LED-Mesh/libraries/FastLED/pixeltypes.h

872 lines
23 KiB
C
Raw Permalink Normal View History

2019-02-13 22:27:19 +01:00
#ifndef __INC_PIXELS_H
#define __INC_PIXELS_H
#include "FastLED.h"
#include <stdint.h>
#include "lib8tion.h"
#include "color.h"
FASTLED_NAMESPACE_BEGIN
struct CRGB;
struct CHSV;
///@defgroup Pixeltypes CHSV and CRGB type definitions
///@{
/// Forward declaration of hsv2rgb_rainbow here,
/// to avoid circular dependencies.
extern void hsv2rgb_rainbow( const CHSV& hsv, CRGB& rgb);
/// Representation of an HSV pixel (hue, saturation, value (aka brightness)).
struct CHSV {
union {
struct {
union {
uint8_t hue;
uint8_t h; };
union {
uint8_t saturation;
uint8_t sat;
uint8_t s; };
union {
uint8_t value;
uint8_t val;
uint8_t v; };
};
uint8_t raw[3];
};
/// default values are UNITIALIZED
inline CHSV() __attribute__((always_inline))
{
}
/// allow construction from H, S, V
inline CHSV( uint8_t ih, uint8_t is, uint8_t iv) __attribute__((always_inline))
: h(ih), s(is), v(iv)
{
}
/// allow copy construction
inline CHSV(const CHSV& rhs) __attribute__((always_inline))
{
h = rhs.h;
s = rhs.s;
v = rhs.v;
}
inline CHSV& operator= (const CHSV& rhs) __attribute__((always_inline))
{
h = rhs.h;
s = rhs.s;
v = rhs.v;
return *this;
}
inline CHSV& setHSV(uint8_t ih, uint8_t is, uint8_t iv) __attribute__((always_inline))
{
h = ih;
s = is;
v = iv;
return *this;
}
};
/// Pre-defined hue values for HSV objects
typedef enum {
HUE_RED = 0,
HUE_ORANGE = 32,
HUE_YELLOW = 64,
HUE_GREEN = 96,
HUE_AQUA = 128,
HUE_BLUE = 160,
HUE_PURPLE = 192,
HUE_PINK = 224
} HSVHue;
/// Representation of an RGB pixel (Red, Green, Blue)
struct CRGB {
union {
struct {
union {
uint8_t r;
uint8_t red;
};
union {
uint8_t g;
uint8_t green;
};
union {
uint8_t b;
uint8_t blue;
};
};
uint8_t raw[3];
};
/// Array access operator to index into the crgb object
inline uint8_t& operator[] (uint8_t x) __attribute__((always_inline))
{
return raw[x];
}
/// Array access operator to index into the crgb object
inline const uint8_t& operator[] (uint8_t x) const __attribute__((always_inline))
{
return raw[x];
}
// default values are UNINITIALIZED
inline CRGB() __attribute__((always_inline))
{
}
/// allow construction from R, G, B
inline CRGB( uint8_t ir, uint8_t ig, uint8_t ib) __attribute__((always_inline))
: r(ir), g(ig), b(ib)
{
}
/// allow construction from 32-bit (really 24-bit) bit 0xRRGGBB color code
inline CRGB( uint32_t colorcode) __attribute__((always_inline))
: r((colorcode >> 16) & 0xFF), g((colorcode >> 8) & 0xFF), b((colorcode >> 0) & 0xFF)
{
}
/// allow construction from a LEDColorCorrection enum
inline CRGB( LEDColorCorrection colorcode) __attribute__((always_inline))
: r((colorcode >> 16) & 0xFF), g((colorcode >> 8) & 0xFF), b((colorcode >> 0) & 0xFF)
{
}
/// allow construction from a ColorTemperature enum
inline CRGB( ColorTemperature colorcode) __attribute__((always_inline))
: r((colorcode >> 16) & 0xFF), g((colorcode >> 8) & 0xFF), b((colorcode >> 0) & 0xFF)
{
}
/// allow copy construction
inline CRGB(const CRGB& rhs) __attribute__((always_inline))
{
r = rhs.r;
g = rhs.g;
b = rhs.b;
}
/// allow construction from HSV color
inline CRGB(const CHSV& rhs) __attribute__((always_inline))
{
hsv2rgb_rainbow( rhs, *this);
}
/// allow assignment from one RGB struct to another
inline CRGB& operator= (const CRGB& rhs) __attribute__((always_inline))
{
r = rhs.r;
g = rhs.g;
b = rhs.b;
return *this;
}
/// allow assignment from 32-bit (really 24-bit) 0xRRGGBB color code
inline CRGB& operator= (const uint32_t colorcode) __attribute__((always_inline))
{
r = (colorcode >> 16) & 0xFF;
g = (colorcode >> 8) & 0xFF;
b = (colorcode >> 0) & 0xFF;
return *this;
}
/// allow assignment from R, G, and B
inline CRGB& setRGB (uint8_t nr, uint8_t ng, uint8_t nb) __attribute__((always_inline))
{
r = nr;
g = ng;
b = nb;
return *this;
}
/// allow assignment from H, S, and V
inline CRGB& setHSV (uint8_t hue, uint8_t sat, uint8_t val) __attribute__((always_inline))
{
hsv2rgb_rainbow( CHSV(hue, sat, val), *this);
return *this;
}
/// allow assignment from just a Hue, saturation and value automatically at max.
