Doodle3D-Slicer/three.js-master/examples/js/renderers/SoftwareRenderer.js
2017-06-22 13:21:07 +02:00

1113 lines
26 KiB
JavaScript
Executable File

/**
* @author mrdoob / http://mrdoob.com/
* @author ryg / http://farbrausch.de/~fg
* @author mraleph / http://mrale.ph/
* @author daoshengmu / http://dsmu.me/
*/
THREE.SoftwareRenderer = function ( parameters ) {
console.log( 'THREE.SoftwareRenderer', THREE.REVISION );
parameters = parameters || {};
var canvas = parameters.canvas !== undefined
? parameters.canvas
: document.createElement( 'canvas' );
var context = canvas.getContext( '2d', {
alpha: parameters.alpha === true
} );
var shaders = {};
var textures = {};
var canvasWidth, canvasHeight;
var canvasWBlocks, canvasHBlocks;
var viewportXScale, viewportYScale, viewportZScale;
var viewportXOffs, viewportYOffs, viewportZOffs;
var clearColor = new THREE.Color( 0x000000 );
var imagedata, data, zbuffer;
var numBlocks, blockMaxZ, blockFlags;
var BLOCK_ISCLEAR = (1 << 0);
var BLOCK_NEEDCLEAR = (1 << 1);
var subpixelBits = 4;
var subpixelBias = (1 << subpixelBits) - 1;
var blockShift = 3;
var blockSize = 1 << blockShift;
var maxZVal = (1 << 24); // Note: You want to size this so you don't get overflows.
var rectx1 = Infinity, recty1 = Infinity;
var rectx2 = 0, recty2 = 0;
var prevrectx1 = Infinity, prevrecty1 = Infinity;
var prevrectx2 = 0, prevrecty2 = 0;
var projector = new THREE.Projector();
var vector1 = new THREE.Vector3();
var vector2 = new THREE.Vector3();
var vector3 = new THREE.Vector3();
var texCoord1 = new THREE.Vector2();
var texCoord2 = new THREE.Vector2();
var texCoord3 = new THREE.Vector2();
this.domElement = canvas;
this.autoClear = true;
// WebGLRenderer compatibility
this.supportsVertexTextures = function () {};
this.setFaceCulling = function () {};
this.setClearColor = function ( color, alpha ) {
clearColor.set( color );
cleanColorBuffer();
};
this.setPixelRatio = function () {};
this.setSize = function ( width, height ) {
canvasWBlocks = Math.floor( width / blockSize );
canvasHBlocks = Math.floor( height / blockSize );
canvasWidth = canvasWBlocks * blockSize;
canvasHeight = canvasHBlocks * blockSize;
var fixScale = 1 << subpixelBits;
viewportXScale = fixScale * canvasWidth / 2;
viewportYScale = -fixScale * canvasHeight / 2;
viewportZScale = maxZVal / 2;
viewportXOffs = fixScale * canvasWidth / 2 + 0.5;
viewportYOffs = fixScale * canvasHeight / 2 + 0.5;
viewportZOffs = maxZVal / 2 + 0.5;
canvas.width = canvasWidth;
canvas.height = canvasHeight;
context.fillStyle = clearColor.getStyle();
context.fillRect( 0, 0, canvasWidth, canvasHeight );
imagedata = context.getImageData( 0, 0, canvasWidth, canvasHeight );
data = imagedata.data;
zbuffer = new Int32Array( data.length / 4 );
numBlocks = canvasWBlocks * canvasHBlocks;
blockMaxZ = new Int32Array( numBlocks );
blockFlags = new Uint8Array( numBlocks );
for ( var i = 0, l = zbuffer.length; i < l; i ++ ) {
zbuffer[ i ] = maxZVal;
}
for ( var i = 0; i < numBlocks; i ++ ) {
blockFlags[ i ] = BLOCK_ISCLEAR;
}
cleanColorBuffer();
};
