LED-Mesh/libraries/FastLED/platforms/avr/fastspi_avr.h

683 lines
19 KiB
C
Raw Normal View History

2019-02-13 22:27:19 +01:00
#ifndef __INC_FASTSPI_AVR_H
#define __INC_FASTSPI_AVR_H
FASTLED_NAMESPACE_BEGIN
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Hardware SPI support using USART registers and friends
//
// TODO: Complete/test implementation - right now this doesn't work
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// uno/mini/duemilanove
#if defined(AVR_HARDWARE_SPI)
#if defined(UBRR1)
#ifndef UCPHA1
#define UCPHA1 1
#endif
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRUSART1SPIOutput {
Selectable *m_pSelect;
public:
AVRUSART1SPIOutput() { m_pSelect = NULL; }
AVRUSART1SPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void init() {
UBRR1 = 0;
/* Set MSPI mode of operation and SPI data mode 0. */
UCSR1C = (1<<UMSEL11)|(1<<UMSEL10)|(0<<UCPHA1)|(0<<UCPOL1);
/* Enable receiver and transmitter. */
UCSR1B = (1<<RXEN1)|(1<<TXEN1);
FastPin<_CLOCK_PIN>::setOutput();
FastPin<_DATA_PIN>::setOutput();
// must be done last, see page 206
setSPIRate();
}
void setSPIRate() {
if(_SPI_CLOCK_DIVIDER > 2) {
UBRR1 = (_SPI_CLOCK_DIVIDER/2)-1;
} else {
UBRR1 = 0;
}
}
static void stop() {
// TODO: stop the uart spi output
}
static bool shouldWait(bool wait = false) __attribute__((always_inline)) {
static bool sWait=false;
if(sWait) {
sWait = wait; return true;
} else {
sWait = wait; return false;
}
// return true;
}
static void wait() __attribute__((always_inline)) {
if(shouldWait()) {
while(!(UCSR1A & (1<<UDRE1)));
}
}
static void waitFully() __attribute__((always_inline)) { wait(); }
static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); UDR1=b; shouldWait(true); }
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { UDR1=b; shouldWait(true); wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { UDR1=b; shouldWait(true); }
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
if(b && (1 << BIT)) {
FastPin<_DATA_PIN>::hi();
} else {
FastPin<_DATA_PIN>::lo();
}
FastPin<_CLOCK_PIN>::hi();
FastPin<_CLOCK_PIN>::lo();
}
void enable_pins() { }
void disable_pins() { }
void select() {
if(m_pSelect != NULL) {
m_pSelect->select();
}
enable_pins();
setSPIRate();
}
void release() {
if(m_pSelect != NULL) {
m_pSelect->release();
}
disable_pins();
}
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) {
writeByte(value);
}
}
void writeBytesValue(uint8_t value, int len) {
//setSPIRate();
select();
while(len--) {
writeByte(value);
}
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
//setSPIRate();
uint8_t *end = data + len;
select();
while(data != end) {
// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
writeByte(D::adjust(*data++)); delaycycles<3>();
}
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
//setSPIRate();
int len = pixels.mLen;
select();
while(pixels.has(1)) {
if(FLAGS & FLAG_START_BIT) {
writeBit<0>(1);
writeBytePostWait(D::adjust(pixels.loadAndScale0()));
writeBytePostWait(D::adjust(pixels.loadAndScale1()));
writeBytePostWait(D::adjust(pixels.loadAndScale2()));
} else {
writeByte(D::adjust(pixels.loadAndScale0()));
writeByte(D::adjust(pixels.loadAndScale1()));
writeByte(D::adjust(pixels.loadAndScale2()));
}
pixels.advanceData();
pixels.stepDithering();
}
D::postBlock(len);
release();
}
};
#endif
#if defined(UBRR0)
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRUSART0SPIOutput {
Selectable *m_pSelect;
public:
AVRUSART0SPIOutput() { m_pSelect = NULL; }
AVRUSART0SPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void init() {
UBRR0 = 0;
/* Set MSPI mode of operation and SPI data mode 0. */
UCSR0C = (1<<UMSEL01)|(1<<UMSEL00)/*|(0<<UCPHA0)*/|(0<<UCPOL0);