inline CRGB& setHue (uint8_t hue) __attribute__((always_inline))
{
hsv2rgb_rainbow( CHSV(hue, 255, 255), *this);
return *this;
}
/// allow assignment from HSV color
inline CRGB& operator= (const CHSV& rhs) __attribute__((always_inline))
{
hsv2rgb_rainbow( rhs, *this);
return *this;
}
/// allow assignment from 32-bit (really 24-bit) 0xRRGGBB color code
inline CRGB& setColorCode (uint32_t colorcode) __attribute__((always_inline))
{
r = (colorcode >> 16) & 0xFF;
g = (colorcode >> 8) & 0xFF;
b = (colorcode >> 0) & 0xFF;
return *this;
}
/// add one RGB to another, saturating at 0xFF for each channel
inline CRGB& operator+= (const CRGB& rhs )
{
r = qadd8( r, rhs.r);
g = qadd8( g, rhs.g);
b = qadd8( b, rhs.b);
return *this;
}
/// add a contstant to each channel, saturating at 0xFF
/// this is NOT an operator+= overload because the compiler
/// can't usefully decide when it's being passed a 32-bit
/// constant (e.g. CRGB::Red) and an 8-bit one (CRGB::Blue)
inline CRGB& addToRGB (uint8_t d )
{
r = qadd8( r, d);
g = qadd8( g, d);
b = qadd8( b, d);
return *this;
}
/// subtract one RGB from another, saturating at 0x00 for each channel
inline CRGB& operator-= (const CRGB& rhs )
{
r = qsub8( r, rhs.r);
g = qsub8( g, rhs.g);
b = qsub8( b, rhs.b);
return *this;
}
/// subtract a constant from each channel, saturating at 0x00
/// this is NOT an operator+= overload because the compiler
/// can't usefully decide when it's being passed a 32-bit
/// constant (e.g. CRGB::Red) and an 8-bit one (CRGB::Blue)
inline CRGB& subtractFromRGB(uint8_t d )
{
r = qsub8( r, d);
g = qsub8( g, d);
b = qsub8( b, d);
return *this;
}
/// subtract a constant of '1' from each channel, saturating at 0x00
inline CRGB& operator-- () __attribute__((always_inline))
{
subtractFromRGB(1);
return *this;
}
/// subtract a constant of '1' from each channel, saturating at 0x00
inline CRGB operator-- (int ) __attribute__((always_inline))
{
CRGB retval(*this);
--(*this);
return retval;
}
/// add a constant of '1' from each channel, saturating at 0xFF
inline CRGB& operator++ () __attribute__((always_inline))
{
addToRGB(1);
return *this;
}
/// add a constant of '1' from each channel, saturating at 0xFF
inline CRGB operator++ (int ) __attribute__((always_inline))
{
CRGB retval(*this);
++(*this);
return retval;
}
/// divide each of the channels by a constant
inline CRGB& operator/= (uint8_t d )
{
r /= d;
g /= d;
b /= d;
return *this;
}
/// right shift each of the channels by a constant
inline CRGB& operator>>= (uint8_t d)
{
r >>= d;
g >>= d;
b >>= d;
return *this;
}
/// multiply each of the channels by a constant,
/// saturating each channel at 0xFF
inline CRGB& operator*= (uint8_t d )
{
r = qmul8( r, d);
g = qmul8( g, d);
b = qmul8( b, d);
return *this;
}
/// scale down a RGB to N 256ths of it's current brightness, using
/// 'video' dimming rules, which means that unless the scale factor is ZERO
/// each channel is guaranteed NOT to dim down to zero. If it's already
/// nonzero, it'll stay nonzero, even if that means the hue shifts a little
/// at low brightness levels.