this.setSize( canvas.width, canvas.height );
this.clear = function () {
rectx1 = Infinity;
recty1 = Infinity;
rectx2 = 0;
recty2 = 0;
for ( var i = 0; i < numBlocks; i ++ ) {
blockMaxZ[ i ] = maxZVal;
blockFlags[ i ] = (blockFlags[ i ] & BLOCK_ISCLEAR) ? BLOCK_ISCLEAR : BLOCK_NEEDCLEAR;
}
};
this.render = function ( scene, camera ) {
if ( this.autoClear === true ) this.clear();
var renderData = projector.projectScene( scene, camera, false, false );
var elements = renderData.elements;
for ( var e = 0, el = elements.length; e < el; e ++ ) {
var element = elements[ e ];
var material = element.material;
var shader = getMaterialShader( material );
if ( element instanceof THREE.RenderableFace ) {
if ( !element.uvs ) {
drawTriangle(
element.v1.positionScreen,
element.v2.positionScreen,
element.v3.positionScreen,
null, null, null,
shader, element, material
);
} else {
drawTriangle(
element.v1.positionScreen,
element.v2.positionScreen,
element.v3.positionScreen,
element.uvs[0], element.uvs[1], element.uvs[2],
shader, element, material
);
}
} else if ( element instanceof THREE.RenderableSprite ) {
var scaleX = element.scale.x * 0.5;
var scaleY = element.scale.y * 0.5;
vector1.copy( element );
vector1.x -= scaleX;
vector1.y += scaleY;
vector2.copy( element );
vector2.x -= scaleX;
vector2.y -= scaleY;
vector3.copy( element );
vector3.x += scaleX;
vector3.y += scaleY;
if ( material.map ) {
texCoord1.set( 0, 1 );
texCoord2.set( 0, 0 );
texCoord3.set( 1, 1 );
drawTriangle(
vector1, vector2, vector3,
texCoord1, texCoord2, texCoord3,
shader, element, material
);
} else {
drawTriangle(
vector1, vector2, vector3,
null, null, null,
shader, element, material
);
}
vector1.copy( element );
vector1.x += scaleX;
vector1.y += scaleY;
vector2.copy( element );
vector2.x -= scaleX;
vector2.y -= scaleY;
vector3.copy( element );
vector3.x += scaleX;
vector3.y -= scaleY;
if ( material.map ) {
texCoord1.set( 1, 1 );
texCoord2.set( 0, 0 );
texCoord3.set( 1, 0 );
drawTriangle(
vector1, vector2, vector3,
texCoord1, texCoord2, texCoord3,
shader, element, material
);
} else {
drawTriangle(
vector1, vector2, vector3,
null, null, null,
shader, element, material
);
}
}
}
finishClear();
var x = Math.min( rectx1, prevrectx1 );
var y = Math.min( recty1, prevrecty1 );
var width = Math.max( rectx2, prevrectx2 ) - x;
var height = Math.max( recty2, prevrecty2 ) - y;
/*
// debug; draw zbuffer
for ( var i = 0, l = zbuffer.length; i < l; i++ ) {
var o = i * 4;
var v = (65535 - zbuffer[ i ]) >> 3;
data[ o + 0 ] = v;
data[ o + 1 ] = v;
data[ o + 2 ] = v;
data[ o + 3 ] = 255;
}
*/
if ( x !== Infinity ) {
context.putImageData( imagedata, 0, 0, x, y, width, height );
}
prevrectx1 = rectx1; prevrecty1 = recty1;
prevrectx2 = rectx2; prevrecty2 = recty2;
};
function cleanColorBuffer() {
var size = canvasWidth * canvasHeight * 4;
for ( var i = 0; i < size; i+=4 ) {
data[ i ] = clearColor.r * 255 | 0;
data[ i + 1 ] = clearColor.g * 255 | 0;
data[ i + 2 ] = clearColor.b * 255 | 0;
data[ i + 3 ] = 255;
}
context.fillStyle = clearColor.getStyle();
context.fillRect( 0, 0, canvasWidth, canvasHeight );
