mirror of
https://github.com/Doodle3D/Doodle3D-Slicer.git
synced 2025-01-25 18:45:10 +01:00
395 lines
7.4 KiB
JavaScript
Executable File
395 lines
7.4 KiB
JavaScript
Executable File
/**
|
|
* @author renej
|
|
* NURBS utils
|
|
*
|
|
* See NURBSCurve and NURBSSurface.
|
|
*
|
|
**/
|
|
|
|
|
|
/**************************************************************
|
|
* NURBS Utils
|
|
**************************************************************/
|
|
|
|
THREE.NURBSUtils = {
|
|
|
|
/*
|
|
Finds knot vector span.
|
|
|
|
p : degree
|
|
u : parametric value
|
|
U : knot vector
|
|
|
|
returns the span
|
|
*/
|
|
findSpan: function( p, u, U ) {
|
|
var n = U.length - p - 1;
|
|
|
|
if (u >= U[n]) {
|
|
return n - 1;
|
|
}
|
|
|
|
if (u <= U[p]) {
|
|
return p;
|
|
}
|
|
|
|
var low = p;
|
|
var high = n;
|
|
var mid = Math.floor((low + high) / 2);
|
|
|
|
while (u < U[mid] || u >= U[mid + 1]) {
|
|
|
|
if (u < U[mid]) {
|
|
high = mid;
|
|
} else {
|
|
low = mid;
|
|
}
|
|
|
|
mid = Math.floor((low + high) / 2);
|
|
}
|
|
|
|
return mid;
|
|
},
|
|
|
|
|
|
/*
|
|
Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
|
|
|
|
span : span in which u lies
|
|
u : parametric point
|
|
p : degree
|
|
U : knot vector
|
|
|
|
returns array[p+1] with basis functions values.
|
|
*/
|
|
calcBasisFunctions: function( span, u, p, U ) {
|
|
var N = [];
|
|
var left = [];
|
|
var right = [];
|
|
N[0] = 1.0;
|
|
|
|
for (var j = 1; j <= p; ++ j) {
|
|
|
|
left[j] = u - U[span + 1 - j];
|
|
right[j] = U[span + j] - u;
|
|
|
|
var saved = 0.0;
|
|
|
|
for (var r = 0; r < j; ++ r) {
|
|
|
|
var rv = right[r + 1];
|
|
var lv = left[j - r];
|
|
var temp = N[r] / (rv + lv);
|
|
N[r] = saved + rv * temp;
|
|
saved = lv * temp;
|
|
}
|
|
|
|
N[j] = saved;
|
|
}
|
|
|
|
return N;
|
|
},
|
|
|
|
|
|
/*
|
|
Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
|
|
|
|
p : degree of B-Spline
|
|
U : knot vector
|
|
P : control points (x, y, z, w)
|
|
u : parametric point
|
|
|
|
returns point for given u
|
|
*/
|
|
calcBSplinePoint: function( p, U, P, u ) {
|
|
var span = this.findSpan(p, u, U);
|
|
var N = this.calcBasisFunctions(span, u, p, U);
|
|
var C = new THREE.Vector4(0, 0, 0, 0);
|
|
|
|
for (var j = 0; j <= p; ++ j) {
|
|
var point = P[span - p + j];
|
|
var Nj = N[j];
|
|
var wNj = point.w * Nj;
|
|
C.x += point.x * wNj;
|
|
C.y += point.y * wNj;
|
|
C.z += point.z * wNj;
|
|
C.w += point.w * Nj;
|
|
}
|
|
|
|
return C;
|
|
},
|
|
|
|
|
|
/*
|
|
Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
|
|
|
|
span : span in which u lies
|
|
u : parametric point
|
|
p : degree
|
|
n : number of derivatives to calculate
|
|
U : knot vector
|
|
|
|
returns array[n+1][p+1] with basis functions derivatives
|
|
*/
|
|
calcBasisFunctionDerivatives: function( span, u, p, n, U ) {
|
|
|
|
var zeroArr = [];
|
|
for (var i = 0; i <= p; ++ i)
