Doodle3D-Slicer/three.js-master/test/unit/math/Quaternion.js
2017-06-22 13:21:07 +02:00

220 lines
6.1 KiB
JavaScript
Executable File

/**
* @author bhouston / http://exocortex.com
*/
module( "Quaternion" );
var orders = [ 'XYZ', 'YXZ', 'ZXY', 'ZYX', 'YZX', 'XZY' ];
var eulerAngles = new THREE.Euler( 0.1, -0.3, 0.25 );
var qSub = function ( a, b ) {
var result = new THREE.Quaternion();
result.copy( a );
result.x -= b.x;
result.y -= b.y;
result.z -= b.z;
result.w -= b.w;
return result;
};
test( "constructor", function() {
var a = new THREE.Quaternion();
ok( a.x == 0, "Passed!" );
ok( a.y == 0, "Passed!" );
ok( a.z == 0, "Passed!" );
ok( a.w == 1, "Passed!" );
a = new THREE.Quaternion( x, y, z, w );
ok( a.x === x, "Passed!" );
ok( a.y === y, "Passed!" );
ok( a.z === z, "Passed!" );
ok( a.w === w, "Passed!" );
});
test( "copy", function() {
var a = new THREE.Quaternion( x, y, z, w );
var b = new THREE.Quaternion().copy( a );
ok( b.x == x, "Passed!" );
ok( b.y == y, "Passed!" );
ok( b.z == z, "Passed!" );
ok( b.w == w, "Passed!" );
// ensure that it is a true copy
a.x = 0;
a.y = -1;
a.z = 0;
a.w = -1;
ok( b.x == x, "Passed!" );
ok( b.y == y, "Passed!" );
});
test( "set", function() {
var a = new THREE.Quaternion();
ok( a.x == 0, "Passed!" );
ok( a.y == 0, "Passed!" );
ok( a.z == 0, "Passed!" );
ok( a.w == 1, "Passed!" );
a.set( x, y, z, w );
ok( a.x == x, "Passed!" );
ok( a.y == y, "Passed!" );
ok( a.z === z, "Passed!" );
ok( a.w === w, "Passed!" );
});
test( "setFromAxisAngle", function() {
// TODO: find cases to validate.
ok( true, "Passed!" );
var zero = new THREE.Quaternion();
var a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), 0 );
ok( a.equals( zero ), "Passed!" );
a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), 0 );
ok( a.equals( zero ), "Passed!" );
a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 0, 0, 1 ), 0 );
ok( a.equals( zero ), "Passed!" );
var b1 = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), Math.PI );
ok( ! a.equals( b1 ), "Passed!" );
var b2 = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), -Math.PI );
ok( ! a.equals( b2 ), "Passed!" );
b1.multiply( b2 );
ok( a.equals( b1 ), "Passed!" );
});
test( "setFromEuler/setFromQuaternion", function() {
var angles = [ new THREE.Vector3( 1, 0, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 0, 1 ) ];
// ensure euler conversion to/from Quaternion matches.
for( var i = 0; i < orders.length; i ++ ) {
for( var j = 0; j < angles.length; j ++ ) {
var eulers2 = new THREE.Euler().setFromQuaternion( new THREE.Quaternion().setFromEuler( new THREE.Euler( angles[j].x, angles[j].y, angles[j].z, orders[i] ) ), orders[i] );
var newAngle = new THREE.Vector3( eulers2.x, eulers2.y, eulers2.z );
ok( newAngle.distanceTo( angles[j] ) < 0.001, "Passed!" );
}
}
});
test( "setFromEuler/setFromRotationMatrix", function() {
// ensure euler conversion for Quaternion matches that of Matrix4
for( var i = 0; i < orders.length; i ++ ) {
var q = new THREE.Quaternion().setFromEuler( eulerAngles, orders[i] );
var m = new THREE.Matrix4().makeRotationFromEuler( eulerAngles, orders[i] );
var q2 = new THREE.Quaternion().setFromRotationMatrix( m );
ok( qSub( q, q2 ).length() < 0.001, "Passed!" );
}
});
test( "normalize/length/lengthSq", function() {
var a = new THREE.Quaternion( x, y, z, w );
var b = new THREE.Quaternion( -x, -y, -z, -w );
ok( a.length() != 1, "Passed!");
ok( a.lengthSq() != 1, "Passed!");
a.normalize();
ok( a.length() == 1, "Passed!");
ok( a.lengthSq() == 1, "Passed!");
a.set( 0, 0, 0, 0 );
ok( a.lengthSq() == 0, "Passed!");
ok( a.length() == 0, "Passed!");
a.normalize();
ok( a.lengthSq() == 1, "Passed!");
ok( a.length() == 1, "Passed!");
});
test( "inverse/conjugate", function() {
var a = new THREE.Quaternion( x, y, z, w );
// TODO: add better validation here.