}
function getPalette( material, bSimulateSpecular ) {
var i = 0, j = 0;
var diffuseR = material.color.r * 255;
var diffuseG = material.color.g * 255;
var diffuseB = material.color.b * 255;
var palette = new Uint8Array(256 * 3);
if ( bSimulateSpecular ) {
while (i < 204) {
palette[j ++] = Math.min( i * diffuseR / 204, 255 );
palette[j ++] = Math.min( i * diffuseG / 204, 255 );
palette[j ++] = Math.min( i * diffuseB / 204, 255 );
++ i;
}
while (i < 256) { // plus specular highlight
palette[j ++] = Math.min( diffuseR + (i - 204) * (255 - diffuseR) / 82, 255 );
palette[j ++] = Math.min( diffuseG + (i - 204) * (255 - diffuseG) / 82, 255 );
palette[j ++] = Math.min( diffuseB + (i - 204) * (255 - diffuseB) / 82, 255 );
++ i;
}
} else {
while (i < 256) {
palette[j ++] = Math.min( i * diffuseR / 255, 255 );
palette[j ++] = Math.min( i * diffuseG / 255, 255 );
palette[j ++] = Math.min( i * diffuseB / 255, 255 );
++ i;
}
}
return palette;
}
function basicMaterialShader( buffer, depthBuf, offset, depth, u, v, n, face, material ) {
var colorOffset = offset * 4;
var texture = textures[ material.map.id ];
if ( !texture.data )
return;
var tdim = texture.width;
var isTransparent = material.transparent;
var tbound = tdim - 1;
var tdata = texture.data;
var tIndex = (((v * tdim) & tbound) * tdim + ((u * tdim) & tbound)) * 4;
if ( !isTransparent ) {
buffer[ colorOffset ] = tdata[tIndex];
buffer[ colorOffset + 1 ] = tdata[tIndex + 1];
buffer[ colorOffset + 2 ] = tdata[tIndex + 2];
buffer[ colorOffset + 3 ] = material.opacity * 255;
depthBuf[ offset ] = depth;
}
else {
var opaci = tdata[tIndex + 3] * material.opacity;
var texel = (tdata[tIndex] << 16) + (tdata[tIndex + 1] << 8) + tdata[tIndex + 2];
if (opaci < 250) {
var backColor = (buffer[colorOffset] << 16) + (buffer[colorOffset + 1] << 8) + buffer[colorOffset + 2];
texel = texel * opaci + backColor * (1 - opaci);
}
buffer[ colorOffset ] = (texel & 0xff0000) >> 16;
buffer[ colorOffset + 1 ] = (texel & 0xff00) >> 8;
buffer[ colorOffset + 2 ] = texel & 0xff;
buffer[ colorOffset + 3 ] = material.opacity * 255;
}
}
function lightingMaterialShader( buffer, depthBuf, offset, depth, u, v, n, face, material ) {
var colorOffset = offset * 4;
var texture = textures[ material.map.id ];
if ( !texture.data )
return;
var tdim = texture.width;
var isTransparent = material.transparent;
var cIndex = (n > 0 ? (~~n) : 0) * 3;
var tbound = tdim - 1;
var tdata = texture.data;
var tIndex = (((v * tdim) & tbound) * tdim + ((u * tdim) & tbound)) * 4;
if ( !isTransparent ) {
buffer[ colorOffset ] = (material.palette[cIndex] * tdata[tIndex]) >> 8;
buffer[ colorOffset + 1 ] = (material.palette[cIndex + 1] * tdata[tIndex + 1]) >> 8;
buffer[ colorOffset + 2 ] = (material.palette[cIndex + 2] * tdata[tIndex + 2]) >> 8;
buffer[ colorOffset + 3 ] = material.opacity * 255;
depthBuf[ offset ] = depth;
} else {
var opaci = tdata[tIndex + 3] * material.opacity;
var foreColor = ((material.palette[cIndex] * tdata[tIndex]) << 16)
+ ((material.palette[cIndex + 1] * tdata[tIndex + 1]) << 8 )