inline CRGB& nscale8_video (uint8_t scaledown )
{
nscale8x3_video( r, g, b, scaledown);
return *this;
}
/// %= is a synonym for nscale8_video. Think of it is scaling down
/// by "a percentage"
inline CRGB& operator%= (uint8_t scaledown )
{
nscale8x3_video( r, g, b, scaledown);
return *this;
}
/// fadeLightBy is a synonym for nscale8_video( ..., 255-fadefactor)
inline CRGB& fadeLightBy (uint8_t fadefactor )
{
nscale8x3_video( r, g, b, 255 - fadefactor);
return *this;
}
/// scale down a RGB to N 256ths of it's current brightness, using
/// 'plain math' dimming rules, which means that if the low light levels
/// may dim all the way to 100% black.
inline CRGB& nscale8 (uint8_t scaledown )
{
nscale8x3( r, g, b, scaledown);
return *this;
}
/// scale down a RGB to N 256ths of it's current brightness, using
/// 'plain math' dimming rules, which means that if the low light levels
/// may dim all the way to 100% black.
inline CRGB& nscale8 (const CRGB & scaledown )
{
r = ::scale8(r, scaledown.r);
g = ::scale8(g, scaledown.g);
b = ::scale8(b, scaledown.b);
return *this;
}
/// return a CRGB object that is a scaled down version of this object
inline CRGB scale8 (const CRGB & scaledown ) const
{
CRGB out;
out.r = ::scale8(r, scaledown.r);
out.g = ::scale8(g, scaledown.g);
out.b = ::scale8(b, scaledown.b);
return out;
}
/// fadeToBlackBy is a synonym for nscale8( ..., 255-fadefactor)
inline CRGB& fadeToBlackBy (uint8_t fadefactor )
{
nscale8x3( r, g, b, 255 - fadefactor);
return *this;
}
/// "or" operator brings each channel up to the higher of the two values
inline CRGB& operator|= (const CRGB& rhs )
{
if( rhs.r > r) r = rhs.r;
if( rhs.g > g) g = rhs.g;
if( rhs.b > b) b = rhs.b;
return *this;
}
/// "or" operator brings each channel up to the higher of the two values
inline CRGB& operator|= (uint8_t d )
{
if( d > r) r = d;
if( d > g) g = d;
if( d > b) b = d;
return *this;
}
/// "and" operator brings each channel down to the lower of the two values
inline CRGB& operator&= (const CRGB& rhs )
{
if( rhs.r < r) r = rhs.r;
if( rhs.g < g) g = rhs.g;
if( rhs.b < b) b = rhs.b;
return *this;
}
/// "and" operator brings each channel down to the lower of the two values
inline CRGB& operator&= (uint8_t d )
{
if( d < r) r = d;
if( d < g) g = d;
if( d < b) b = d;
return *this;
}
/// this allows testing a CRGB for zero-ness
inline operator bool() const __attribute__((always_inline))
{
return r || g || b;
}
/// invert each channel
inline CRGB operator- ()
{
CRGB retval;
retval.r = 255 - r;
retval.g = 255 - g;
retval.b = 255 - b;
return retval;
}
#if (defined SmartMatrix_h || defined SmartMatrix3_h)
operator rgb24() const {
rgb24 ret;
ret.red = r;
ret.green = g;
ret.blue = b;
return ret;
}
#endif
/// Get the 'luma' of a CRGB object - aka roughly how much light the
/// CRGB pixel is putting out (from 0 to 255).
inline uint8_t getLuma ( ) const {
//Y' = 0.2126 R' + 0.7152 G' + 0.0722 B'
// 54 183 18 (!)
