Mister-Green/Repetier-Firmware 1.0.3/Repetier/ui.cpp

4158 lines
148 KiB
C++
Raw Normal View History

/*
This file is part of Repetier-Firmware.
Repetier-Firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Repetier-Firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Repetier-Firmware. If not, see <http://www.gnu.org/licenses/>.
*/
#define UI_MAIN 1
#include "Repetier.h"
#define UI_ROWS_EXTRA 0
#if UI_DISPLAY_TYPE == DISPLAY_U8G
#if defined(UI_HEAD)
#undef UI_ROWS
#define UI_ROWS (UI_LCD_HEIGHT/UI_FONT_HEIGHT)-1
#undef UI_ROWS_EXTRA
#define UI_ROWS_EXTRA 1
#endif
#endif
// The uimenu.h declares static variables of menus, which must be declared only once.
// It does not define interfaces for other modules, so should never be included elsewhere
#include "uimenu.h"
extern const int8_t encoder_table[16] PROGMEM ;
#include <math.h>
#include <stdlib.h>
#include <inttypes.h>
#include <ctype.h>
#if FEATURE_SERVO > 0 && UI_SERVO_CONTROL > 0
#if UI_SERVO_CONTROL == 1 && defined(SERVO0_NEUTRAL_POS)
uint16_t servoPosition = SERVO0_NEUTRAL_POS;
#elif UI_SERVO_CONTROL == 2 && defined(SERVO1_NEUTRAL_POS)
uint16_t servoPosition = SERVO1_NEUTRAL_POS;
#elif UI_SERVO_CONTROL == 3 && defined(SERVO2_NEUTRAL_POS)
uint16_t servoPosition = SERVO2_NEUTRAL_POS;
#elif UI_SERVO_CONTROL == 4 && defined(SERVO3_NEUTRAL_POS)
uint16_t servoPosition = SERVO3_NEUTRAL_POS;
#else
uint16_t servoPosition = 1500;
#endif
#endif
#if BEEPER_TYPE==2 && defined(UI_HAS_I2C_KEYS) && UI_I2C_KEY_ADDRESS!=BEEPER_ADDRESS
#error Beeper address and i2c key address must be identical
#else
#if BEEPER_TYPE==2
#define UI_I2C_KEY_ADDRESS BEEPER_ADDRESS
#endif
#endif
static TemperatureController *currHeaterForSetup; // pointer to extruder or heatbed temperature controller
#if UI_AUTORETURN_TO_MENU_AFTER != 0
millis_t ui_autoreturn_time = 0;
#endif
void beep(uint8_t duration, uint8_t count) {
#if FEATURE_BEEPER
#if BEEPER_TYPE!=0
#if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0
SET_OUTPUT(BEEPER_PIN);
#endif
#if BEEPER_TYPE==2
HAL::i2cStartWait(BEEPER_ADDRESS + I2C_WRITE);
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite( 0x14); // Start at port a
#endif
#endif
for(uint8_t i = 0; i < count; i++) {
#if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0
#if defined(BEEPER_TYPE_INVERTING) && BEEPER_TYPE_INVERTING
WRITE(BEEPER_PIN, LOW);
#else
WRITE(BEEPER_PIN, HIGH);
#endif
#else
#if UI_DISPLAY_I2C_CHIPTYPE==0
#if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS
HAL::i2cWrite(uid.outputMask & ~BEEPER_PIN);
#else
HAL::i2cWrite(~BEEPER_PIN);
#endif
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite((BEEPER_PIN) | uid.outputMask);
HAL::i2cWrite(((BEEPER_PIN) | uid.outputMask) >> 8);
#endif
#endif
HAL::delayMilliseconds(duration);
#if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0
#if defined(BEEPER_TYPE_INVERTING) && BEEPER_TYPE_INVERTING
WRITE(BEEPER_PIN, HIGH);
#else
WRITE(BEEPER_PIN, LOW);
#endif
#else
#if UI_DISPLAY_I2C_CHIPTYPE==0
#if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS
HAL::i2cWrite((BEEPER_PIN) | uid.outputMask);
#else
HAL::i2cWrite(255);
#endif
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite( uid.outputMask);
HAL::i2cWrite(uid.outputMask >> 8);
#endif
#endif
HAL::delayMilliseconds(duration);
}
#if BEEPER_TYPE==2
HAL::i2cStop();
#endif
#endif
#endif
}
bool UIMenuEntry::showEntry() const {
bool ret = true;
uint16_t f, f2;
f = HAL::readFlashByte((PGM_P)&filter);
if(f != 0)
ret = (f & Printer::menuMode) == f;
if(ret && (f2 = HAL::readFlashWord((PGM_P)&nofilter)) != 0)
ret = (f2 & Printer::menuMode) == 0;
return ret;
}
#if UI_DISPLAY_TYPE != NO_DISPLAY
UIDisplay uid;
// Menu up sign - code 1
// ..*.. 4
// .***. 14
// *.*.* 21
// ..*.. 4
// ..*.. 4
// ..*.. 4
// ***.. 28
// ..... 0
const uint8_t character_back[8] PROGMEM = {4, 14, 21, 4, 4, 4, 28, 0};
// Degrees sign - code 2
// ..*.. 4
// .*.*. 10
// ..*.. 4
// ..... 0
// ..... 0
// ..... 0
// ..... 0
// ..... 0
const uint8_t character_degree[8] PROGMEM = {4, 10, 4, 0, 0, 0, 0, 0};
// selected - code 3
// ..... 0
// ***** 31
// ***** 31
// ***** 31
// ***** 31
// ***** 31
// ***** 31
// ..... 0
// ..... 0
const uint8_t character_selected[8] PROGMEM = {0, 31, 31, 31, 31, 31, 0, 0};
// unselected - code 4
// ..... 0
// ***** 31
// *...* 17
// *...* 17
// *...* 17
// *...* 17
// ***** 31
// ..... 0
// ..... 0
const uint8_t character_unselected[8] PROGMEM = {0, 31, 17, 17, 17, 31, 0, 0};
// unselected - code 5
// ..*.. 4
// .*.*. 10
// .*.*. 10
// .*.*. 10
// .*.*. 10
// .***. 14
// ***** 31
// ***** 31
// .***. 14
const uint8_t character_temperature[8] PROGMEM = {4, 10, 10, 10, 14, 31, 31, 14};
// unselected - code 6
// ..... 0
// ***.. 28
// ***** 31
// *...* 17
// *...* 17
// ***** 31
// ..... 0
// ..... 0
const uint8_t character_folder[8] PROGMEM = {0, 28, 31, 17, 17, 31, 0, 0};
// printer ready - code 7
// *...* 17
// .*.*. 10
// ..*.. 4
// *...* 17
// ..*.. 4
// .*.*. 10
// *...* 17
// *...* 17
const byte character_ready[8] PROGMEM = {17, 10, 4, 17, 4, 10, 17, 17};
const long baudrates[] PROGMEM = {9600, 14400, 19200, 28800, 38400, 56000, 57600, 76800, 111112, 115200, 128000, 230400, 250000, 256000,
460800, 500000, 921600, 1000000, 1500000, 0
};
#define LCD_ENTRYMODE 0x04 /**< Set entrymode */
/** @name GENERAL COMMANDS */
