Doodle3D-Slicer/three.js-master/examples/js/postprocessing/AdaptiveToneMappingPass.js
2017-06-22 13:21:07 +02:00

265 lines
8.3 KiB
JavaScript
Executable File

/**
* @author miibond
* Generate a texture that represents the luminosity of the current scene, adapted over time
* to simulate the optic nerve responding to the amount of light it is receiving.
* Based on a GDC2007 presentation by Wolfgang Engel titled "Post-Processing Pipeline"
*
* Full-screen tone-mapping shader based on http://www.graphics.cornell.edu/~jaf/publications/sig02_paper.pdf
*/
THREE.AdaptiveToneMappingPass = function ( adaptive, resolution ) {
this.resolution = ( resolution !== undefined ) ? resolution : 256;
this.needsInit = true;
this.adaptive = adaptive !== undefined ? !!adaptive : true;
this.luminanceRT = null;
this.previousLuminanceRT = null;
this.currentLuminanceRT = null;
if ( THREE.CopyShader === undefined )
console.error( "THREE.AdaptiveToneMappingPass relies on THREE.CopyShader" );
var copyShader = THREE.CopyShader;
this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );
this.materialCopy = new THREE.ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
blending: THREE.NoBlending,
depthTest: false
} );
if ( THREE.LuminosityShader === undefined )
console.error( "THREE.AdaptiveToneMappingPass relies on THREE.LuminosityShader" );
this.materialLuminance = new THREE.ShaderMaterial( {
uniforms: THREE.LuminosityShader.uniforms,
vertexShader: THREE.LuminosityShader.vertexShader,
fragmentShader: THREE.LuminosityShader.fragmentShader,
blending: THREE.NoBlending,
} );
this.adaptLuminanceShader = {
defines: {
"MIP_LEVEL_1X1" : Math.log2( this.resolution ).toFixed(1),
},
uniforms: {
"lastLum": { type: "t", value: null },
"currentLum": { type: "t", value: null },
"delta": { type: 'f', value: 0.016 },
"tau": { type: 'f', value: 1.0 }
},
vertexShader: [
"varying vec2 vUv;",
"void main() {",
"vUv = uv;",
"gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",
"}"
].join('\n'),
fragmentShader: [
"varying vec2 vUv;",
"uniform sampler2D lastLum;",
"uniform sampler2D currentLum;",
"uniform float delta;",
"uniform float tau;",
"void main() {",
"vec4 lastLum = texture2D( lastLum, vUv, MIP_LEVEL_1X1 );",
"vec4 currentLum = texture2D( currentLum, vUv, MIP_LEVEL_1X1 );",
"float fLastLum = lastLum.r;",
"float fCurrentLum = currentLum.r;",
//The adaption seems to work better in extreme lighting differences
//if the input luminance is squared.
"fCurrentLum *= fCurrentLum;",
// Adapt the luminance using Pattanaik's technique
"float fAdaptedLum = fLastLum + (fCurrentLum - fLastLum) * (1.0 - exp(-delta * tau));",
// "fAdaptedLum = sqrt(fAdaptedLum);",
"gl_FragColor = vec4( vec3( fAdaptedLum ), 1.0 );",
"}",
].join('\n')
};
this.materialAdaptiveLum = new THREE.ShaderMaterial( {
uniforms: this.adaptLuminanceShader.uniforms,
vertexShader: this.adaptLuminanceShader.vertexShader,
fragmentShader: this.adaptLuminanceShader.fragmentShader,
defines: this.adaptLuminanceShader.defines,
blending: THREE.NoBlending
} );
if ( THREE.ToneMapShader === undefined )
console.error( "THREE.AdaptiveToneMappingPass relies on THREE.ToneMapShader" );
this.materialToneMap = new THREE.ShaderMaterial( {
uniforms: THREE.ToneMapShader.uniforms,
vertexShader: THREE.ToneMapShader.vertexShader,
fragmentShader: THREE.ToneMapShader.fragmentShader,
blending: THREE.NoBlending
} );
this.enabled = true;
this.needsSwap = true;
this.clear = false;
this.camera = new THREE.OrthographicCamera( -1, 1, 1, -1, 0, 1 );
this.scene = new THREE.Scene();
this.quad = new THREE.Mesh( new THREE.PlaneBufferGeometry( 2, 2 ), null );
this.scene.add( this.quad );
};
THREE.AdaptiveToneMappingPass.prototype = {
render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) {
if ( this.needsInit ) {
this.reset( renderer );
this.luminanceRT.type = readBuffer.type;
this.previousLuminanceRT.type = readBuffer.type;
this.currentLuminanceRT.type = readBuffer.type;
this.needsInit = false;
}
if ( this.adaptive ) {
//Render the luminance of the current scene into a render target with mipmapping enabled
this.quad.material = this.materialLuminance;
this.materialLuminance.uniforms.tDiffuse.value = readBuffer;
renderer.render( this.scene, this.camera, this.currentLuminanceRT );
//Use the new luminance values, the previous luminance and the frame delta to
//adapt the luminance over time.