uint8_t luma = scale8_LEAVING_R1_DIRTY( r, 54) + \
scale8_LEAVING_R1_DIRTY( g, 183) + \
scale8_LEAVING_R1_DIRTY( b, 18);
cleanup_R1();
return luma;
}
/// Get the average of the R, G, and B values
inline uint8_t getAverageLight( ) const {
#if FASTLED_SCALE8_FIXED == 1
const uint8_t eightyfive = 85;
#else
const uint8_t eightyfive = 86;
#endif
uint8_t avg = scale8_LEAVING_R1_DIRTY( r, eightyfive) + \
scale8_LEAVING_R1_DIRTY( g, eightyfive) + \
scale8_LEAVING_R1_DIRTY( b, eightyfive);
cleanup_R1();
return avg;
}
/// maximize the brightness of this CRGB object
inline void maximizeBrightness( uint8_t limit = 255 ) {
uint8_t max = red;
if( green > max) max = green;
if( blue > max) max = blue;
// stop div/0 when color is black
if(max > 0) {
uint16_t factor = ((uint16_t)(limit) * 256) / max;
red = (red * factor) / 256;
green = (green * factor) / 256;
blue = (blue * factor) / 256;
}
}
/// return a new CRGB object after performing a linear interpolation between this object and the passed in object
inline CRGB lerp8( const CRGB& other, fract8 frac) const
{
CRGB ret;
ret.r = lerp8by8(r,other.r,frac);
ret.g = lerp8by8(g,other.g,frac);
ret.b = lerp8by8(b,other.b,frac);
return ret;
}
/// return a new CRGB object after performing a linear interpolation between this object and the passed in object
inline CRGB lerp16( const CRGB& other, fract16 frac) const
{
CRGB ret;
ret.r = lerp16by16(r<<8,other.r<<8,frac)>>8;
ret.g = lerp16by16(g<<8,other.g<<8,frac)>>8;
ret.b = lerp16by16(b<<8,other.b<<8,frac)>>8;
return ret;
}
/// getParity returns 0 or 1, depending on the
/// lowest bit of the sum of the color components.
inline uint8_t getParity()
{
uint8_t sum = r + g + b;
return (sum & 0x01);
}
/// setParity adjusts the color in the smallest
/// way possible so that the parity of the color
/// is now the desired value. This allows you to
/// 'hide' one bit of information in the color.
///
/// Ideally, we find one color channel which already
/// has data in it, and modify just that channel by one.
/// We don't want to light up a channel that's black
/// if we can avoid it, and if the pixel is 'grayscale',
/// (meaning that R==G==B), we modify all three channels
/// at once, to preserve the neutral hue.
///
/// There's no such thing as a free lunch; in many cases
/// this 'hidden bit' may actually be visible, but this
/// code makes reasonable efforts to hide it as much
/// as is reasonably possible.
///
/// Also, an effort is made to have make it such that
/// repeatedly setting the parity to different values
/// will not cause the color to 'drift'. Toggling
/// the parity twice should generally result in the
/// original color again.
///
inline void setParity( uint8_t parity)
{
uint8_t curparity = getParity();
if( parity == curparity) return;
if( parity ) {
// going 'up'
if( (b > 0) && (b < 255)) {
if( r == g && g == b) {
r++;
g++;
}
b++;
} else if( (r > 0) && (r < 255)) {
r++;
} else if( (g > 0) && (g < 255)) {
g++;
} else {
if( r == g && g == b) {
r ^= 0x01;
g ^= 0x01;
}
b ^= 0x01;
}
} else {
// going 'down'
if( b > 1) {
if( r == g && g == b) {
r--;
g--;
}
b--;
} else if( g > 1) {
g--;
} else if( r > 1) {
r--;
} else {
if( r == g && g == b) {
r ^= 0x01;
