LED-Mesh/libraries/FastLED/platforms/esp/8266/clockless_block_esp8266.h

160 lines
4.8 KiB
C
Raw Normal View History

2019-02-13 22:27:19 +01:00
#ifndef __INC_CLOCKLESS_BLOCK_ESP8266_H
#define __INC_CLOCKLESS_BLOCK_ESP8266_H
#define FASTLED_HAS_BLOCKLESS 1
#define FIX_BITS(bits) (((bits & 0x0fL) << 12) | (bits & 0x30))
#define MIN(X,Y) (((X)<(Y)) ? (X):(Y))
#define USED_LANES (MIN(LANES, 6))
#define PORT_MASK (((1 << USED_LANES)-1) & 0x0000FFFFL)
#define PIN_MASK FIX_BITS(PORT_MASK)
FASTLED_NAMESPACE_BEGIN
#ifdef FASTLED_DEBUG_COUNT_FRAME_RETRIES
extern uint32_t _frame_cnt;
extern uint32_t _retry_cnt;
#endif
template <uint8_t LANES, int FIRST_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = GRB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 50>
class InlineBlockClocklessController : public CPixelLEDController<RGB_ORDER, LANES, PORT_MASK> {
typedef typename FastPin<FIRST_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPin<FIRST_PIN>::port_t data_t;
CMinWait<WAIT_TIME> mWait;
public:
virtual int size() { return CLEDController::size() * LANES; }
virtual void showPixels(PixelController<RGB_ORDER, LANES, PORT_MASK> & pixels) {
// mWait.wait();
/*uint32_t clocks = */
int cnt=FASTLED_INTERRUPT_RETRY_COUNT;
while(!showRGBInternal(pixels) && cnt--) {
os_intr_unlock();
#ifdef FASTLED_DEBUG_COUNT_FRAME_RETRIES
_retry_cnt++;
#endif
delayMicroseconds(WAIT_TIME * 10);
os_intr_lock();
}
// #if FASTLED_ALLOW_INTTERUPTS == 0
// Adjust the timer
// long microsTaken = CLKS_TO_MICROS(clocks);
// MS_COUNTER += (1 + (microsTaken / 1000));
// #endif
// mWait.mark();
}
template<int PIN> static void initPin() {
_ESPPIN<PIN, 1<<(PIN & 0xFF)>::setOutput();
}
virtual void init() {
void (* funcs[])() ={initPin<12>, initPin<13>, initPin<14>, initPin<15>, initPin<4>, initPin<5>};
for (uint8_t i = 0; i < USED_LANES; ++i) {
funcs[i]();
}
}
virtual uint16_t getMaxRefreshRate() const { return 400; }
typedef union {
uint8_t bytes[8];
uint16_t shorts[4];
uint32_t raw[2];
} Lines;
#define ESP_ADJUST 0 // (2*(F_CPU/24000000))
#define ESP_ADJUST2 0
template<int BITS,int PX> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & last_mark, register Lines & b, PixelController<RGB_ORDER, LANES, PORT_MASK> &pixels) { // , register uint32_t & b2) {
Lines b2 = b;
transpose8x1_noinline(b.bytes,b2.bytes);
register uint8_t d = pixels.template getd<PX>(pixels);
register uint8_t scale = pixels.template getscale<PX>(pixels);
for(register uint32_t i = 0; i < USED_LANES; i++) {
while((__clock_cycles() - last_mark) < (T1+T2+T3));
last_mark = __clock_cycles();
*FastPin<FIRST_PIN>::sport() = PIN_MASK;
uint32_t nword = (uint32_t)(~b2.bytes[7-i]);
while((__clock_cycles() - last_mark) < (T1-6));
*FastPin<FIRST_PIN>::cport() = FIX_BITS(nword);
while((__clock_cycles() - last_mark) < (T1+T2));
*FastPin<FIRST_PIN>::cport() = PIN_MASK;
b.bytes[i] = pixels.template loadAndScale<PX>(pixels,i,d,scale);
}
for(register uint32_t i = USED_LANES; i < 8; i++) {
while((__clock_cycles() - last_mark) < (T1+T2+T3));
last_mark = __clock_cycles();
*FastPin<FIRST_PIN>::sport() = PIN_MASK;
uint32_t nword = (uint32_t)(~b2.bytes[7-i]);
while((__clock_cycles() - last_mark) < (T1-6));
*FastPin<FIRST_PIN>::cport() = FIX_BITS(nword);
while((__clock_cycles() - last_mark) < (T1+T2));
*FastPin<FIRST_PIN>::cport() = PIN_MASK;
}
}
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
static uint32_t ICACHE_RAM_ATTR showRGBInternal(PixelController<RGB_ORDER, LANES, PORT_MASK> &allpixels) {
// Setup the pixel controller and load/scale the first byte
Lines b0;
for(int i = 0; i < USED_LANES; i++) {
b0.bytes[i] = allpixels.loadAndScale0(i);
}
allpixels.preStepFirstByteDithering();
os_intr_lock();
uint32_t _start = __clock_cycles();
uint32_t last_mark = _start;
while(allpixels.has(1)) {
// Write first byte, read next byte
writeBits<8+XTRA0,1>(last_mark, b0, allpixels);
// Write second byte, read 3rd byte
writeBits<8+XTRA0,2>(last_mark, b0, allpixels);
allpixels.advanceData();
// Write third byte
writeBits<8+XTRA0,0>(last_mark, b0, allpixels);
#if (FASTLED_ALLOW_INTERRUPTS == 1)
os_intr_unlock();
#endif
allpixels.stepDithering();
#if (FASTLED_ALLOW_INTERRUPTS == 1)
os_intr_lock();
// if interrupts took longer than 45µs, punt on the current frame
if((int32_t)(__clock_cycles()-last_mark) > 0) {
if((int32_t)(__clock_cycles()-last_mark) > (T1+T2+T3+((WAIT_TIME-INTERRUPT_THRESHOLD)*CLKS_PER_US))) { os_intr_unlock(); return 0; }
}
#endif
};
os_intr_unlock();
#ifdef FASTLED_DEBUG_COUNT_FRAME_RETRIES
_frame_cnt++;
#endif
return __clock_cycles() - _start;
}
};
FASTLED_NAMESPACE_END
#endif