/*@{*/
#define LCD_CLEAR 0x01 /**< Clear screen */
#define LCD_HOME 0x02 /**< Cursor move to first digit */
/*@}*/
/** @name ENTRYMODES */
/*@{*/
#define LCD_ENTRYMODE 0x04 /**< Set entrymode */
#define LCD_INCREASE LCD_ENTRYMODE | 0x02 /**< Set cursor move direction -- Increase */
#define LCD_DECREASE LCD_ENTRYMODE | 0x00 /**< Set cursor move direction -- Decrease */
#define LCD_DISPLAYSHIFTON LCD_ENTRYMODE | 0x01 /**< Display is shifted */
#define LCD_DISPLAYSHIFTOFF LCD_ENTRYMODE | 0x00 /**< Display is not shifted */
/*@}*/
/** @name DISPLAYMODES */
/*@{*/
#define LCD_DISPLAYMODE 0x08 /**< Set displaymode */
#define LCD_DISPLAYON LCD_DISPLAYMODE | 0x04 /**< Display on */
#define LCD_DISPLAYOFF LCD_DISPLAYMODE | 0x00 /**< Display off */
#define LCD_CURSORON LCD_DISPLAYMODE | 0x02 /**< Cursor on */
#define LCD_CURSOROFF LCD_DISPLAYMODE | 0x00 /**< Cursor off */
#define LCD_BLINKINGON LCD_DISPLAYMODE | 0x01 /**< Blinking on */
#define LCD_BLINKINGOFF LCD_DISPLAYMODE | 0x00 /**< Blinking off */
/*@}*/
/** @name SHIFTMODES */
/*@{*/
#define LCD_SHIFTMODE 0x10 /**< Set shiftmode */
#define LCD_DISPLAYSHIFT LCD_SHIFTMODE | 0x08 /**< Display shift */
#define LCD_CURSORMOVE LCD_SHIFTMODE | 0x00 /**< Cursor move */
#define LCD_RIGHT LCD_SHIFTMODE | 0x04 /**< Right shift */
#define LCD_LEFT LCD_SHIFTMODE | 0x00 /**< Left shift */
/*@}*/
/** @name DISPLAY_CONFIGURATION */
/*@{*/
#define LCD_CONFIGURATION 0x20 /**< Set function */
#define LCD_8BIT LCD_CONFIGURATION | 0x10 /**< 8 bits interface */
#define LCD_4BIT LCD_CONFIGURATION | 0x00 /**< 4 bits interface */
#define LCD_2LINE LCD_CONFIGURATION | 0x08 /**< 2 line display */
#define LCD_1LINE LCD_CONFIGURATION | 0x00 /**< 1 line display */
#define LCD_5X10 LCD_CONFIGURATION | 0x04 /**< 5 X 10 dots */
#define LCD_5X7 LCD_CONFIGURATION | 0x00 /**< 5 X 7 dots */
#define LCD_SETCGRAMADDR 0x40
#define lcdPutChar(value) lcdWriteByte(value,1)
#define lcdCommand(value) lcdWriteByte(value,0)
static const uint8_t LCDLineOffsets[] PROGMEM = UI_LINE_OFFSETS;
static const char versionString[] PROGMEM = UI_VERSION_STRING;
#if UI_DISPLAY_TYPE == DISPLAY_I2C
// ============= I2C LCD Display driver ================
inline void lcdStartWrite() {
HAL::i2cStartWait(UI_DISPLAY_I2C_ADDRESS + I2C_WRITE);
#if UI_DISPLAY_I2C_CHIPTYPE == 1
HAL::i2cWrite( 0x14); // Start at port a
#endif
}
inline void lcdStopWrite() {
HAL::i2cStop();
}
void lcdWriteNibble(uint8_t value) {
#if UI_DISPLAY_I2C_CHIPTYPE==0
value |= uid.outputMask;
#if UI_DISPLAY_D4_PIN==1 && UI_DISPLAY_D5_PIN==2 && UI_DISPLAY_D6_PIN==4 && UI_DISPLAY_D7_PIN==8
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
#else
uint8_t v = (value & 1 ? UI_DISPLAY_D4_PIN : 0) | (value & 2 ? UI_DISPLAY_D5_PIN : 0) | (value & 4 ? UI_DISPLAY_D6_PIN : 0) | (value & 8 ? UI_DISPLAY_D7_PIN : 0);
HAL::i2cWrite((v) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(v);
#
#endif
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==1
unsigned int v = (value & 1 ? UI_DISPLAY_D4_PIN : 0) | (value & 2 ? UI_DISPLAY_D5_PIN : 0) | (value & 4 ? UI_DISPLAY_D6_PIN : 0) | (value & 8 ? UI_DISPLAY_D7_PIN : 0) | uid.outputMask;
unsigned int v2 = v | UI_DISPLAY_ENABLE_PIN;
HAL::i2cWrite(v2 & 255);
HAL::i2cWrite(v2 >> 8);
HAL::i2cWrite(v & 255);
HAL::i2cWrite(v >> 8);
#endif
}
void lcdWriteByte(uint8_t c, uint8_t rs) {
#if UI_DISPLAY_I2C_CHIPTYPE==0
uint8_t mod = (rs ? UI_DISPLAY_RS_PIN : 0) | uid.outputMask; // | (UI_DISPLAY_RW_PIN);
#if UI_DISPLAY_D4_PIN==1 && UI_DISPLAY_D5_PIN==2 && UI_DISPLAY_D6_PIN==4 && UI_DISPLAY_D7_PIN==8
uint8_t value = (c >> 4) | mod;
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
value = (c & 15) | mod;
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
#else
uint8_t value = (c & 16 ? UI_DISPLAY_D4_PIN : 0) | (c & 32 ? UI_DISPLAY_D5_PIN : 0) | (c & 64 ? UI_DISPLAY_D6_PIN : 0) | (c & 128 ? UI_DISPLAY_D7_PIN : 0) | mod;
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
value = (c & 1 ? UI_DISPLAY_D4_PIN : 0) | (c & 2 ? UI_DISPLAY_D5_PIN : 0) | (c & 4 ? UI_DISPLAY_D6_PIN : 0) | (c & 8 ? UI_DISPLAY_D7_PIN : 0) | mod;
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
#endif
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==1
unsigned int mod = (rs ? UI_DISPLAY_RS_PIN : 0) | uid.outputMask; // | (UI_DISPLAY_RW_PIN);
unsigned int value = (c & 16 ? UI_DISPLAY_D4_PIN : 0) | (c & 32 ? UI_DISPLAY_D5_PIN : 0) | (c & 64 ? UI_DISPLAY_D6_PIN : 0) | (c & 128 ? UI_DISPLAY_D7_PIN : 0) | mod;
unsigned int value2 = (value) | UI_DISPLAY_ENABLE_PIN;
HAL::i2cWrite(value2 & 255);
HAL::i2cWrite(value2 >> 8);
HAL::i2cWrite(value & 255);
HAL::i2cWrite(value >> 8);
value = (c & 1 ? UI_DISPLAY_D4_PIN : 0) | (c & 2 ? UI_DISPLAY_D5_PIN : 0) | (c & 4 ? UI_DISPLAY_D6_PIN : 0) | (c & 8 ? UI_DISPLAY_D7_PIN : 0) | mod;
value2 = (value) | UI_DISPLAY_ENABLE_PIN;
HAL::i2cWrite(value2 & 255);
HAL::i2cWrite(value2 >> 8);
HAL::i2cWrite(value & 255);
HAL::i2cWrite(value >> 8);
#endif
}
void initializeLCD() {
HAL::delayMilliseconds(235);
lcdStartWrite();
HAL::i2cWrite(uid.outputMask & 255);
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite(uid.outputMask >> 8);
#endif
HAL::delayMicroseconds(20);
lcdWriteNibble(0x03);
HAL::delayMicroseconds(6000); // I have one LCD for which 4500 here was not long enough.