g ^= 0x01;
}
b ^= 0x01;
}
}
}
/// Predefined RGB colors
typedef enum {
AliceBlue=0xF0F8FF,
Amethyst=0x9966CC,
AntiqueWhite=0xFAEBD7,
Aqua=0x00FFFF,
Aquamarine=0x7FFFD4,
Azure=0xF0FFFF,
Beige=0xF5F5DC,
Bisque=0xFFE4C4,
Black=0x000000,
BlanchedAlmond=0xFFEBCD,
Blue=0x0000FF,
BlueViolet=0x8A2BE2,
Brown=0xA52A2A,
BurlyWood=0xDEB887,
CadetBlue=0x5F9EA0,
Chartreuse=0x7FFF00,
Chocolate=0xD2691E,
Coral=0xFF7F50,
CornflowerBlue=0x6495ED,
Cornsilk=0xFFF8DC,
Crimson=0xDC143C,
Cyan=0x00FFFF,
DarkBlue=0x00008B,
DarkCyan=0x008B8B,
DarkGoldenrod=0xB8860B,
DarkGray=0xA9A9A9,
DarkGrey=0xA9A9A9,
DarkGreen=0x006400,
DarkKhaki=0xBDB76B,
DarkMagenta=0x8B008B,
DarkOliveGreen=0x556B2F,
DarkOrange=0xFF8C00,
DarkOrchid=0x9932CC,
DarkRed=0x8B0000,
DarkSalmon=0xE9967A,
DarkSeaGreen=0x8FBC8F,
DarkSlateBlue=0x483D8B,
DarkSlateGray=0x2F4F4F,
DarkSlateGrey=0x2F4F4F,
DarkTurquoise=0x00CED1,
DarkViolet=0x9400D3,
DeepPink=0xFF1493,
DeepSkyBlue=0x00BFFF,
DimGray=0x696969,
DimGrey=0x696969,
DodgerBlue=0x1E90FF,
FireBrick=0xB22222,
FloralWhite=0xFFFAF0,
ForestGreen=0x228B22,
Fuchsia=0xFF00FF,
Gainsboro=0xDCDCDC,
GhostWhite=0xF8F8FF,
Gold=0xFFD700,
Goldenrod=0xDAA520,
Gray=0x808080,
Grey=0x808080,
Green=0x008000,
GreenYellow=0xADFF2F,
Honeydew=0xF0FFF0,
HotPink=0xFF69B4,
IndianRed=0xCD5C5C,
Indigo=0x4B0082,
Ivory=0xFFFFF0,
Khaki=0xF0E68C,
Lavender=0xE6E6FA,
LavenderBlush=0xFFF0F5,
LawnGreen=0x7CFC00,
LemonChiffon=0xFFFACD,
LightBlue=0xADD8E6,
LightCoral=0xF08080,
LightCyan=0xE0FFFF,
LightGoldenrodYellow=0xFAFAD2,
LightGreen=0x90EE90,
LightGrey=0xD3D3D3,
LightPink=0xFFB6C1,
LightSalmon=0xFFA07A,
LightSeaGreen=0x20B2AA,
LightSkyBlue=0x87CEFA,
LightSlateGray=0x778899,
LightSlateGrey=0x778899,
LightSteelBlue=0xB0C4DE,
LightYellow=0xFFFFE0,
Lime=0x00FF00,
LimeGreen=0x32CD32,
Linen=0xFAF0E6,
Magenta=0xFF00FF,
Maroon=0x800000,
MediumAquamarine=0x66CDAA,
MediumBlue=0x0000CD,
MediumOrchid=0xBA55D3,
MediumPurple=0x9370DB,
MediumSeaGreen=0x3CB371,
MediumSlateBlue=0x7B68EE,
MediumSpringGreen=0x00FA9A,
MediumTurquoise=0x48D1CC,
MediumVioletRed=0xC71585,
MidnightBlue=0x191970,
MintCream=0xF5FFFA,
MistyRose=0xFFE4E1,
Moccasin=0xFFE4B5,
NavajoWhite=0xFFDEAD,
Navy=0x000080,
OldLace=0xFDF5E6,
Olive=0x808000,
OliveDrab=0x6B8E23,
Orange=0xFFA500,
OrangeRed=0xFF4500,
Orchid=0xDA70D6,
PaleGoldenrod=0xEEE8AA,
PaleGreen=0x98FB98,
PaleTurquoise=0xAFEEEE,
PaleVioletRed=0xDB7093,
PapayaWhip=0xFFEFD5,
PeachPuff=0xFFDAB9,
Peru=0xCD853F,
Pink=0xFFC0CB,
Plaid=0xCC5533,
Plum=0xDDA0DD,
PowderBlue=0xB0E0E6,
Purple=0x800080,
Red=0xFF0000,
RosyBrown=0xBC8F8F,
RoyalBlue=0x4169E1,
SaddleBrown=0x8B4513,
Salmon=0xFA8072,
SandyBrown=0xF4A460,
SeaGreen=0x2E8B57,
Seashell=0xFFF5EE,
Sienna=0xA0522D,
Silver=0xC0C0C0,
SkyBlue=0x87CEEB,
SlateBlue=0x6A5ACD,
SlateGray=0x708090,
SlateGrey=0x708090,
Snow=0xFFFAFA,
SpringGreen=0x00FF7F,
SteelBlue=0x4682B4,
Tan=0xD2B48C,
Teal=0x008080,
Thistle=0xD8BFD8,
Tomato=0xFF6347,
Turquoise=0x40E0D0,
Violet=0xEE82EE,
Wheat=0xF5DEB3,
White=0xFFFFFF,
WhiteSmoke=0xF5F5F5,
Yellow=0xFFFF00,
YellowGreen=0x9ACD32,
// LED RGB color that roughly approximates
// the color of incandescent fairy lights,
// assuming that you're using FastLED
// color correction on your LEDs (recommended).