/* Enable receiver and transmitter. */
UCSR0B = (1<<RXEN0)|(1<<TXEN0);
FastPin<_CLOCK_PIN>::setOutput();
FastPin<_DATA_PIN>::setOutput();
// must be done last, see page 206
setSPIRate();
}
void setSPIRate() {
if(_SPI_CLOCK_DIVIDER > 2) {
UBRR0 = (_SPI_CLOCK_DIVIDER/2)-1;
} else {
UBRR0 = 0;
}
}
static void stop() {
// TODO: stop the uart spi output
}
static bool shouldWait(bool wait = false) __attribute__((always_inline)) {
static bool sWait=false;
if(sWait) {
sWait = wait; return true;
} else {
sWait = wait; return false;
}
// return true;
}
static void wait() __attribute__((always_inline)) {
if(shouldWait()) {
while(!(UCSR0A & (1<<UDRE0)));
}
}
static void waitFully() __attribute__((always_inline)) { wait(); }
static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); UDR0=b; shouldWait(true); }
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { UDR0=b; shouldWait(true); wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { UDR0=b; shouldWait(true); }
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
if(b && (1 << BIT)) {
FastPin<_DATA_PIN>::hi();
} else {
FastPin<_DATA_PIN>::lo();
}
FastPin<_CLOCK_PIN>::hi();
FastPin<_CLOCK_PIN>::lo();
}
void enable_pins() { }
void disable_pins() { }
void select() {
if(m_pSelect != NULL) {
m_pSelect->select();
}
enable_pins();
setSPIRate();
}
void release() {
if(m_pSelect != NULL) {
m_pSelect->release();
}
disable_pins();
}
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) {
writeByte(value);
}
}
void writeBytesValue(uint8_t value, int len) {
//setSPIRate();
select();
while(len--) {
writeByte(value);
}
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
//setSPIRate();
uint8_t *end = data + len;
select();
while(data != end) {
// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
writeByte(D::adjust(*data++)); delaycycles<3>();
}
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
//setSPIRate();
int len = pixels.mLen;
select();
while(pixels.has(1)) {
if(FLAGS & FLAG_START_BIT) {
writeBit<0>(1);
writeBytePostWait(D::adjust(pixels.loadAndScale0()));
writeBytePostWait(D::adjust(pixels.loadAndScale1()));
writeBytePostWait(D::adjust(pixels.loadAndScale2()));
} else {
writeByte(D::adjust(pixels.loadAndScale0()));
writeByte(D::adjust(pixels.loadAndScale1()));
writeByte(D::adjust(pixels.loadAndScale2()));
}
pixels.advanceData();
pixels.stepDithering();
}
D::postBlock(len);
waitFully();
release();
}
};
#endif
#if defined(SPSR)
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Hardware SPI support using SPDR registers and friends
//
// Technically speaking, this uses the AVR SPI registers. This will work on the Teensy 3.0 because Paul made a set of compatability
// classes that map the AVR SPI registers to ARM's, however this caps the performance of output.
//
// TODO: implement ARMHardwareSPIOutput
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRHardwareSPIOutput {
Selectable *m_pSelect;
bool mWait;
public:
AVRHardwareSPIOutput() { m_pSelect = NULL; mWait = false;}
AVRHardwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void setSPIRate() {
SPCR &= ~ ( (1<<SPR1) | (1<<SPR0) ); // clear out the prescalar bits
bool b2x = false;
if(_SPI_CLOCK_DIVIDER >= 128) { SPCR |= (1<<SPR1); SPCR |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 64) { SPCR |= (1<<SPR1);}
else if(_SPI_CLOCK_DIVIDER >= 32) { SPCR |= (1<<SPR1); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 16) { SPCR |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 8) { SPCR |= (1<<SPR0); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 4) { /* do nothing - default rate */ }
else { b2x = true; }
if(b2x) { SPSR |= (1<<SPI2X); }
else { SPSR &= ~ (1<<SPI2X); }