var b = a.clone().conjugate();
ok( a.x == -b.x, "Passed!" );
ok( a.y == -b.y, "Passed!" );
ok( a.z == -b.z, "Passed!" );
ok( a.w == b.w, "Passed!" );
});
test( "multiplyQuaternions/multiply", function() {
var angles = [ new THREE.Euler( 1, 0, 0 ), new THREE.Euler( 0, 1, 0 ), new THREE.Euler( 0, 0, 1 ) ];
var q1 = new THREE.Quaternion().setFromEuler( angles[0], "XYZ" );
var q2 = new THREE.Quaternion().setFromEuler( angles[1], "XYZ" );
var q3 = new THREE.Quaternion().setFromEuler( angles[2], "XYZ" );
var q = new THREE.Quaternion().multiplyQuaternions( q1, q2 ).multiply( q3 );
var m1 = new THREE.Matrix4().makeRotationFromEuler( angles[0], "XYZ" );
var m2 = new THREE.Matrix4().makeRotationFromEuler( angles[1], "XYZ" );
var m3 = new THREE.Matrix4().makeRotationFromEuler( angles[2], "XYZ" );
var m = new THREE.Matrix4().multiplyMatrices( m1, m2 ).multiply( m3 );
var qFromM = new THREE.Quaternion().setFromRotationMatrix( m );
ok( qSub( q, qFromM ).length() < 0.001, "Passed!" );
});
test( "multiplyVector3", function() {
var angles = [ new THREE.Euler( 1, 0, 0 ), new THREE.Euler( 0, 1, 0 ), new THREE.Euler( 0, 0, 1 ) ];
// ensure euler conversion for Quaternion matches that of Matrix4
for( var i = 0; i < orders.length; i ++ ) {
for( var j = 0; j < angles.length; j ++ ) {
var q = new THREE.Quaternion().setFromEuler( angles[j], orders[i] );
var m = new THREE.Matrix4().makeRotationFromEuler( angles[j], orders[i] );
var v0 = new THREE.Vector3(1, 0, 0);
var qv = v0.clone().applyQuaternion( q );
var mv = v0.clone().applyMatrix4( m );
ok( qv.distanceTo( mv ) < 0.001, "Passed!" );
}
}
});
test( "equals", function() {
var a = new THREE.Quaternion( x, y, z, w );
var b = new THREE.Quaternion( -x, -y, -z, -w );
ok( a.x != b.x, "Passed!" );
ok( a.y != b.y, "Passed!" );
ok( ! a.equals( b ), "Passed!" );
ok( ! b.equals( a ), "Passed!" );
a.copy( b );
ok( a.x == b.x, "Passed!" );
ok( a.y == b.y, "Passed!" );
ok( a.equals( b ), "Passed!" );
ok( b.equals( a ), "Passed!" );
});
test( "slerp", function() {
var a = new THREE.Quaternion( 0.675341, 0.408783, 0.328567, 0.518512 );
var b = new THREE.Quaternion( 0.660279, 0.436474, 0.35119, 0.500187 );
ok( a.slerp( b, 0 ).equals( a ), "Passed!" );
ok( a.slerp( b, 1 ).equals( b ), "Passed!" );
});