+ (material.palette[cIndex + 2] * tdata[tIndex + 2]);
if (opaci < 250) {
var backColor = buffer[ colorOffset ] << 24 + buffer[ colorOffset + 1 ] << 16 + buffer[ colorOffset + 2 ] << 8;
foreColor = foreColor * opaci + backColor * (1 - opaci);
}
buffer[ colorOffset ] = (foreColor & 0xff0000) >> 16;
buffer[ colorOffset + 1 ] = (foreColor & 0xff00) >> 8;
buffer[ colorOffset + 2 ] = (foreColor & 0xff);
buffer[ colorOffset + 3 ] = material.opacity * 255;
}
}
function onMaterialUpdate ( event ) {
var material = event.target;
material.removeEventListener( 'update', onMaterialUpdate );
delete shaders[ material.id ];
}
function getMaterialShader( material ) {
var id = material.id;
var shader = shaders[ id ];
if ( shaders[ id ] === undefined ) {
material.addEventListener( 'update', onMaterialUpdate );
if ( material instanceof THREE.MeshBasicMaterial ||
material instanceof THREE.MeshLambertMaterial ||
material instanceof THREE.MeshPhongMaterial ||
material instanceof THREE.SpriteMaterial ) {
if ( material instanceof THREE.MeshLambertMaterial ) {
// Generate color palette
if ( !material.palette ) {
material.palette = getPalette( material, false );
}
} else if ( material instanceof THREE.MeshPhongMaterial ) {
// Generate color palette
if ( !material.palette ) {
material.palette = getPalette( material, true );
}
}
var string;
if ( material.map ) {
var texture = new THREE.SoftwareRenderer.Texture();
texture.fromImage( material.map.image );
material.map.addEventListener( 'update', function ( event ) {
texture.fromImage( event.target.image );
} );
textures[ material.map.id ] = texture;
if ( material instanceof THREE.MeshBasicMaterial
|| material instanceof THREE.SpriteMaterial ) {
shader = basicMaterialShader;
} else {
shader = lightingMaterialShader;
}
} else {
if ( material.vertexColors === THREE.FaceColors ) {
string = [
'var colorOffset = offset * 4;',
'buffer[ colorOffset ] = face.color.r * 255;',
'buffer[ colorOffset + 1 ] = face.color.g * 255;',
'buffer[ colorOffset + 2 ] = face.color.b * 255;',
'buffer[ colorOffset + 3 ] = material.opacity * 255;',
'depthBuf[ offset ] = depth;'
].join('\n');
} else {
string = [
'var colorOffset = offset * 4;',
'buffer[ colorOffset ] = material.color.r * 255;',
'buffer[ colorOffset + 1 ] = material.color.g * 255;',
'buffer[ colorOffset + 2 ] = material.color.b * 255;',
'buffer[ colorOffset + 3 ] = material.opacity * 255;',
'depthBuf[ offset ] = depth;'
].join('\n');
}
shader = new Function( 'buffer, depthBuf, offset, depth, u, v, n, face, material', string );
}
} else {
var string = [
'var colorOffset = offset * 4;',
'buffer[ colorOffset ] = u * 255;',
'buffer[ colorOffset + 1 ] = v * 255;',
'buffer[ colorOffset + 2 ] = 0;',
'buffer[ colorOffset + 3 ] = 255;',
'depthBuf[ offset ] = depth;'
].join('\n');
shader = new Function( 'buffer, depthBuf, offset, depth, u, v', string );
}
shaders[ id ] = shader;
}
return shader;
}
function clearRectangle( x1, y1, x2, y2 ) {
var xmin = Math.max( Math.min( x1, x2 ), 0 );
var xmax = Math.min( Math.max( x1, x2 ), canvasWidth );