}
void init() {
volatile uint8_t clr;
// set the pins to output
FastPin<_DATA_PIN>::setOutput();
FastPin<_CLOCK_PIN>::setOutput();
#ifdef SPI_SELECT
// Make sure the slave select line is set to output, or arduino will block us
FastPin<SPI_SELECT>::setOutput();
FastPin<SPI_SELECT>::lo();
#endif
SPCR |= ((1<<SPE) | (1<<MSTR) ); // enable SPI as master
SPCR &= ~ ( (1<<SPR1) | (1<<SPR0) ); // clear out the prescalar bits
clr = SPSR; // clear SPI status register
clr = SPDR; // clear SPI data register
clr;
bool b2x = false;
if(_SPI_CLOCK_DIVIDER >= 128) { SPCR |= (1<<SPR1); SPCR |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 64) { SPCR |= (1<<SPR1);}
else if(_SPI_CLOCK_DIVIDER >= 32) { SPCR |= (1<<SPR1); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 16) { SPCR |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 8) { SPCR |= (1<<SPR0); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 4) { /* do nothing - default rate */ }
else { b2x = true; }
if(b2x) { SPSR |= (1<<SPI2X); }
else { SPSR &= ~ (1<<SPI2X); }
SPDR=0;
shouldWait(false);
release();
}
static bool shouldWait(bool wait = false) __attribute__((always_inline)) {
static bool sWait=false;
if(sWait) { sWait = wait; return true; } else { sWait = wait; return false; }
// return true;
}
static void wait() __attribute__((always_inline)) { if(shouldWait()) { while(!(SPSR & (1<<SPIF))); } }
static void waitFully() __attribute__((always_inline)) { wait(); }
static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); SPDR=b; shouldWait(true); }
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { SPDR=b; shouldWait(true); wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { SPDR=b; shouldWait(true); }
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
SPCR &= ~(1 << SPE);
if(b & (1 << BIT)) {
FastPin<_DATA_PIN>::hi();
} else {
FastPin<_DATA_PIN>::lo();
}
FastPin<_CLOCK_PIN>::hi();
FastPin<_CLOCK_PIN>::lo();
SPCR |= 1 << SPE;
shouldWait(false);
}
void enable_pins() {
SPCR |= ((1<<SPE) | (1<<MSTR) ); // enable SPI as master
}
void disable_pins() {
SPCR &= ~(((1<<SPE) | (1<<MSTR) )); // disable SPI
}
void select() {
if(m_pSelect != NULL) { m_pSelect->select(); }
enable_pins();
setSPIRate();
}
void release() {
if(m_pSelect != NULL) { m_pSelect->release(); }
disable_pins();
}
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) { writeByte(value); }
}
void writeBytesValue(uint8_t value, int len) {
//setSPIRate();
select();
while(len--) {
writeByte(value);
}
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
//setSPIRate();
uint8_t *end = data + len;
select();
while(data != end) {
// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
writeByte(D::adjust(*data++)); delaycycles<3>();
}
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
//setSPIRate();
int len = pixels.mLen;
select();
while(pixels.has(1)) {
if(FLAGS & FLAG_START_BIT) {
writeBit<0>(1);
writeBytePostWait(D::adjust(pixels.loadAndScale0()));
writeBytePostWait(D::adjust(pixels.loadAndScale1()));
writeBytePostWait(D::adjust(pixels.loadAndScale2()));
} else {
writeByte(D::adjust(pixels.loadAndScale0()));
writeByte(D::adjust(pixels.loadAndScale1()));
writeByte(D::adjust(pixels.loadAndScale2()));
}
pixels.advanceData();
pixels.stepDithering();
}
D::postBlock(len);
waitFully();
release();
}
};
#elif defined(SPSR0)
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Hardware SPI support using SPDR0 registers and friends
//
// Technically speaking, this uses the AVR SPI registers. This will work on the Teensy 3.0 because Paul made a set of compatability
// classes that map the AVR SPI registers to ARM's, however this caps the performance of output.
