LED-Mesh/libraries/FastLED/platforms/esp/32/clockless_esp32.h
2019-02-13 22:27:19 +01:00

570 lines
21 KiB
C++

/*
* Integration into FastLED ClocklessController
* Copyright (c) 2018 Samuel Z. Guyer
* Copyright (c) 2017 Thomas Basler
* Copyright (c) 2017 Martin F. Falatic
*
* ESP32 support is provided using the RMT peripheral device -- a unit
* on the chip designed specifically for generating (and receiving)
* precisely-timed digital signals. Nominally for use in infrared
* remote controls, we use it to generate the signals for clockless
* LED strips. The main advantage of using the RMT device is that,
* once programmed, it generates the signal asynchronously, allowing
* the CPU to continue executing other code. It is also not vulnerable
* to interrupts or other timing problems that could disrupt the signal.
*
* The implementation strategy is borrowed from previous work and from
* the RMT support built into the ESP32 IDF. The RMT device has 8
* channels, which can be programmed independently to send sequences
* of high/low bits. Memory for each channel is limited, however, so
* in order to send a long sequence of bits, we need to continuously
* refill the buffer until all the data is sent. To do this, we fill
* half the buffer and then set an interrupt to go off when that half
* is sent. Then we refill that half while the second half is being
* sent. This strategy effectively overlaps computation (by the CPU)
* and communication (by the RMT).
*
* Since the RMT device only has 8 channels, we need a strategy to
* allow more than 8 LED controllers. Our driver assigns controllers
* to channels on the fly, queuing up controllers as necessary until a
* channel is free. The main showPixels routine just fires off the
* first 8 controllers; the interrupt handler starts new controllers
* asynchronously as previous ones finish. So, for example, it can
* send the data for 8 controllers simultaneously, but 16 controllers
* would take approximately twice as much time.
*
* There is a #define that allows a program to control the total
* number of channels that the driver is allowed to use. It defaults
* to 8 -- use all the channels. Setting it to 1, for example, results
* in fully serial output:
*
* #define FASTLED_RMT_MAX_CHANNELS 1
*
* OTHER RMT APPLICATIONS
*
* The default FastLED driver takes over control of the RMT interrupt
* handler, making it hard to use the RMT device for other
* (non-FastLED) purposes. You can change it's behavior to use the ESP
* core driver instead, allowing other RMT applications to
* co-exist. To switch to this mode, add the following directive
* before you include FastLED.h:
*
* #define FASTLED_RMT_BUILTIN_DRIVER 1
*
* There may be a performance penalty for using this mode. We need to
* compute the RMT signal for the entire LED strip ahead of time,
* rather than overlapping it with communication. We also need a large
* buffer to hold the signal specification. Each bit of pixel data is
* represented by a 32-bit pulse specification, so it is a 32X blow-up
* in memory use.
*
*
* Based on public domain code created 19 Nov 2016 by Chris Osborn <fozztexx@fozztexx.com>
* http://insentricity.com *
*
*/
/*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
FASTLED_NAMESPACE_BEGIN
#ifdef __cplusplus
extern "C" {
#endif
#include "esp32-hal.h"
#include "esp_intr.h"
#include "driver/gpio.h"
#include "driver/rmt.h"
#include "driver/periph_ctrl.h"
#include "freertos/semphr.h"
#include "soc/rmt_struct.h"
#include "esp_log.h"
#ifdef __cplusplus
}
#endif
__attribute__ ((always_inline)) inline static uint32_t __clock_cycles() {
uint32_t cyc;
__asm__ __volatile__ ("rsr %0,ccount":"=a" (cyc));
return cyc;
}
#define FASTLED_HAS_CLOCKLESS 1
// -- Configuration constants
#define DIVIDER 2 /* 4, 8 still seem to work, but timings become marginal */
#define MAX_PULSES 32 /* A channel has a 64 "pulse" buffer - we use half per pass */
// -- Convert ESP32 cycles back into nanoseconds
#define ESPCLKS_TO_NS(_CLKS) (((long)(_CLKS) * 1000L) / F_CPU_MHZ)
// -- Convert nanoseconds into RMT cycles
#define F_CPU_RMT ( 80000000L)
#define NS_PER_SEC (1000000000L)
#define CYCLES_PER_SEC (F_CPU_RMT/DIVIDER)
#define NS_PER_CYCLE ( NS_PER_SEC / CYCLES_PER_SEC )
#define NS_TO_CYCLES(n) ( (n) / NS_PER_CYCLE )
// -- Convert ESP32 cycles to RMT cycles
#define TO_RMT_CYCLES(_CLKS) NS_TO_CYCLES(ESPCLKS_TO_NS(_CLKS))
// -- Number of cycles to signal the strip to latch
#define RMT_RESET_DURATION NS_TO_CYCLES(50000)
// -- Core or custom driver
#ifndef FASTLED_RMT_BUILTIN_DRIVER
#define FASTLED_RMT_BUILTIN_DRIVER false
#endif
// -- Max number of controllers we can support
#ifndef FASTLED_RMT_MAX_CONTROLLERS
#define FASTLED_RMT_MAX_CONTROLLERS 32
#endif
// -- Number of RMT channels to use (up to 8)
// Redefine this value to 1 to force serial output
#ifndef FASTLED_RMT_MAX_CHANNELS
#define FASTLED_RMT_MAX_CHANNELS 8
#endif
// -- Array of all controllers
static CLEDController * gControllers[FASTLED_RMT_MAX_CONTROLLERS];
// -- Current set of active controllers, indexed by the RMT
// channel assigned to them.