|
|
zeroArr[i] = 0.0;
|
|
|
|
var ders = [];
|
|
for (var i = 0; i <= n; ++ i)
|
|
ders[i] = zeroArr.slice(0);
|
|
|
|
var ndu = [];
|
|
for (var i = 0; i <= p; ++ i)
|
|
ndu[i] = zeroArr.slice(0);
|
|
|
|
ndu[0][0] = 1.0;
|
|
|
|
var left = zeroArr.slice(0);
|
|
var right = zeroArr.slice(0);
|
|
|
|
for (var j = 1; j <= p; ++ j) {
|
|
left[j] = u - U[span + 1 - j];
|
|
right[j] = U[span + j] - u;
|
|
|
|
var saved = 0.0;
|
|
|
|
for (var r = 0; r < j; ++ r) {
|
|
var rv = right[r + 1];
|
|
var lv = left[j - r];
|
|
ndu[j][r] = rv + lv;
|
|
|
|
var temp = ndu[r][j - 1] / ndu[j][r];
|
|
ndu[r][j] = saved + rv * temp;
|
|
saved = lv * temp;
|
|
}
|
|
|
|
ndu[j][j] = saved;
|
|
}
|
|
|
|
for (var j = 0; j <= p; ++ j) {
|
|
ders[0][j] = ndu[j][p];
|
|
}
|
|
|
|
for (var r = 0; r <= p; ++ r) {
|
|
var s1 = 0;
|
|
var s2 = 1;
|
|
|
|
var a = [];
|
|
for (var i = 0; i <= p; ++ i) {
|
|
a[i] = zeroArr.slice(0);
|
|
}
|
|
a[0][0] = 1.0;
|
|
|
|
for (var k = 1; k <= n; ++ k) {
|
|
var d = 0.0;
|
|
var rk = r - k;
|
|
var pk = p - k;
|
|
|
|
if (r >= k) {
|
|
a[s2][0] = a[s1][0] / ndu[pk + 1][rk];
|
|
d = a[s2][0] * ndu[rk][pk];
|
|
}
|
|
|
|
var j1 = (rk >= -1) ? 1 : -rk;
|
|
var j2 = (r - 1 <= pk) ? k - 1 : p - r;
|
|
|
|
for (var j = j1; j <= j2; ++ j) {
|
|
a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j];
|
|
d += a[s2][j] * ndu[rk + j][pk];
|
|
}
|
|
|
|
if (r <= pk) {
|
|
a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r];
|
|
d += a[s2][k] * ndu[r][pk];
|
|
}
|
|
|
|
ders[k][r] = d;
|
|
|
|
var j = s1;
|
|
s1 = s2;
|
|
s2 = j;
|
|
}
|
|
}
|
|
|
|
var r = p;
|
|
|
|
for (var k = 1; k <= n; ++ k) {
|
|
for (var j = 0; j <= p; ++ j) {
|
|
ders[k][j] *= r;
|
|
}
|
|
r *= p - k;
|
|
}
|
|
|
|
return ders;
|
|
},
|
|
|
|
|
|
/*
|
|
Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
|
|
|
|
p : degree
|
|
U : knot vector
|
|
P : control points
|
|
u : Parametric points
|
|
nd : number of derivatives
|
|
|
|
returns array[d+1] with derivatives
|
|
*/
|
|
calcBSplineDerivatives: function( p, U, P, u, nd ) {
|
|
var du = nd < p ? nd : p;
|
|
var CK = [];
|
|
var span = this.findSpan(p, u, U);
|
|
var nders = this.calcBasisFunctionDerivatives(span, u, p, du, U);
|
|
var Pw = [];
|
|
|
|
for (var i = 0; i < P.length; ++ i) {
|
|
var point = P[i].clone();
|
|
var w = point.w;
|
|
|
|
point.x *= w;
|
|
point.y *= w;
|
|
point.z *= w;
|
|
|
|
Pw[i] = point;
|
|
}
|
|
for (var k = 0; k <= du; ++ k) {
|
|
var point = Pw[span - p].clone().multiplyScalar(nders[k][0]);
|
|
|
|
for (var j = 1; j <= p; ++ j) {
|
|
point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j]));
|
|
}
|
|
|
|
CK[k] = point;
|
|
}
|
|
|
|
for (var k = du + 1; k <= nd + 1; ++ k) {
|
|
CK[k] = new THREE.Vector4(0, 0, 0);
|
|
}
|
|
|
|
return CK;
|
|
},
|
|
|
|
|
|
/*
|
|
Calculate "K over I"
|
|
|
|
returns k!/(i!(k-i)!)