FairyLight=0xFFE42D,
// If you are using no color correction, use this
FairyLightNCC=0xFF9D2A
} HTMLColorCode;
};
inline __attribute__((always_inline)) bool operator== (const CRGB& lhs, const CRGB& rhs)
{
return (lhs.r == rhs.r) && (lhs.g == rhs.g) && (lhs.b == rhs.b);
}
inline __attribute__((always_inline)) bool operator!= (const CRGB& lhs, const CRGB& rhs)
{
return !(lhs == rhs);
}
inline __attribute__((always_inline)) bool operator< (const CRGB& lhs, const CRGB& rhs)
{
uint16_t sl, sr;
sl = lhs.r + lhs.g + lhs.b;
sr = rhs.r + rhs.g + rhs.b;
return sl < sr;
}
inline __attribute__((always_inline)) bool operator> (const CRGB& lhs, const CRGB& rhs)
{
uint16_t sl, sr;
sl = lhs.r + lhs.g + lhs.b;
sr = rhs.r + rhs.g + rhs.b;
return sl > sr;
}
inline __attribute__((always_inline)) bool operator>= (const CRGB& lhs, const CRGB& rhs)
{
uint16_t sl, sr;
sl = lhs.r + lhs.g + lhs.b;
sr = rhs.r + rhs.g + rhs.b;
return sl >= sr;
}
inline __attribute__((always_inline)) bool operator<= (const CRGB& lhs, const CRGB& rhs)
{
uint16_t sl, sr;
sl = lhs.r + lhs.g + lhs.b;
sr = rhs.r + rhs.g + rhs.b;
return sl <= sr;
}
__attribute__((always_inline))
inline CRGB operator+( const CRGB& p1, const CRGB& p2)
{
return CRGB( qadd8( p1.r, p2.r),
qadd8( p1.g, p2.g),
qadd8( p1.b, p2.b));
}
__attribute__((always_inline))
inline CRGB operator-( const CRGB& p1, const CRGB& p2)
{
return CRGB( qsub8( p1.r, p2.r),
qsub8( p1.g, p2.g),
qsub8( p1.b, p2.b));
}
__attribute__((always_inline))
inline CRGB operator*( const CRGB& p1, uint8_t d)
{
return CRGB( qmul8( p1.r, d),
qmul8( p1.g, d),
qmul8( p1.b, d));
}
__attribute__((always_inline))
inline CRGB operator/( const CRGB& p1, uint8_t d)
{
return CRGB( p1.r/d, p1.g/d, p1.b/d);
}
__attribute__((always_inline))
inline CRGB operator&( const CRGB& p1, const CRGB& p2)
{
return CRGB( p1.r < p2.r ? p1.r : p2.r,
p1.g < p2.g ? p1.g : p2.g,
p1.b < p2.b ? p1.b : p2.b);
}
__attribute__((always_inline))
inline CRGB operator|( const CRGB& p1, const CRGB& p2)
{
return CRGB( p1.r > p2.r ? p1.r : p2.r,
p1.g > p2.g ? p1.g : p2.g,
p1.b > p2.b ? p1.b : p2.b);
}
__attribute__((always_inline))
inline CRGB operator%( const CRGB& p1, uint8_t d)
{
CRGB retval( p1);
retval.nscale8_video( d);
return retval;
}
/// RGB orderings, used when instantiating controllers to determine what
/// order the controller should send RGB data out in, RGB being the default
/// ordering.
enum EOrder {
RGB=0012,
RBG=0021,
GRB=0102,
GBR=0120,
BRG=0201,
BGR=0210
};
FASTLED_NAMESPACE_END
///@}
#endif