// second try
lcdWriteNibble(0x03);
HAL::delayMicroseconds(180); // wait
// third go!
lcdWriteNibble(0x03);
HAL::delayMicroseconds(180);
// finally, set to 4-bit interface
lcdWriteNibble(0x02);
HAL::delayMicroseconds(180);
// finally, set # lines, font size, etc.
lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7);
lcdCommand(LCD_CLEAR); //- Clear Screen
HAL::delayMilliseconds(4); // clear is slow operation
lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF); //- Entrymode (Display Shift: off, Increment Address Counter)
lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF); //- Display on
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
uid.createChar(1, character_back);
uid.createChar(2, character_degree);
uid.createChar(3, character_selected);
uid.createChar(4, character_unselected);
uid.createChar(5, character_temperature);
uid.createChar(6, character_folder);
uid.createChar(7, character_ready);
lcdStopWrite();
}
#endif
#if UI_DISPLAY_TYPE == DISPLAY_4BIT || UI_DISPLAY_TYPE == DISPLAY_8BIT
void lcdWriteNibble(uint8_t value) {
WRITE(UI_DISPLAY_D4_PIN, value & 1);
WRITE(UI_DISPLAY_D5_PIN, value & 2);
WRITE(UI_DISPLAY_D6_PIN, value & 4);
WRITE(UI_DISPLAY_D7_PIN, value & 8);
DELAY1MICROSECOND;
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH);// enable pulse must be >450ns
HAL::delayMicroseconds(2);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
HAL::delayMicroseconds(UI_DELAYPERCHAR);
}
void lcdWriteByte(uint8_t c, uint8_t rs) {
#if false && UI_DISPLAY_RW_PIN >= 0 // not really needed
SET_INPUT(UI_DISPLAY_D4_PIN);
SET_INPUT(UI_DISPLAY_D5_PIN);
SET_INPUT(UI_DISPLAY_D6_PIN);
SET_INPUT(UI_DISPLAY_D7_PIN);
WRITE(UI_DISPLAY_RW_PIN, HIGH);
WRITE(UI_DISPLAY_RS_PIN, LOW);
uint8_t busy;
do {
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH);
DELAY1MICROSECOND;
busy = READ(UI_DISPLAY_D7_PIN);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
DELAY2MICROSECOND;
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH);
DELAY2MICROSECOND;
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
DELAY2MICROSECOND;
} while (busy);
SET_OUTPUT(UI_DISPLAY_D4_PIN);
SET_OUTPUT(UI_DISPLAY_D5_PIN);
SET_OUTPUT(UI_DISPLAY_D6_PIN);
SET_OUTPUT(UI_DISPLAY_D7_PIN);
WRITE(UI_DISPLAY_RW_PIN, LOW);
#endif
WRITE(UI_DISPLAY_RS_PIN, rs);
WRITE(UI_DISPLAY_D4_PIN, c & 0x10);
WRITE(UI_DISPLAY_D5_PIN, c & 0x20);
WRITE(UI_DISPLAY_D6_PIN, c & 0x40);
WRITE(UI_DISPLAY_D7_PIN, c & 0x80);
#if FEATURE_CONTROLLER == CONTROLLER_RADDS
HAL::delayMicroseconds(10);
#else
HAL::delayMicroseconds(2);
#endif
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH); // enable pulse must be >450ns
#if FEATURE_CONTROLLER == CONTROLLER_RADDS
HAL::delayMicroseconds(10);
#else
HAL::delayMicroseconds(2);
#endif
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
WRITE(UI_DISPLAY_D4_PIN, c & 0x01);
WRITE(UI_DISPLAY_D5_PIN, c & 0x02);
WRITE(UI_DISPLAY_D6_PIN, c & 0x04);
WRITE(UI_DISPLAY_D7_PIN, c & 0x08);
HAL::delayMicroseconds(2);
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH); // enable pulse must be >450ns
HAL::delayMicroseconds(2);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
HAL::delayMicroseconds(100);
}
#ifdef TRY_AUTOREPAIR_LCD_ERRORS
#define HAS_AUTOREPAIR
/* Fast repair function for displays loosing their settings.
Do not call this if your display has no problems.
*/
void repairLCD() {
// Now we pull both RS and R/W low to begin commands
WRITE(UI_DISPLAY_RS_PIN, LOW);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
// at this point we are in 8 bit mode but of course in this
// interface 4 pins are dangling unconnected and the values
// on them don't matter for these instructions.
WRITE(UI_DISPLAY_RS_PIN, LOW);
HAL::delayMicroseconds(20);
lcdWriteNibble(0x03);
HAL::delayMicroseconds(5000); // I have one LCD for which 4500 here was not long enough.
// second try
//lcdWriteNibble(0x03);
//HAL::delayMicroseconds(5000); // wait
// third go!
//lcdWriteNibble(0x03);
//HAL::delayMicroseconds(160);
// finally, set to 4-bit interface
lcdWriteNibble(0x02);
HAL::delayMicroseconds(160);
// finally, set # lines, font size, etc.
lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7);
lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF); //- Entrymode (Display Shift: off, Increment Address Counter)
lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF); //- Display on
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
uid.createChar(1, character_back);
uid.createChar(2, character_degree);
uid.createChar(3, character_selected);
uid.createChar(4, character_unselected);
uid.createChar(5, character_temperature);
uid.createChar(6, character_folder);
uid.createChar(7, character_ready);
}
#endif
void initializeLCD() {
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
// according to datasheet, we need at least 40ms after power rises above 2.7V
// before sending commands. Arduino can turn on way before 4.5V.
