ) );
}
} else if ( /geometry/.exec( data.string ) ) {
if ( 'Box' === data.nodeType ) {
var s = data.size;
parent.geometry = new THREE.BoxGeometry( s.x, s.y, s.z );
} else if ( 'Cylinder' === data.nodeType ) {
parent.geometry = new THREE.CylinderGeometry( data.radius, data.radius, data.height );
} else if ( 'Cone' === data.nodeType ) {
parent.geometry = new THREE.CylinderGeometry( data.topRadius, data.bottomRadius, data.height );
} else if ( 'Sphere' === data.nodeType ) {
parent.geometry = new THREE.SphereGeometry( data.radius );
} else if ( 'IndexedFaceSet' === data.nodeType ) {
var geometry = new THREE.Geometry();
var indexes;
for ( var i = 0, j = data.children.length; i < j; i ++ ) {
var child = data.children[ i ];
var vec;
if ( 'Coordinate' === child.nodeType ) {
for ( var k = 0, l = child.points.length; k < l; k ++ ) {
var point = child.points[ k ];
vec = new THREE.Vector3( point.x, point.y, point.z );
geometry.vertices.push( vec );
}
break;
}
}
var skip = 0;
// read this: http://math.hws.edu/eck/cs424/notes2013/16_Threejs_Advanced.html
for ( var i = 0, j = data.coordIndex.length; i < j; i ++ ) {
indexes = data.coordIndex[i];
// vrml support multipoint indexed face sets (more then 3 vertices). You must calculate the composing triangles here
skip = 0;
// todo: this is the time to check if the faces are ordered ccw or not (cw)
// Face3 only works with triangles, but IndexedFaceSet allows shapes with more then three vertices, build them of triangles
while ( indexes.length >= 3 && skip < ( indexes.length - 2 ) ) {
var face = new THREE.Face3(
indexes[0],
indexes[skip + 1],
indexes[skip + 2],
null // normal, will be added later
// todo: pass in the color, if a color index is present
);
skip ++;
geometry.faces.push( face );
}
}
if ( false === data.solid ) {
parent.material.side = THREE.DoubleSide;
}
// we need to store it on the geometry for use with defines
geometry.solid = data.solid;
geometry.computeFaceNormals();
//geometry.computeVertexNormals(); // does not show
geometry.computeBoundingSphere();
// see if it's a define
if ( /DEF/.exec( data.string ) ) {
geometry.name = /DEF (\w+)/.exec( data.string )[ 1 ];
defines[ geometry.name ] = geometry;
}
parent.geometry = geometry;
}
return;
} else if ( /appearance/.exec( data.string ) ) {
for ( var i = 0; i < data.children.length; i ++ ) {
var child = data.children[ i ];
if ( 'Material' === child.nodeType ) {
var material = new THREE.MeshPhongMaterial();
if ( undefined !== child.diffuseColor ) {
var d = child.diffuseColor;
material.color.setRGB( d.r, d.g, d.b );
}
if ( undefined !== child.emissiveColor ) {
var e = child.emissiveColor;
material.emissive.setRGB( e.r, e.g, e.b );
}
if ( undefined !== child.specularColor ) {
var s = child.specularColor;
material.specular.setRGB( s.r, s.g, s.b );
}
if ( undefined !== child.transparency ) {
var t = child.transparency;
// transparency is opposite of opacity
material.opacity = Math.abs( 1 - t );
material.transparent = true;
}
if ( /DEF/.exec( data.string ) ) {
material.name = /DEF (\w+)/.exec( data.string )[ 1 ];
defines[ material.name ] = material;
}
parent.material = material;
// material found, stop looping
break;
}
}
return;
}
for ( var i = 0, l = data.children.length; i < l; i ++ ) {
var child = data.children[ i ];
parseNode( data.children[ i ], object );
}
}
parseNode( getTree( lines ), scene );
};
var scene = new THREE.Scene();
var lines = data.split( '\n' );
var header = lines.shift();
if ( /V1.0/.exec( header ) ) {
parseV1( lines, scene );
} else if ( /V2.0/.exec( header ) ) {
parseV2( lines, scene );
}
return scene;
}
};
THREE.EventDispatcher.prototype.apply( THREE.VRMLLoader.prototype );