this.quad.material = this.materialAdaptiveLum;
this.materialAdaptiveLum.uniforms.delta.value = delta;
this.materialAdaptiveLum.uniforms.lastLum.value = this.previousLuminanceRT;
this.materialAdaptiveLum.uniforms.currentLum.value = this.currentLuminanceRT;
renderer.render( this.scene, this.camera, this.luminanceRT );
//Copy the new adapted luminance value so that it can be used by the next frame.
this.quad.material = this.materialCopy;
this.copyUniforms.tDiffuse.value = this.luminanceRT;
renderer.render( this.scene, this.camera, this.previousLuminanceRT );
}
this.quad.material = this.materialToneMap;
this.materialToneMap.uniforms.tDiffuse.value = readBuffer;
renderer.render( this.scene, this.camera, writeBuffer, this.clear );
},
reset: function( renderer ) {
// render targets
if ( this.luminanceRT ) {
this.luminanceRT.dispose();
}
if ( this.currentLuminanceRT ) {
this.currentLuminanceRT.dispose();
}
if ( this.previousLuminanceRT ) {
this.previousLuminanceRT.dispose();
}
var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBFormat };
this.luminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
this.luminanceRT.generateMipmaps = false;
this.previousLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
this.previousLuminanceRT.generateMipmaps = false;
//We only need mipmapping for the current luminosity because we want a down-sampled version to sample in our adaptive shader
pars.minFilter = THREE.LinearMipMapLinearFilter;
this.currentLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );
if ( this.adaptive ) {
this.materialToneMap.defines["ADAPTED_LUMINANCE"] = "";
this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT;
}
//Put something in the adaptive luminance texture so that the scene can render initially
this.quad.material = new THREE.MeshBasicMaterial( { color: 0x777777 });
this.materialLuminance.needsUpdate = true;
this.materialAdaptiveLum.needsUpdate = true;
this.materialToneMap.needsUpdate = true;
// renderer.render( this.scene, this.camera, this.luminanceRT );
// renderer.render( this.scene, this.camera, this.previousLuminanceRT );
// renderer.render( this.scene, this.camera, this.currentLuminanceRT );
},
setAdaptive: function( adaptive ) {
if ( adaptive ) {
this.adaptive = true;
this.materialToneMap.defines["ADAPTED_LUMINANCE"] = "";
this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT;
}
else {
this.adaptive = false;
delete this.materialToneMap.defines["ADAPTED_LUMINANCE"];
this.materialToneMap.uniforms.luminanceMap.value = undefined;
}
this.materialToneMap.needsUpdate = true;
},
setAdaptionRate: function( rate ) {
if ( rate ) {
this.materialAdaptiveLum.uniforms.tau.value = Math.abs( rate );
}
},
setMaxLuminance: function( maxLum ) {
if ( maxLum ) {
this.materialToneMap.uniforms.maxLuminance.value = maxLum;
}
},
setAverageLuminance: function( avgLum ) {
if ( avgLum ) {
this.materialToneMap.uniforms.averageLuminance.value = avgLum;
}
},
setMiddleGrey: function( middleGrey ) {
if ( middleGrey ) {
this.materialToneMap.uniforms.middleGrey.value = middleGrey;
}
},
dispose: function() {
if ( this.luminanceRT ) {
this.luminanceRT.dispose();
}
if ( this.previousLuminanceRT ) {
this.previousLuminanceRT.dispose();
}
if ( this.currentLuminanceRT ) {
this.currentLuminanceRT.dispose();
}
if ( this.materialLuminance ) {
this.materialLuminance.dispose();
}
if ( this.materialAdaptiveLum ) {
this.materialAdaptiveLum.dispose();
}
if ( this.materialCopy ) {
this.materialCopy.dispose();
}
if ( this.materialToneMap ) {
this.materialToneMap.dispose();
}
}
};