// is this delay long enough for all cases??
HAL::delayMilliseconds(235);
SET_OUTPUT(UI_DISPLAY_D4_PIN);
SET_OUTPUT(UI_DISPLAY_D5_PIN);
SET_OUTPUT(UI_DISPLAY_D6_PIN);
SET_OUTPUT(UI_DISPLAY_D7_PIN);
SET_OUTPUT(UI_DISPLAY_RS_PIN);
#if UI_DISPLAY_RW_PIN > -1
SET_OUTPUT(UI_DISPLAY_RW_PIN);
#endif
SET_OUTPUT(UI_DISPLAY_ENABLE_PIN);
// Now we pull both RS and R/W low to begin commands
WRITE(UI_DISPLAY_RS_PIN, LOW);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
// at this point we are in 8 bit mode but of course in this
// interface 4 pins are dangling unconnected and the values
// on them don't matter for these instructions.
WRITE(UI_DISPLAY_RS_PIN, LOW);
HAL::delayMicroseconds(20);
lcdWriteNibble(0x03);
HAL::delayMicroseconds(5000); // I have one LCD for which 4500 here was not long enough.
// second try
lcdWriteNibble(0x03);
HAL::delayMicroseconds(5000); // wait
// third go!
lcdWriteNibble(0x03);
HAL::delayMicroseconds(160);
// finally, set to 4-bit interface
lcdWriteNibble(0x02);
HAL::delayMicroseconds(160);
// finally, set # lines, font size, etc.
lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7);
lcdCommand(LCD_CLEAR); //- Clear Screen
HAL::delayMilliseconds(3); // clear is slow operation
lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF); //- Entrymode (Display Shift: off, Increment Address Counter)
lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF); //- Display on
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
uid.createChar(1, character_back);
uid.createChar(2, character_degree);
uid.createChar(3, character_selected);
uid.createChar(4, character_unselected);
uid.createChar(5, character_temperature);
uid.createChar(6, character_folder);
uid.createChar(7, character_ready);
}
// ----------- end direct LCD driver
#endif
#if UI_DISPLAY_TYPE == DISPLAY_SR
// Native LCD driver for displays connected using shift register (2-wire or 3-wire)
//
// Options:
// #define UI_DISPLAY_TYPE DISPLAY_SR
// #define UI_DISPLAY_DATA_PIN 29
// #define UI_DISPLAY_CLOCK_PIN 28
// #define UI_DISPLAY_ENABLE_PIN -1 // or undefined for 2-wire, pin number for 3-wire
//
// Non-latching shift register (e.g. 74LS164) outputs:
// - Q0 - unused
// - Q1 - unused
// - Q2 - LCD RS
// - Q3 - LCD D4
// - Q4 - LCD D5
// - Q5 - LCD D6
// - Q6 - LCD D7
// - Q7 - LCD ENABLE (via AND gate for 2-wire version, unused for 3-wire)
//
// More info about this:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home
// More schematics including latching (74HC595) and non-latching (74LS164) shift registers:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics
// Shift a bit into shift register
static void lcdShiftBit(uint8_t bit) {
WRITE(UI_DISPLAY_DATA_PIN, bit);
WRITE(UI_DISPLAY_CLOCK_PIN, 1);
HAL::delayMicroseconds(2);
WRITE(UI_DISPLAY_CLOCK_PIN, 0);
HAL::delayMicroseconds(2);
}
// Write a nibble into LCD via SR
void lcdWriteNibble(uint8_t value, uint8_t rs = 0) {
#if !(defined(UI_DISPLAY_ENABLE_PIN) && (UI_DISPLAY_ENABLE_PIN > -1))
// Clear shift register by shifting zero bits (for 2-wire only)
for (uint8_t i = 0; i < 8; ++i)
lcdShiftBit(0);
#endif
// Shift ENABLE bit to AND gate (for 2-wire version). It will be
// set to high for LCD when both Q7 and DATA/EN output are high.
lcdShiftBit(1); // Q7: AND gate
// Shift 4 data bits from value
lcdShiftBit(value & 8); // Q6: LCD D7
lcdShiftBit(value & 4); // Q5: LCD D6
lcdShiftBit(value & 2); // Q4: LCD D5
lcdShiftBit(value & 1); // Q3: LCD D4
// Shift RS bit
lcdShiftBit(rs); // Q2: LCD RS
// Shift 2 unused bits (last must be 0 for 2-wire version)
lcdShiftBit(0); // Q1
lcdShiftBit(0); // Q0, shifts 1 to Q7 that allows EN output
// Strobe ENABLE bit to write data into the LCD using AND gate
// for 2-wire version or dedicated pin for 3-wire
#if defined(UI_DISPLAY_ENABLE_PIN) && (UI_DISPLAY_ENABLE_PIN > -1)
WRITE(UI_DISPLAY_ENABLE_PIN, 1);
#else
WRITE(UI_DISPLAY_DATA_PIN, 1);
#endif
HAL::delayMicroseconds(2);
#if defined(UI_DISPLAY_ENABLE_PIN) && (UI_DISPLAY_ENABLE_PIN > -1)
WRITE(UI_DISPLAY_ENABLE_PIN, 0);
#else
WRITE(UI_DISPLAY_DATA_PIN, 0);
#endif
HAL::delayMicroseconds(UI_DELAYPERCHAR);
}
// Write a byte into LCD via SR
void lcdWriteByte(uint8_t c, uint8_t rs) {
lcdWriteNibble(c >> 4, rs);
lcdWriteNibble(c, rs);
}
// Initialize LCD via SR
void initializeLCD(bool refresh = false) {
if (!refresh) {
// Init LCD pins
SET_OUTPUT(UI_DISPLAY_DATA_PIN);
SET_OUTPUT(UI_DISPLAY_CLOCK_PIN);
WRITE(UI_DISPLAY_DATA_PIN, 0);
WRITE(UI_DISPLAY_CLOCK_PIN, 0);
#if defined(UI_DISPLAY_ENABLE_PIN) && (UI_DISPLAY_ENABLE_PIN > -1)
SET_OUTPUT(UI_DISPLAY_ENABLE_PIN);
WRITE(UI_DISPLAY_ENABLE_PIN, 0);
#endif
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
// according to datasheet, we need at least 40ms after power rises above 2.7V
// before sending commands. Arduino can turn on way before 4.5V.
// is this delay long enough for all cases??