var ymin = Math.max( Math.min( y1, y2 ), 0 );
var ymax = Math.min( Math.max( y1, y2 ), canvasHeight );
var offset = ( xmin + ymin * canvasWidth ) * 4 + 3;
var linestep = ( canvasWidth - ( xmax - xmin ) ) * 4;
for ( var y = ymin; y < ymax; y ++ ) {
for ( var x = xmin; x < xmax; x ++ ) {
data[ offset += 4 ] = 0;
}
offset += linestep;
}
}
function drawTriangle( v1, v2, v3, uv1, uv2, uv3, shader, face, material ) {
// TODO: Implement per-pixel z-clipping
if ( v1.z < -1 || v1.z > 1 || v2.z < -1 || v2.z > 1 || v3.z < -1 || v3.z > 1 ) return;
// https://gist.github.com/2486101
// explanation: http://pouet.net/topic.php?which=8760&page=1
// 28.4 fixed-point coordinates
var x1 = (v1.x * viewportXScale + viewportXOffs) | 0;
var x2 = (v2.x * viewportXScale + viewportXOffs) | 0;
var x3 = (v3.x * viewportXScale + viewportXOffs) | 0;
var y1 = (v1.y * viewportYScale + viewportYOffs) | 0;
var y2 = (v2.y * viewportYScale + viewportYOffs) | 0;
var y3 = (v3.y * viewportYScale + viewportYOffs) | 0;
// Z values (.28 fixed-point)
var z1 = (v1.z * viewportZScale + viewportZOffs) | 0;
var z2 = (v2.z * viewportZScale + viewportZOffs) | 0;
var z3 = (v3.z * viewportZScale + viewportZOffs) | 0;
// UV values
var bHasUV = false;
var tu1, tv1, tu2, tv2, tu3, tv3;
if ( uv1 && uv2 && uv3 ) {
bHasUV = true;
tu1 = uv1.x;
tv1 = 1 - uv1.y;
tu2 = uv2.x;
tv2 = 1 - uv2.y;
tu3 = uv3.x;
tv3 = 1 - uv3.y;
}
// Normal values
var bHasNormal = false;
var n1, n2, n3, nz1, nz2, nz3;
if ( face.vertexNormalsModel ) {
bHasNormal = true;
n1 = face.vertexNormalsModel[0];
n2 = face.vertexNormalsModel[1];
n3 = face.vertexNormalsModel[2];
nz1 = n1.z * 255;
nz2 = n2.z * 255;
nz3 = n3.z * 255;
}
// Deltas
var dx12 = x1 - x2, dy12 = y2 - y1;
var dx23 = x2 - x3, dy23 = y3 - y2;
var dx31 = x3 - x1, dy31 = y1 - y3;
// Bounding rectangle
var minx = Math.max( ( Math.min( x1, x2, x3 ) + subpixelBias ) >> subpixelBits, 0 );
var maxx = Math.min( ( Math.max( x1, x2, x3 ) + subpixelBias ) >> subpixelBits, canvasWidth );
var miny = Math.max( ( Math.min( y1, y2, y3 ) + subpixelBias ) >> subpixelBits, 0 );
var maxy = Math.min( ( Math.max( y1, y2, y3 ) + subpixelBias ) >> subpixelBits, canvasHeight );
rectx1 = Math.min( minx, rectx1 );
rectx2 = Math.max( maxx, rectx2 );
recty1 = Math.min( miny, recty1 );
recty2 = Math.max( maxy, recty2 );
// Block size, standard 8x8 (must be power of two)
var q = blockSize;
// Start in corner of 8x8 block
minx &= ~(q - 1);
miny &= ~(q - 1);
// Constant part of half-edge functions
var minXfixscale = (minx << subpixelBits);
var minYfixscale = (miny << subpixelBits);
var c1 = dy12 * ((minXfixscale) - x1) + dx12 * ((minYfixscale) - y1);
var c2 = dy23 * ((minXfixscale) - x2) + dx23 * ((minYfixscale) - y2);
var c3 = dy31 * ((minXfixscale) - x3) + dx31 * ((minYfixscale) - y3);
// Correct for fill convention
if ( dy12 > 0 || ( dy12 == 0 && dx12 > 0 ) ) c1 ++;
if ( dy23 > 0 || ( dy23 == 0 && dx23 > 0 ) ) c2 ++;
if ( dy31 > 0 || ( dy31 == 0 && dx31 > 0 ) ) c3 ++;
// Note this doesn't kill subpixel precision, but only because we test for >=0 (not >0).