//
// TODO: implement ARMHardwareSPIOutput
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRHardwareSPIOutput {
Selectable *m_pSelect;
bool mWait;
public:
AVRHardwareSPIOutput() { m_pSelect = NULL; mWait = false;}
AVRHardwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void setSPIRate() {
SPCR0 &= ~ ( (1<<SPR10) | (1<<SPR0) ); // clear out the prescalar bits
bool b2x = false;
if(_SPI_CLOCK_DIVIDER >= 128) { SPCR0 |= (1<<SPR1); SPCR0 |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 64) { SPCR0 |= (1<<SPR1);}
else if(_SPI_CLOCK_DIVIDER >= 32) { SPCR0 |= (1<<SPR1); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 16) { SPCR0 |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 8) { SPCR0 |= (1<<SPR0); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 4) { /* do nothing - default rate */ }
else { b2x = true; }
if(b2x) { SPSR0 |= (1<<SPI2X); }
else { SPSR0 &= ~ (1<<SPI2X); }
}
void init() {
volatile uint8_t clr;
// set the pins to output
FastPin<_DATA_PIN>::setOutput();
FastPin<_CLOCK_PIN>::setOutput();
#ifdef SPI_SELECT
// Make sure the slave select line is set to output, or arduino will block us
FastPin<SPI_SELECT>::setOutput();
FastPin<SPI_SELECT>::lo();
#endif
SPCR0 |= ((1<<SPE) | (1<<MSTR) ); // enable SPI as master
SPCR0 &= ~ ( (1<<SPR1) | (1<<SPR0) ); // clear out the prescalar bits
clr = SPSR0; // clear SPI status register
clr = SPDR0; // clear SPI data register
clr;
bool b2x = false;
if(_SPI_CLOCK_DIVIDER >= 128) { SPCR0 |= (1<<SPR1); SPCR0 |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 64) { SPCR0 |= (1<<SPR1);}
else if(_SPI_CLOCK_DIVIDER >= 32) { SPCR0 |= (1<<SPR1); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 16) { SPCR0 |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 8) { SPCR0 |= (1<<SPR0); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 4) { /* do nothing - default rate */ }
else { b2x = true; }
if(b2x) { SPSR0 |= (1<<SPI2X); }
else { SPSR0 &= ~ (1<<SPI2X); }
SPDR0=0;
shouldWait(false);
release();
}
static bool shouldWait(bool wait = false) __attribute__((always_inline)) {
static bool sWait=false;
if(sWait) { sWait = wait; return true; } else { sWait = wait; return false; }
// return true;
}
static void wait() __attribute__((always_inline)) { if(shouldWait()) { while(!(SPSR0 & (1<<SPIF))); } }
static void waitFully() __attribute__((always_inline)) { wait(); }
static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); SPDR0=b; shouldWait(true); }
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { SPDR0=b; shouldWait(true); wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { SPDR0=b; shouldWait(true); }
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
SPCR0 &= ~(1 << SPE);
if(b & (1 << BIT)) {
FastPin<_DATA_PIN>::hi();
} else {
FastPin<_DATA_PIN>::lo();
}
FastPin<_CLOCK_PIN>::hi();
FastPin<_CLOCK_PIN>::lo();
SPCR0 |= 1 << SPE;
shouldWait(false);
}
void enable_pins() {
SPCR0 |= ((1<<SPE) | (1<<MSTR) ); // enable SPI as master
}
void disable_pins() {
SPCR0 &= ~(((1<<SPE) | (1<<MSTR) )); // disable SPI
}
void select() {
if(m_pSelect != NULL) { m_pSelect->select(); }
enable_pins();
setSPIRate();
}
void release() {
if(m_pSelect != NULL) { m_pSelect->release(); }
disable_pins();
}
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) { writeByte(value); }
}
void writeBytesValue(uint8_t value, int len) {
//setSPIRate();
select();
while(len--) {
writeByte(value);
}
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
//setSPIRate();
uint8_t *end = data + len;
select();
while(data != end) {
// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
writeByte(D::adjust(*data++)); delaycycles<3>();
}
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
//setSPIRate();
int len = pixels.mLen;
select();
while(pixels.has(1)) {
if(FLAGS & FLAG_START_BIT) {
writeBit<0>(1);
writeBytePostWait(D::adjust(pixels.loadAndScale0()));
writeBytePostWait(D::adjust(pixels.loadAndScale1()));
writeBytePostWait(D::adjust(pixels.loadAndScale2()));
} else {
writeByte(D::adjust(pixels.loadAndScale0()));
writeByte(D::adjust(pixels.loadAndScale1()));
writeByte(D::adjust(pixels.loadAndScale2()));
}
pixels.advanceData();
pixels.stepDithering();
}
D::postBlock(len);
waitFully();
release();
}
};
#endif
#else
// #define FASTLED_FORCE_SOFTWARE_SPI
#endif
FASTLED_NAMESPACE_END;
#endif