HAL::delayMilliseconds(235);
}
// Put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// We start in 8 bit mode, try to set 4 bit mode
// at this point we are in 8 bit mode but of course in this
// interface 4 pins are dangling unconnected and the values
// on them don't matter for these instructions.
lcdWriteNibble(0x03);
HAL::delayMicroseconds(5000); // I have one LCD for which 4500 here was not long enough.
// Second try
lcdWriteNibble(0x03);
HAL::delayMicroseconds(5000);
// Third go!
lcdWriteNibble(0x03);
HAL::delayMicroseconds(160);
// Finally, set to 4-bit interface
lcdWriteNibble(0x02);
HAL::delayMicroseconds(160);
// finally, set # lines, font size, etc.
lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7);
if (!refresh) {
lcdCommand(LCD_CLEAR);
HAL::delayMilliseconds(3); // clear is slow operation
}
lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF);
lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF);
uid.createChar(1, character_back);
uid.createChar(2, character_degree);
uid.createChar(3, character_selected);
uid.createChar(4, character_unselected);
uid.createChar(5, character_temperature);
uid.createChar(6, character_folder);
uid.createChar(7, character_ready);
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
}
#ifdef TRY_AUTOREPAIR_LCD_ERRORS
#define HAS_AUTOREPAIR
// Fast repair function for displays loosing their settings.
// Do not call this if your display has no problems.
void repairLCD() {
// Almost the same as for init except GPIO init and LCD clear
initializeLCD(true);
}
#endif
#endif // UI_DISPLAY_TYPE == DISPLAY_SR
#if UI_DISPLAY_TYPE < DISPLAY_ARDUINO_LIB || UI_DISPLAY_TYPE == DISPLAY_SR
void UIDisplay::printRow(uint8_t r, char *txt, char *txt2, uint8_t changeAtCol) {
changeAtCol = RMath::min(UI_COLS, changeAtCol);
uint8_t col = 0;
// Set row
if(r >= UI_ROWS) return;
#if UI_DISPLAY_TYPE == DISPLAY_I2C
lcdStartWrite();
#endif
lcdWriteByte(128 + HAL::readFlashByte((const char *)&LCDLineOffsets[r]), 0); // Position cursor
char c;
while((c = *txt) != 0x00 && col < changeAtCol) {
txt++;
lcdPutChar(c);
col++;
}
while(col < changeAtCol) {
lcdPutChar(' ');
col++;
}
if(txt2 != NULL) {
while((c = *txt2) != 0x00 && col < UI_COLS) {
txt2++;
lcdPutChar(c);
col++;
}
while(col < UI_COLS) {
lcdPutChar(' ');
col++;
}
}
#if UI_DISPLAY_TYPE == DISPLAY_I2C
lcdStopWrite();
#endif
#if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0
uiCheckSlowEncoder();
#endif
}
#endif
#if UI_DISPLAY_TYPE == DISPLAY_ARDUINO_LIB
// Use LiquidCrystal library instead
#include <LiquidCrystal.h>
LiquidCrystal lcd(UI_DISPLAY_RS_PIN, UI_DISPLAY_RW_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_D4_PIN, UI_DISPLAY_D5_PIN, UI_DISPLAY_D6_PIN, UI_DISPLAY_D7_PIN);
void UIDisplay::createChar(uint8_t location, const uint8_t charmap[]) {
location &= 0x7; // we only have 8 locations 0-7
uint8_t data[8];
for (int i = 0; i < 8; i++) {
data[i] = pgm_read_byte(&(charmap[i]));
}
lcd.createChar(location, data);
}
void UIDisplay::printRow(uint8_t r, char *txt, char *txt2, uint8_t changeAtCol) {
changeAtCol = RMath::min(UI_COLS, changeAtCol);
uint8_t col = 0;
// Set row
if(r >= UI_ROWS) return;
lcd.setCursor(0, r);
char c;
while((c = *txt) != 0x00 && col < changeAtCol) {
txt++;
lcd.write(c);
col++;
}
while(col < changeAtCol) {
lcd.write(' ');
col++;
}
if(txt2 != NULL) {
while((c = *txt2) != 0x00 && col < UI_COLS) {
txt2++;
lcd.write(c);
col++;
}
while(col < UI_COLS) {
lcd.write(' ');
col++;
}
}
#if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0
uiCheckSlowEncoder();
#endif
}
void initializeLCD() {
lcd.begin(UI_COLS, UI_ROWS);
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
uid.createChar(1, character_back);
uid.createChar(2, character_degree);
uid.createChar(3, character_selected);
uid.createChar(4, character_unselected);
}
// ------------------ End LiquidCrystal library as LCD driver
#endif // UI_DISPLAY_TYPE == DISPLAY_ARDUINO_LIB
#if UI_DISPLAY_TYPE == DISPLAY_U8G
//u8glib
#if defined(U8GLIB_ST7920) || defined(U8GLIB_SSD1306_SW_SPI)
#define UI_SPI_SCK UI_DISPLAY_D4_PIN
#define UI_SPI_MOSI UI_DISPLAY_ENABLE_PIN
#define UI_SPI_CS UI_DISPLAY_RS_PIN
#endif
#include "u8glib_ex.h"
#include "logo.h"
u8g_t u8g;
u8g_uint_t u8_tx = 0, u8_ty = 0;
void u8PrintChar(char c) {
switch((uint8_t)c) {
case 0x7E: // right arrow
u8g_SetFont(&u8g, u8g_font_6x12_67_75);
u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0x52);
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
break;
case CHAR_SELECTOR:
u8g_SetFont(&u8g, u8g_font_6x12_67_75);
u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0xb7);
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
break;
case CHAR_SELECTED:
u8g_SetFont(&u8g, u8g_font_6x12_67_75);
u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0xb6);
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
break;
case 253: //shift one pixel to right
u8_tx++;
break;
default:
u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, c);
}
}
void printU8GRow(uint8_t x, uint8_t y, char *text) {
//if(!u8g_IsBBXIntersection(&u8g,0,y-UI_LCD_WIDTH,UI_FONT_HEIGHT,UI_LCD_WIDTH,UI_FONT_HEIGHT+2)) return; // row not visible
char c;
u8_tx = x;
u8_ty = y;
while((c = *(text++)) != 0) u8PrintChar(c); //version compatible with position adjust
// x += u8g_DrawGlyph(&u8g,x,y,c);
}
void UIDisplay::printRow(uint8_t r, char *txt, char *txt2, uint8_t changeAtCol) {