// It's a bit subtle. :)
c1 = (c1 - 1) >> subpixelBits;
c2 = (c2 - 1) >> subpixelBits;
c3 = (c3 - 1) >> subpixelBits;
// Z interpolation setup
var dz12 = z1 - z2, dz31 = z3 - z1;
var invDet = 1.0 / (dx12 * dy31 - dx31 * dy12);
var dzdx = (invDet * (dz12 * dy31 - dz31 * dy12)); // dz per one subpixel step in x
var dzdy = (invDet * (dz12 * dx31 - dx12 * dz31)); // dz per one subpixel step in y
// Z at top/left corner of rast area
var cz = ( z1 + ((minXfixscale) - x1) * dzdx + ((minYfixscale) - y1) * dzdy ) | 0;
// Z pixel steps
var fixscale = (1 << subpixelBits);
dzdx = (dzdx * fixscale) | 0;
dzdy = (dzdy * fixscale) | 0;
var dtvdx, dtvdy, cbtu, cbtv;
if ( bHasUV ) {
// UV interpolation setup
var dtu12 = tu1 - tu2, dtu31 = tu3 - tu1;
var dtudx = (invDet * (dtu12 * dy31 - dtu31 * dy12)); // dtu per one subpixel step in x
var dtudy = (invDet * (dtu12 * dx31 - dx12 * dtu31)); // dtu per one subpixel step in y
var dtv12 = tv1 - tv2, dtv31 = tv3 - tv1;
dtvdx = (invDet * (dtv12 * dy31 - dtv31 * dy12)); // dtv per one subpixel step in x
dtvdy = (invDet * (dtv12 * dx31 - dx12 * dtv31)); // dtv per one subpixel step in y
// UV at top/left corner of rast area
cbtu = ( tu1 + (minXfixscale - x1) * dtudx + (minYfixscale - y1) * dtudy );
cbtv = ( tv1 + (minXfixscale - x1) * dtvdx + (minYfixscale - y1) * dtvdy );
// UV pixel steps
dtudx = dtudx * fixscale;
dtudy = dtudy * fixscale;
dtvdx = dtvdx * fixscale;
dtvdy = dtvdy * fixscale;
}
var dnxdx, dnzdy, cbnz;
if ( bHasNormal ) {
// Normal interpolation setup
var dnz12 = nz1 - nz2, dnz31 = nz3 - nz1;
var dnzdx = (invDet * (dnz12 * dy31 - dnz31 * dy12)); // dnz per one subpixel step in x
var dnzdy = (invDet * (dnz12 * dx31 - dx12 * dnz31)); // dnz per one subpixel step in y
// Normal at top/left corner of rast area
cbnz = ( nz1 + (minXfixscale - x1) * dnzdx + (minYfixscale - y1) * dnzdy );
// Normal pixel steps
dnzdx = (dnzdx * fixscale);
dnzdy = (dnzdy * fixscale);
}
// Set up min/max corners
var qm1 = q - 1; // for convenience
var nmin1 = 0, nmax1 = 0;
var nmin2 = 0, nmax2 = 0;
var nmin3 = 0, nmax3 = 0;
var nminz = 0, nmaxz = 0;
if (dx12 >= 0) nmax1 -= qm1 * dx12; else nmin1 -= qm1 * dx12;
if (dy12 >= 0) nmax1 -= qm1 * dy12; else nmin1 -= qm1 * dy12;
if (dx23 >= 0) nmax2 -= qm1 * dx23; else nmin2 -= qm1 * dx23;
if (dy23 >= 0) nmax2 -= qm1 * dy23; else nmin2 -= qm1 * dy23;
if (dx31 >= 0) nmax3 -= qm1 * dx31; else nmin3 -= qm1 * dx31;
if (dy31 >= 0) nmax3 -= qm1 * dy31; else nmin3 -= qm1 * dy31;
if (dzdx >= 0) nmaxz += qm1 * dzdx; else nminz += qm1 * dzdx;
if (dzdy >= 0) nmaxz += qm1 * dzdy; else nminz += qm1 * dzdy;
// Loop through blocks
var linestep = canvasWidth - q;
var scale = 1.0 / (c1 + c2 + c3);
var cb1 = c1;
var cb2 = c2;
var cb3 = c3;
var cbz = cz;
var qstep = -q;
var e1x = qstep * dy12;
var e2x = qstep * dy23;
var e3x = qstep * dy31;
var ezx = qstep * dzdx;
var etux, etvx;
if ( bHasUV ) {
etux = qstep * dtudx;
etvx = qstep * dtvdx;
}
var enzx;
if ( bHasNormal ) {
enzx = qstep * dnzdx;
}
var x0 = minx;
for ( var y0 = miny; y0 < maxy; y0 += q ) {
// New block line - keep hunting for tri outer edge in old block line dir
while ( x0 >= minx && x0 < maxx && cb1 >= nmax1 && cb2 >= nmax2 && cb3 >= nmax3 ) {
x0 += qstep;
cb1 += e1x;
cb2 += e2x;
cb3 += e3x;
cbz += ezx;
if ( bHasUV ) {
cbtu += etux;
cbtv += etvx;
}
if ( bHasNormal ) {
cbnz += enzx;
}
}
// Okay, we're now in a block we know is outside. Reverse direction and go into main loop.