|
|
*/
|
|
calcKoverI: function( k, i ) {
|
|
var nom = 1;
|
|
|
|
for (var j = 2; j <= k; ++ j) {
|
|
nom *= j;
|
|
}
|
|
|
|
var denom = 1;
|
|
|
|
for (var j = 2; j <= i; ++ j) {
|
|
denom *= j;
|
|
}
|
|
|
|
for (var j = 2; j <= k - i; ++ j) {
|
|
denom *= j;
|
|
}
|
|
|
|
return nom / denom;
|
|
},
|
|
|
|
|
|
/*
|
|
Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
|
|
|
|
Pders : result of function calcBSplineDerivatives
|
|
|
|
returns array with derivatives for rational curve.
|
|
*/
|
|
calcRationalCurveDerivatives: function ( Pders ) {
|
|
var nd = Pders.length;
|
|
var Aders = [];
|
|
var wders = [];
|
|
|
|
for (var i = 0; i < nd; ++ i) {
|
|
var point = Pders[i];
|
|
Aders[i] = new THREE.Vector3(point.x, point.y, point.z);
|
|
wders[i] = point.w;
|
|
}
|
|
|
|
var CK = [];
|
|
|
|
for (var k = 0; k < nd; ++ k) {
|
|
var v = Aders[k].clone();
|
|
|
|
for (var i = 1; i <= k; ++ i) {
|
|
v.sub(CK[k - i].clone().multiplyScalar(this.calcKoverI(k, i) * wders[i]));
|
|
}
|
|
|
|
CK[k] = v.divideScalar(wders[0]);
|
|
}
|
|
|
|
return CK;
|
|
},
|
|
|
|
|
|
/*
|
|
Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
|
|
|
|
p : degree
|
|
U : knot vector
|
|
P : control points in homogeneous space
|
|
u : parametric points
|
|
nd : number of derivatives
|
|
|
|
returns array with derivatives.
|
|
*/
|
|
calcNURBSDerivatives: function( p, U, P, u, nd ) {
|
|
var Pders = this.calcBSplineDerivatives(p, U, P, u, nd);
|
|
return this.calcRationalCurveDerivatives(Pders);
|
|
},
|
|
|
|
|
|
/*
|
|
Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
|
|
|
|
p1, p2 : degrees of B-Spline surface
|
|
U1, U2 : knot vectors
|
|
P : control points (x, y, z, w)
|
|
u, v : parametric values
|
|
|
|
returns point for given (u, v)
|
|
*/
|
|
calcSurfacePoint: function( p, q, U, V, P, u, v ) {
|
|
var uspan = this.findSpan(p, u, U);
|
|
var vspan = this.findSpan(q, v, V);
|
|
var Nu = this.calcBasisFunctions(uspan, u, p, U);
|
|
var Nv = this.calcBasisFunctions(vspan, v, q, V);
|
|
var temp = [];
|
|
|
|
for (var l = 0; l <= q; ++ l) {
|
|
temp[l] = new THREE.Vector4(0, 0, 0, 0);
|
|
for (var k = 0; k <= p; ++ k) {
|
|
var point = P[uspan - p + k][vspan - q + l].clone();
|
|
var w = point.w;
|
|
point.x *= w;
|
|
point.y *= w;
|
|
point.z *= w;
|
|
temp[l].add(point.multiplyScalar(Nu[k]));
|
|
}
|
|
}
|
|
|
|
var Sw = new THREE.Vector4(0, 0, 0, 0);
|
|
for (var l = 0; l <= q; ++ l) {
|
|
Sw.add(temp[l].multiplyScalar(Nv[l]));
|
|
}
|
|
|
|
Sw.divideScalar(Sw.w);
|
|
return new THREE.Vector3(Sw.x, Sw.y, Sw.z);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|