changeAtCol = RMath::min(UI_COLS, changeAtCol);
uint8_t col = 0;
// Set row
if(r >= UI_ROWS) return;
int y = r * UI_FONT_HEIGHT;
#ifdef UI_HEAD
y += UI_FONT_HEIGHT;
#endif
if(!u8g_IsBBXIntersection(&u8g, 0, y, UI_LCD_WIDTH, UI_FONT_HEIGHT + 2)) return; // row not visible
u8_tx = 0;
u8_ty = y + UI_FONT_HEIGHT; //set position
bool highlight = ((uint8_t)(*txt) == CHAR_SELECTOR) || ((uint8_t)(*txt) == CHAR_SELECTED);
if(highlight) {
u8g_SetColorIndex(&u8g, 1);
u8g_draw_box(&u8g, 0, y + 1, u8g_GetWidth(&u8g), UI_FONT_HEIGHT + 1);
u8g_SetColorIndex(&u8g, 0);
}
char c;
while((c = *(txt++)) != 0 && col < changeAtCol) {
u8PrintChar(c);
col++;
}
if(txt2 != NULL) {
col = changeAtCol;
u8_tx = col * UI_FONT_WIDTH; //set position
while((c = *(txt2++)) != 0 && col < UI_COLS) {
u8PrintChar(c);
col++;
}
}
if(highlight) {
u8g_SetColorIndex(&u8g, 1);
}
#if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0
uiCheckSlowEncoder();
#endif
}
void initializeLCD() {
#ifdef U8GLIB_MINI12864_2X_SW_SPI
u8g_InitSPI(&u8g, &u8g_dev_uc1701_mini12864_2x_sw_spi, UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN, UI_DISPLAY_D5_PIN, U8G_PIN_NONE);
#endif
#ifdef U8GLIB_MINI12864_2X_HW_SPI
u8g_InitHWSPI(&u8g, &u8g_dev_uc1701_mini12864_2x_hw_spi, UI_DISPLAY_RS_PIN, UI_DISPLAY_D5_PIN, U8G_PIN_NONE);
#endif
#ifdef U8GLIB_ST7920
u8g_InitSPI(&u8g, &u8g_dev_st7920_128x64_sw_spi, UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN, U8G_PIN_NONE, U8G_PIN_NONE);
#endif
#ifdef U8GLIB_SSD1306_I2C
u8g_InitI2C(&u8g, &u8g_dev_ssd1306_128x64_i2c, U8G_I2C_OPT_NONE);
#endif
#ifdef U8GLIB_SSD1306_SW_SPI
u8g_InitSPI(&u8g, &u8g_dev_ssd1306_128x64_sw_spi, UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN, U8G_PIN_NONE, U8G_PIN_NONE);
#endif
#ifdef U8GLIB_SH1106_SW_SPI
u8g_InitSPI(&u8g, &u8g_dev_sh1106_128x64_sw_spi, UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN, U8G_PIN_NONE, U8G_PIN_NONE);
#endif
#ifdef U8GLIB_KS0108_FAST
u8g_Init8Bit(&u8g, &u8g_dev_ks0108_128x64_fast, UI_DISPLAY_D0_PIN, UI_DISPLAY_D1_PIN, UI_DISPLAY_D2_PIN, UI_DISPLAY_D3_PIN, UI_DISPLAY_D4_PIN, UI_DISPLAY_D5_PIN, UI_DISPLAY_D6_PIN, UI_DISPLAY_D7_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_CS1, UI_DISPLAY_CS2,
UI_DISPLAY_DI, UI_DISPLAY_RW_PIN, UI_DISPLAY_RESET_PIN);
#endif
#ifdef U8GLIB_KS0108
u8g_Init8Bit(&u8g, &u8g_dev_ks0108_128x64, UI_DISPLAY_D0_PIN, UI_DISPLAY_D1_PIN, UI_DISPLAY_D2_PIN, UI_DISPLAY_D3_PIN, UI_DISPLAY_D4_PIN, UI_DISPLAY_D5_PIN, UI_DISPLAY_D6_PIN, UI_DISPLAY_D7_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_CS1, UI_DISPLAY_CS2,
UI_DISPLAY_DI, UI_DISPLAY_RW_PIN, UI_DISPLAY_RESET_PIN);
#endif
#ifdef U8GLIB_ST7565_NHD_C2832_HW_SPI
u8g_InitHWSPI(&u8g, &u8g_dev_st7565_nhd_c12864_hw_spi, UI_DISPLAY_RS_PIN, UI_DISPLAY_D5_PIN, U8G_PIN_NONE);
#endif
#ifdef U8GLIB_ST7565_NHD_C2832_SW_SPI
u8g_InitSPI(&u8g, &u8g_dev_st7565_nhd_c12864_sw_spi, UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN, UI_DISPLAY_D5_PIN, U8G_PIN_NONE);
#endif
u8g_Begin(&u8g);
#ifdef LCD_CONTRAST
u8g_SetContrast(&u8g, LCD_CONTRAST);
#endif
#ifdef UI_ROTATE_180
u8g_SetRot180(&u8g);
#endif
u8g_FirstPage(&u8g);
do {
u8g_SetColorIndex(&u8g, 0);
} while( u8g_NextPage(&u8g) );
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
u8g_SetColorIndex(&u8g, 1);
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
}
// ------------------ End u8GLIB library as LCD driver
#endif // UI_DISPLAY_TYPE == DISPLAY_U8G
#if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2
#include "gameduino2.h"
#endif
UIDisplay::UIDisplay() {
}
void UIDisplay::initialize() {
oldMenuLevel = -2;
#ifdef COMPILE_I2C_DRIVER
uid.outputMask = UI_DISPLAY_I2C_OUTPUT_START_MASK;
#if UI_DISPLAY_I2C_CHIPTYPE==0 && BEEPER_TYPE==2 && BEEPER_PIN>=0
#if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS
uid.outputMask |= BEEPER_PIN;
#endif
#endif
HAL::i2cInit(UI_I2C_CLOCKSPEED);
#if UI_DISPLAY_I2C_CHIPTYPE==1
// set direction of pins
HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS + I2C_WRITE);
HAL::i2cWrite(0); // IODIRA
HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS & 255));
HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS >> 8));
HAL::i2cStop();
// Set pull ups according to UI_DISPLAY_I2C_PULLUP
HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS + I2C_WRITE);
HAL::i2cWrite(0x0C); // GPPUA
HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP & 255);
HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP >> 8);
HAL::i2cStop();
#endif
#endif
flags = 0;
menuLevel = 0;
shift = -2;
menuPos[0] = 0;
lastAction = 0;
delayedAction = 0;
lastButtonAction = 0;
activeAction = 0;
statusMsg[0] = 0;
uiInitKeys();
cwd[0] = '/';
cwd[1] = 0;
folderLevel = 0;
UI_STATUS_F(Com::translatedF(UI_TEXT_PRINTER_READY_ID));
#if UI_DISPLAY_TYPE != NO_DISPLAY
initializeLCD();
#if defined(USER_KEY1_PIN) && USER_KEY1_PIN > -1
UI_KEYS_INIT_BUTTON_LOW(USER_KEY1_PIN);
#endif
#if defined(USER_KEY2_PIN) && USER_KEY2_PIN > -1
UI_KEYS_INIT_BUTTON_LOW(USER_KEY2_PIN);
#endif
#if defined(USER_KEY3_PIN) && USER_KEY3_PIN > -1
UI_KEYS_INIT_BUTTON_LOW(USER_KEY3_PIN);
#endif
#if defined(USER_KEY4_PIN) && USER_KEY4_PIN > -1
UI_KEYS_INIT_BUTTON_LOW(USER_KEY4_PIN);
#endif
#if UI_DISPLAY_TYPE == DISPLAY_I2C && defined(UI_DISPLAY_I2C_CHIPTYPE) && UI_DISPLAY_I2C_CHIPTYPE==1
// I don't know why but after power up the lcd does not come up
// but if I reinitialize i2c and the lcd again here it works.