static CLEDController * gOnChannel[FASTLED_RMT_MAX_CHANNELS];
static int gNumControllers = 0;
static int gNumStarted = 0;
static int gNumDone = 0;
static int gNext = 0;
static intr_handle_t gRMT_intr_handle = NULL;
// -- Global semaphore for the whole show process
// Semaphore is not given until all data has been sent
static xSemaphoreHandle gTX_sem = NULL;
static bool gInitialized = false;
template <int DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 5>
class ClocklessController : public CPixelLEDController<RGB_ORDER>
{
// -- RMT has 8 channels, numbered 0 to 7
rmt_channel_t mRMT_channel;
// -- Store the GPIO pin
gpio_num_t mPin;
// -- This instantiation forces a check on the pin choice
FastPin<DATA_PIN> mFastPin;
// -- Timing values for zero and one bits, derived from T1, T2, and T3
rmt_item32_t mZero;
rmt_item32_t mOne;
// -- State information for keeping track of where we are in the pixel data
uint8_t * mPixelData = NULL;
int mSize = 0;
int mCurByte;
uint16_t mCurPulse;
// -- Buffer to hold all of the pulses. For the version that uses
// the RMT driver built into the ESP core.
rmt_item32_t * mBuffer;
uint16_t mBufferSize;
public:
void init()
{
// -- Precompute rmt items corresponding to a zero bit and a one bit
// according to the timing values given in the template instantiation
// T1H
mOne.level0 = 1;
mOne.duration0 = TO_RMT_CYCLES(T1+T2);
// T1L
mOne.level1 = 0;
mOne.duration1 = TO_RMT_CYCLES(T3);
// T0H
mZero.level0 = 1;
mZero.duration0 = TO_RMT_CYCLES(T1);
// T0L
mZero.level1 = 0;
mZero.duration1 = TO_RMT_CYCLES(T2 + T3);
gControllers[gNumControllers] = this;
gNumControllers++;
mPin = gpio_num_t(DATA_PIN);
}
virtual uint16_t getMaxRefreshRate() const { return 400; }
protected:
void initRMT()
{
// -- Only need to do this once
if (gInitialized) return;
for (int i = 0; i < FASTLED_RMT_MAX_CHANNELS; i++) {
gOnChannel[i] = NULL;
// -- RMT configuration for transmission
rmt_config_t rmt_tx;
rmt_tx.channel = rmt_channel_t(i);
rmt_tx.rmt_mode = RMT_MODE_TX;
rmt_tx.gpio_num = mPin; // The particular pin will be assigned later
rmt_tx.mem_block_num = 1;
rmt_tx.clk_div = DIVIDER;
rmt_tx.tx_config.loop_en = false;
rmt_tx.tx_config.carrier_level = RMT_CARRIER_LEVEL_LOW;
rmt_tx.tx_config.carrier_en = false;
rmt_tx.tx_config.idle_level = RMT_IDLE_LEVEL_LOW;
rmt_tx.tx_config.idle_output_en = true;
// -- Apply the configuration
rmt_config(&rmt_tx);
if (FASTLED_RMT_BUILTIN_DRIVER) {
rmt_driver_install(rmt_channel_t(i), 0, 0);
} else {
// -- Set up the RMT to send 1/2 of the pulse buffer and then
// generate an interrupt. When we get this interrupt we
// fill the other half in preparation (kind of like double-buffering)
rmt_set_tx_thr_intr_en(rmt_channel_t(i), true, MAX_PULSES);
}
}
// -- Create a semaphore to block execution until all the controllers are done
if (gTX_sem == NULL) {
gTX_sem = xSemaphoreCreateBinary();
xSemaphoreGive(gTX_sem);
}
if ( ! FASTLED_RMT_BUILTIN_DRIVER) {
// -- Allocate the interrupt if we have not done so yet. This
// interrupt handler must work for all different kinds of
// strips, so it delegates to the refill function for each
// specific instantiation of ClocklessController.