qstep = -qstep;
e1x = -e1x;
e2x = -e2x;
e3x = -e3x;
ezx = -ezx;
if ( bHasUV ) {
etux = -etux;
etvx = -etvx;
}
if ( bHasNormal ) {
enzx = -enzx;
}
while ( 1 ) {
// Step everything
x0 += qstep;
cb1 += e1x;
cb2 += e2x;
cb3 += e3x;
cbz += ezx;
if ( bHasUV ) {
cbtu += etux;
cbtv += etvx;
}
if ( bHasNormal ) {
cbnz += enzx;
}
// We're done with this block line when at least one edge completely out
// If an edge function is too small and decreasing in the current traversal
// dir, we're done with this line.
if (x0 < minx || x0 >= maxx) break;
if (cb1 < nmax1) if (e1x < 0) break; else continue;
if (cb2 < nmax2) if (e2x < 0) break; else continue;
if (cb3 < nmax3) if (e3x < 0) break; else continue;
// We can skip this block if it's already fully covered
var blockX = x0 >> blockShift;
var blockY = y0 >> blockShift;
var blockId = blockX + blockY * canvasWBlocks;
var minz = cbz + nminz;
// farthest point in block closer than closest point in our tri?
if ( blockMaxZ[ blockId ] < minz ) continue;
// Need to do a deferred clear?
var bflags = blockFlags[ blockId ];
if ( bflags & BLOCK_NEEDCLEAR) clearBlock( blockX, blockY );
blockFlags[ blockId ] = bflags & ~( BLOCK_ISCLEAR | BLOCK_NEEDCLEAR );
// Offset at top-left corner
var offset = x0 + y0 * canvasWidth;
// Accept whole block when fully covered
if ( cb1 >= nmin1 && cb2 >= nmin2 && cb3 >= nmin3 ) {
var maxz = cbz + nmaxz;
blockMaxZ[ blockId ] = Math.min( blockMaxZ[ blockId ], maxz );
var cy1 = cb1;
var cy2 = cb2;
var cyz = cbz;
var cytu, cytv;
if ( bHasUV ) {
cytu = cbtu;
cytv = cbtv;
}
var cynz;
if ( bHasNormal ) {
cynz = cbnz;
}
for ( var iy = 0; iy < q; iy ++ ) {
var cx1 = cy1;
var cx2 = cy2;
var cxz = cyz;
var cxtu;
var cxtv;
if ( bHasUV ) {
cxtu = cytu;
cxtv = cytv;
}
var cxnz;
if ( bHasNormal ) {
cxnz = cynz;
}
for ( var ix = 0; ix < q; ix ++ ) {
var z = cxz;
if ( z < zbuffer[ offset ] ) {
shader( data, zbuffer, offset, z, cxtu, cxtv, cxnz, face, material );
}
cx1 += dy12;
cx2 += dy23;
cxz += dzdx;
if ( bHasUV ) {
cxtu += dtudx;
cxtv += dtvdx;
}
if ( bHasNormal ) {
cxnz += dnzdx;
}
offset ++;
}
cy1 += dx12;
cy2 += dx23;
cyz += dzdy;
if ( bHasUV ) {
cytu += dtudy;
cytv += dtvdy;
}
if ( bHasNormal ) {
cynz += dnzdy;
}
offset += linestep;
}
} else { // Partially covered block
var cy1 = cb1;
var cy2 = cb2;
var cy3 = cb3;
var cyz = cbz;
var cytu, cytv;
if ( bHasUV ) {
cytu = cbtu;
cytv = cbtv;
}
var cynz;
if ( bHasNormal ) {