HAL::delayMilliseconds(10);
HAL::i2cInit(UI_I2C_CLOCKSPEED);
// set direction of pins
HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS + I2C_WRITE);
HAL::i2cWrite(0); // IODIRA
HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS & 255));
HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS >> 8));
HAL::i2cStop();
// Set pullups according to UI_DISPLAY_I2C_PULLUP
HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS + I2C_WRITE);
HAL::i2cWrite(0x0C); // GPPUA
HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP & 255);
HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP >> 8);
HAL::i2cStop();
initializeLCD();
#endif
#if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2
GD2::startScreen();
#else
#if UI_DISPLAY_TYPE == DISPLAY_U8G
//u8g picture loop
u8g_FirstPage(&u8g);
do {
#if LOGO_WIDTH > 0
u8g_DrawBitmapP(&u8g, 128 - LOGO_WIDTH, 0, ((LOGO_WIDTH + 7) / 8), LOGO_HEIGHT, logo);
#endif
#ifdef CUSTOM_LOGO
printRowP(4, PSTR("Repetier"));
printRowP(5, PSTR("Ver " REPETIER_VERSION));
#else
printRowP(0, PSTR("Repetier"));
printRowP(1, PSTR("Ver " REPETIER_VERSION));
printRowP(3, PSTR("Machine:"));
printRowP(4, PSTR(UI_PRINTER_NAME));
printRowP(5, PSTR(UI_PRINTER_COMPANY));
#endif // CUSTOM_LOGO
} while( u8g_NextPage(&u8g) ); //end picture loop
#else // not DISPLAY_U8G
printRowP(0, versionString);
printRowP(1, PSTR(UI_PRINTER_NAME));
#if UI_ROWS > 2
printRowP(UI_ROWS - 1, PSTR(UI_PRINTER_COMPANY));
#endif // UI_ROWS > 2
#endif // not DISPLAY_U8G
#endif // gameduino2
HAL::delayMilliseconds(UI_START_SCREEN_DELAY);
#endif
#if defined(UI_DISPLAY_I2C_CHIPTYPE) && UI_DISPLAY_I2C_CHIPTYPE==0 && (BEEPER_TYPE==2 || defined(UI_HAS_I2C_KEYS))
// Make sure the beeper is off
HAL::i2cStartWait(UI_I2C_KEY_ADDRESS + I2C_WRITE);
HAL::i2cWrite(255); // Disable beeper, enable read for other pins.
HAL::i2cStop();
#endif
}
#if UI_DISPLAY_TYPE == DISPLAY_4BIT || UI_DISPLAY_TYPE == DISPLAY_8BIT || UI_DISPLAY_TYPE == DISPLAY_I2C || UI_DISPLAY_TYPE == DISPLAY_SR
void UIDisplay::createChar(uint8_t location, const uint8_t charmap[]) {
location &= 0x7; // we only have 8 locations 0-7
lcdCommand(LCD_SETCGRAMADDR | (location << 3));
for (int i = 0; i < 8; i++) {
lcdPutChar(pgm_read_byte(&(charmap[i])));
}
}
#endif
void UIDisplay::waitForKey() {
uint16_t nextAction = 0;
lastButtonAction = 0;
while(lastButtonAction == nextAction) {
EVENT_CHECK_SLOW_KEYS(nextAction);
EVENT_CHECK_FAST_KEYS(nextAction);
uiCheckSlowKeys(nextAction);
uiCheckKeys(nextAction);
}
}
void UIDisplay::printRowP(uint8_t r, PGM_P txt) {
if(r >= UI_ROWS) return;
col = 0;
addStringP(txt);
uid.printCols[col] = 0;
printRow(r, uid.printCols, NULL, UI_COLS);
}
void UIDisplay::addInt(int value, uint8_t digits, char fillChar) {
uint8_t dig = 0, neg = 0;
if(value < 0) {
value = -value;
neg = 1;
dig++;
}
char buf[7]; // Assumes 8-bit chars plus zero byte.
char *str = &buf[6];
buf[6] = 0;
do {
unsigned int m = value;
value /= 10;
char c = m - 10 * value;
*--str = c + '0';
dig++;
} while(value);
if(neg)
uid.printCols[col++] = '-';
if(digits < 6)
while(dig < digits) {
*--str = fillChar; //' ';
dig++;
}
while(*str && col < MAX_COLS) {
uid.printCols[col++] = *str;
str++;
}
}
void UIDisplay::addLong(long value, int8_t digits) {
uint8_t dig = 0, neg = 0;
byte addspaces = digits > 0;
if (digits < 0) digits = -digits;
if(value < 0) {
neg = 1;
value = -value;
dig++;
}
char buf[13]; // Assumes 8-bit chars plus zero byte.
char *str = &buf[12];
buf[12] = 0;
do {
unsigned long m = value;
value /= 10;
char c = m - 10 * value;
*--str = c + '0';
dig++;
} while(value);
if(neg)
uid.printCols[col++] = '-';
if(addspaces && digits <= 11)
while(dig < digits) {
*--str = ' ';
dig++;
}
while(*str && col < MAX_COLS) {
uid.printCols[col++] = *str;
str++;
}
}
const float roundingTable[] PROGMEM = {0.5, 0.05, 0.005, 0.0005, 0.00005, 0.000005};
UI_STRING(ui_selected, UI_TEXT_SEL);
UI_STRING(ui_unselected, UI_TEXT_NOSEL);
void UIDisplay::addFloat(float number, char fixdigits, uint8_t digits) {
// Handle negative numbers
if (number < 0.0) {
uid.printCols[col++] = '-';
if(col >= MAX_COLS) return;
number = -number;
fixdigits--;
}
number += pgm_read_float(&roundingTable[digits]); // for correct rounding
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
float remainder = number - (float)int_part;
addLong(int_part, fixdigits);
if(col >= UI_COLS) return;
// Print the decimal point, but only if there are digits beyond
if (digits > 0) {
uid.printCols[col++] = '.';
}
// Extract digits from the remainder one at a time
while (col < MAX_COLS && digits-- > 0) {
remainder *= 10.0;
uint8_t toPrint = uint8_t(remainder);
uid.printCols[col++] = '0' + toPrint;
remainder -= toPrint;
}
}
void UIDisplay::addStringP(FSTRINGPARAM(text)) {
while(col < MAX_COLS) {
uint8_t c = HAL::readFlashByte(text++);
if(c == 0) return;
uid.printCols[col++] = c;
}
}
void UIDisplay::addString(char *text) {
while(col < MAX_COLS) {
uint8_t c = *text;
if(c == 0) return;
uid.printCols[col++] = c;
text++;
}
}
void UIDisplay::addStringOnOff(uint8_t on) {
addStringP(on ? Com::translatedF(UI_TEXT_ON_ID) : Com::translatedF(UI_TEXT_OFF_ID));
}
void UIDisplay::addChar(const char c) {
if(col < UI_COLS) {
uid.printCols[col++] = c;
}
}
void UIDisplay::addGCode(GCode *code) {
// assume volatile and make copy so we do not "see" multiple code lines as we go.