if (gRMT_intr_handle == NULL)
esp_intr_alloc(ETS_RMT_INTR_SOURCE, 0, interruptHandler, 0, &gRMT_intr_handle);
}
gInitialized = true;
}
// -- Show pixels
// This is the main entry point for the controller.
virtual void showPixels(PixelController<RGB_ORDER> & pixels)
{
if (gNumStarted == 0) {
// -- First controller: make sure everything is set up
initRMT();
xSemaphoreTake(gTX_sem, portMAX_DELAY);
}
// -- Initialize the local state, save a pointer to the pixel
// data. We need to make a copy because pixels is a local
// variable in the calling function, and this data structure
// needs to outlive this call to showPixels.
//if (mPixels != NULL) delete mPixels;
//mPixels = new PixelController<RGB_ORDER>(pixels);
if (FASTLED_RMT_BUILTIN_DRIVER)
convertAllPixelData(pixels);
else
copyPixelData(pixels);
// -- Keep track of the number of strips we've seen
gNumStarted++;
// -- The last call to showPixels is the one responsible for doing
// all of the actual worl
if (gNumStarted == gNumControllers) {
gNext = 0;
// -- First, fill all the available channels
int channel = 0;
while (channel < FASTLED_RMT_MAX_CHANNELS && gNext < gNumControllers) {
startNext(channel);
channel++;
}
// -- Wait here while the rest of the data is sent. The interrupt handler
// will keep refilling the RMT buffers until it is all sent; then it
// gives the semaphore back.
xSemaphoreTake(gTX_sem, portMAX_DELAY);
xSemaphoreGive(gTX_sem);
// -- Reset the counters
gNumStarted = 0;
gNumDone = 0;
gNext = 0;
}
}
// -- Copy pixel data
// Make a safe copy of the pixel data, so that the FastLED show
// function can continue to the next controller while the RMT
// device starts sending this data asynchronously.
virtual void copyPixelData(PixelController<RGB_ORDER> & pixels)
{
// -- Make sure we have a buffer of the right size
// (3 bytes per pixel)
int size_needed = pixels.size() * 3;
if (size_needed > mSize) {
if (mPixelData != NULL) free(mPixelData);
mSize = size_needed;
mPixelData = (uint8_t *) malloc( mSize);
}
// -- Cycle through the R,G, and B values in the right order,
// storing the resulting raw pixel data in the buffer.
int cur = 0;
while (pixels.has(1)) {
mPixelData[cur++] = pixels.loadAndScale0();
mPixelData[cur++] = pixels.loadAndScale1();
mPixelData[cur++] = pixels.loadAndScale2();
pixels.advanceData();
pixels.stepDithering();
}
}
// -- Convert all pixels to RMT pulses
// This function is only used when the user chooses to use the
// built-in RMT driver, which needs all of the RMT pulses
// up-front.
virtual void convertAllPixelData(PixelController<RGB_ORDER> & pixels)
{
// -- Compute the pulse values for the whole strip at once.
// Requires a large buffer
mBufferSize = pixels.size() * 3 * 8;
if (mBuffer == NULL) {
mBuffer = (rmt_item32_t *) calloc( mBufferSize, sizeof(rmt_item32_t));
}
// -- Cycle through the R,G, and B values in the right order,
// storing the pulses in the big buffer
mCurPulse = 0;
int cur = 0;
uint32_t byteval;
while (pixels.has(1)) {
byteval = pixels.loadAndScale0();
convertByte(byteval);
byteval = pixels.loadAndScale1();
convertByte(byteval);
byteval = pixels.loadAndScale2();
convertByte(byteval);
pixels.advanceData();
pixels.stepDithering();
}
mBuffer[mCurPulse-1].duration1 = RMT_RESET_DURATION;
assert(mCurPulse == mBufferSize);
}
void convertByte(uint32_t byteval)
{
// -- Write one byte's worth of RMT pulses to the big buffer
byteval <<= 24;
for (register uint32_t j = 0; j < 8; j++) {
mBuffer[mCurPulse] = (byteval & 0x80000000L) ? mOne : mZero;
byteval <<= 1;
mCurPulse++;
}
}
// -- Start up the next controller
// This method is static so that it can dispatch to the
// appropriate startOnChannel method of the given controller.
static void IRAM_ATTR startNext(int channel)
{
if (gNext < gNumControllers) {
ClocklessController * pController = static_cast<ClocklessController*>(gControllers[gNext]);
pController->startOnChannel(channel);
gNext++;
}
}
// -- Start this controller on the given channel
// This function just initiates the RMT write; it does not wait
// for it to finish.