cynz = cbnz;
}
for ( var iy = 0; iy < q; iy ++ ) {
var cx1 = cy1;
var cx2 = cy2;
var cx3 = cy3;
var cxz = cyz;
var cxtu;
var cxtv;
if ( bHasUV ) {
cxtu = cytu;
cxtv = cytv;
}
var cxnz;
if ( bHasNormal ) {
cxnz = cynz;
}
for ( var ix = 0; ix < q; ix ++ ) {
if ( ( cx1 | cx2 | cx3 ) >= 0 ) {
var z = cxz;
if ( z < zbuffer[ offset ] ) {
shader( data, zbuffer, offset, z, cxtu, cxtv, cxnz, face, material );
}
}
cx1 += dy12;
cx2 += dy23;
cx3 += dy31;
cxz += dzdx;
if ( bHasUV ) {
cxtu += dtudx;
cxtv += dtvdx;
}
if ( bHasNormal ) {
cxnz += dnzdx;
}
offset ++;
}
cy1 += dx12;
cy2 += dx23;
cy3 += dx31;
cyz += dzdy;
if ( bHasUV ) {
cytu += dtudy;
cytv += dtvdy;
}
if ( bHasNormal ) {
cynz += dnzdy;
}
offset += linestep;
}
}
}
// Advance to next row of blocks
cb1 += q * dx12;
cb2 += q * dx23;
cb3 += q * dx31;
cbz += q * dzdy;
if ( bHasUV ) {
cbtu += q * dtudy;
cbtv += q * dtvdy;
}
if ( bHasNormal ) {
cbnz += q * dnzdy;
}
}
}
function clearBlock( blockX, blockY ) {
var zoffset = blockX * blockSize + blockY * blockSize * canvasWidth;
var poffset = zoffset * 4;
var zlinestep = canvasWidth - blockSize;
var plinestep = zlinestep * 4;
for ( var y = 0; y < blockSize; y ++ ) {
for ( var x = 0; x < blockSize; x ++ ) {
zbuffer[ zoffset ++ ] = maxZVal;
data[ poffset ++ ] = clearColor.r * 255 | 0;
data[ poffset ++ ] = clearColor.g * 255 | 0;
data[ poffset ++ ] = clearColor.b * 255 | 0;
data[ poffset ++ ] = 255;
}
zoffset += zlinestep;
poffset += plinestep;
}
}
function finishClear( ) {
var block = 0;
for ( var y = 0; y < canvasHBlocks; y ++ ) {
for ( var x = 0; x < canvasWBlocks; x ++ ) {
if ( blockFlags[ block ] & BLOCK_NEEDCLEAR ) {
clearBlock( x, y );
blockFlags[ block ] = BLOCK_ISCLEAR;
}
block ++;
}
}
}
};
THREE.SoftwareRenderer.Texture = function() {
var canvas;
this.fromImage = function( image ) {
if ( !image || image.width <= 0 || image.height <= 0 )
return;
if ( canvas === undefined ) {
canvas = document.createElement( 'canvas' );
}
var size = image.width > image.height ? image.width : image.height;
size = THREE.Math.nextPowerOfTwo( size );
if ( canvas.width != size || canvas.height != size) {
canvas.width = size;
canvas.height = size;
}
var ctx = canvas.getContext('2d');
ctx.clearRect( 0, 0, size, size );
ctx.drawImage( image, 0, 0, size, size );
var imgData = ctx.getImageData( 0, 0, size, size );
this.data = imgData.data;
this.width = size;
this.height = size;
this.srcUrl = image.src;
};
};