void IRAM_ATTR startOnChannel(int channel)
{
// -- Assign this channel and configure the RMT
mRMT_channel = rmt_channel_t(channel);
// -- Store a reference to this controller, so we can get it
// inside the interrupt handler
gOnChannel[channel] = this;
// -- Assign the pin to this channel
rmt_set_pin(mRMT_channel, RMT_MODE_TX, mPin);
if (FASTLED_RMT_BUILTIN_DRIVER) {
// -- Use the built-in RMT driver to send all the data in one shot
rmt_register_tx_end_callback(doneOnChannel, 0);
rmt_write_items(mRMT_channel, mBuffer, mBufferSize, false);
} else {
// -- Use our custom driver to send the data incrementally
// -- Turn on the interrupts
rmt_set_tx_intr_en(mRMT_channel, true);
// -- Initialize the counters that keep track of where we are in
// the pixel data.
mCurPulse = 0;
mCurByte = 0;
// -- Fill both halves of the buffer
fillHalfRMTBuffer();
fillHalfRMTBuffer();
// -- Turn on the interrupts
rmt_set_tx_intr_en(mRMT_channel, true);
// -- Start the RMT TX operation
rmt_tx_start(mRMT_channel, true);
}
}
// -- A controller is done
// This function is called when a controller finishes writing
// its data. It is called either by the custom interrupt
// handler (below), or as a callback from the built-in
// interrupt handler. It is static because we don't know which
// controller is done until we look it up.
static void IRAM_ATTR doneOnChannel(rmt_channel_t channel, void * arg)
{
if (channel >= FASTLED_RMT_MAX_CHANNELS) return;
ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
portBASE_TYPE HPTaskAwoken = 0;
// -- Turn off output on the pin
gpio_matrix_out(controller->mPin, 0x100, 0, 0);
gOnChannel[channel] = NULL;
gNumDone++;
if (gNumDone == gNumControllers) {
// -- If this is the last controller, signal that we are all done
xSemaphoreGiveFromISR(gTX_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) portYIELD_FROM_ISR();
} else {
// -- Otherwise, if there are still controllers waiting, then
// start the next one on this channel
if (gNext < gNumControllers)
startNext(channel);
}
}
// -- Custom interrupt handler
// This interrupt handler handles two cases: a controller is
// done writing its data, or a controller needs to fill the
// next half of the RMT buffer with data.
static IRAM_ATTR void interruptHandler(void *arg)
{
// -- The basic structure of this code is borrowed from the
// interrupt handler in esp-idf/components/driver/rmt.c
uint32_t intr_st = RMT.int_st.val;
uint8_t channel;
for (channel = 0; channel < FASTLED_RMT_MAX_CHANNELS; channel++) {
int tx_done_bit = channel * 3;
int tx_next_bit = channel + 24;
if (gOnChannel[channel] != NULL) {
// -- More to send on this channel
if (intr_st & BIT(tx_next_bit)) {
RMT.int_clr.val |= BIT(tx_next_bit);
// -- Refill the half of the buffer that we just finished,
// allowing the other half to proceed.
ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
controller->fillHalfRMTBuffer();
} else {
// -- Transmission is complete on this channel
if (intr_st & BIT(tx_done_bit)) {
RMT.int_clr.val |= BIT(tx_done_bit);
doneOnChannel(rmt_channel_t(channel), 0);
}
}
}
}
}
// -- Fill the RMT buffer
// This function fills the next 32 slots in the RMT write
// buffer with pixel data. It also handles the case where the
// pixel data is exhausted, so we need to fill the RMT buffer
// with zeros to signal that it's done.
void IRAM_ATTR fillHalfRMTBuffer()
{
uint32_t one_val = mOne.val;
uint32_t zero_val = mZero.val;
// -- Convert (up to) 32 bits of the raw pixel data into
// into RMT pulses that encode the zeros and ones.
int pulses = 0;
uint32_t byteval;
while (pulses < 32 && mCurByte < mSize) {
// -- Get one byte
byteval = mPixelData[mCurByte++];
byteval <<= 24;
// Shift bits out, MSB first, setting RMTMEM.chan[n].data32[x] to the
// rmt_item32_t value corresponding to the buffered bit value
for (register uint32_t j = 0; j < 8; j++) {
uint32_t val = (byteval & 0x80000000L) ? one_val : zero_val;
RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = val;
byteval <<= 1;
mCurPulse++;
}
pulses += 8;
}
// -- When we reach the end of the pixel data, fill the rest of the
// RMT buffer with 0's, which signals to the device that we're done.
if (mCurByte == mSize) {
while (pulses < 32) {
RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = 0;
mCurPulse++;
pulses++;
}
}
// -- When we have filled the back half the buffer, reset the position to the first half
if (mCurPulse >= MAX_PULSES*2)
mCurPulse = 0;
}
};
FASTLED_NAMESPACE_END