//GCode myCode = *code; insuffeicnet memory for this safety check
//code = &myCode;
addChar('#');
addLong(code->N);
if(code->hasM()) {
addChar('M');
addLong((long)code->M);
}
if(code->hasG()) {
addChar('G');
addLong((long)code->G);
}
if(code->hasT()) {
addChar('T');
addLong((long)code->T);
}
if(code->hasX()) {
addChar('X');
addFloat(code->X);
}
if(code->hasY()) {
addChar('Y');
addFloat(code->Y);
}
if(code->hasZ()) {
addChar('Z');
addFloat(code->Z);
}
if(code->hasE()) {
addChar('E');
addFloat(code->E);
}
if(code->hasF()) {
addChar('F');
addFloat(code->F);
}
if(code->hasS()) {
addChar('S');
addLong(code->S);
}
if(code->hasP()) {
addChar('P');
addLong(code->P);
}
#ifdef ARC_SUPPORT
if(code->hasI()) {
addChar('I');
addFloat(code->I);
}
if(code->hasJ()) {
addChar('J');
addFloat(code->J);
}
if(code->hasR()) {
addChar('R');
addFloat(code->R);
}
#endif
// cannot print string, it isn't part of the gcode structure.
//it points to temp memory in a buffer.
//if(code->hasSTRING())
}
void UIDisplay::parse(const char *txt, bool ram) {
static uint8_t beepdelay = 0;
int ivalue = 0;
float fvalue = 0;
while(col < MAX_COLS) {
char c = (ram ? * (txt++) : pgm_read_byte(txt++));
if(c == 0) break; // finished
if(c != '%') {
uid.printCols[col++] = c;
continue;
}
// dynamic parameter, parse meaning and replace
char c1 = (ram ? * (txt++) : pgm_read_byte(txt++));
char c2 = (ram ? * (txt++) : pgm_read_byte(txt++));
if(EVENT_CUSTOM_TEXT_PARSER(c1, c2)) {
continue;
}
switch(c1) {
case '%': {
// print % for input '%%' or '%%%'
if(col < UI_COLS) uid.printCols[col++] = '%'; // if data = '%%?' escaped percent, with left over ? char
if (c2 != '%') txt--; // Be flexible and accept 2 or 3 chars
break;
} // case '%'
case '?' : { // conditional spacer or other char
// If something has been printed, check if the last char is c2.
// if not, append c2.
// otherwise do nothing.
if (col > 0 && col < UI_COLS) {
if (uid.printCols[col - 1] != c2) uid.printCols[col++] = c2;
}
break;
}
case 'a': // Acceleration settings
if(c2 >= 'x' && c2 <= 'z') addFloat(Printer::maxAccelerationMMPerSquareSecond[c2 - 'x'], 5, 0);
else if(c2 >= 'X' && c2 <= 'Z') addFloat(Printer::maxTravelAccelerationMMPerSquareSecond[c2 - 'X'], 5, 0);
else if(c2 == 'j') addFloat(Printer::maxJerk, 3, 1);
#if DRIVE_SYSTEM != DELTA
else if(c2 == 'J') addFloat(Printer::maxZJerk, 3, 1);
#endif
break;
case 'B':
if(c2 == 'C') { //Custom coating
addFloat(Printer::zBedOffset, 3, 2);
break;
}
break;
case 'd': // debug boolean
if (c2 == 'o') addStringOnOff(Printer::debugEcho());
if (c2 == 'i') addStringOnOff(Printer::debugInfo());
if (c2 == 'e') addStringOnOff(Printer::debugErrors());
if (c2 == 'd') addStringOnOff(Printer::debugDryrun());
if (c2 == 'p') addStringOnOff(Printer::debugEndStop());
if (c2 == 'x')
#if MIN_HARDWARE_ENDSTOP_X
addStringP(Endstops::xMin() ? ui_selected : ui_unselected);
#else
addStringP(Com::tSpace);
#endif
if (c2 == 'X')
#if MAX_HARDWARE_ENDSTOP_X
addStringP(Endstops::xMax() ? ui_selected : ui_unselected);
#else
addStringP(Com::tSpace);
#endif
if (c2 == 'y')
#if MIN_HARDWARE_ENDSTOP_Y
addStringP(Endstops::yMin() ? ui_selected : ui_unselected);
#else
addStringP(Com::tSpace);
#endif
if (c2 == 'Y')
#if MAX_HARDWARE_ENDSTOP_Y
addStringP(Endstops::yMax() ? ui_selected : ui_unselected);
#else
addStringP(Com::tSpace);
#endif
if (c2 == 'z')
#if MIN_HARDWARE_ENDSTOP_Z
#if Z_PROBE_PIN == Z_MIN_PIN
// In this case z min is always false, return z probe signal instead
addStringP(Endstops::zProbe() ? ui_selected : ui_unselected);
#else
addStringP(Endstops::zMin() ? ui_selected : ui_unselected);
#endif
#else
addStringP(Com::tSpace);
#endif
if (c2 == 'Z')
#if MAX_HARDWARE_ENDSTOP_Z
addStringP(Endstops::zMax() ? ui_selected : ui_unselected);
#else
addStringP(Com::tSpace);
#endif
break;
case 'D':
#if FEATURE_DITTO_PRINTING
if(c2 >= '0' && c2 <= '9') {
addStringP(Extruder::dittoMode == c2 - '0' ? ui_selected : ui_unselected);
}
#endif
#if DISTORTION_CORRECTION
if(c2 == 'e') {
addStringOnOff((Printer::distortion.isEnabled())); // Autolevel on/off
}
#endif
break;
case 'e': { // Extruder temperature
if(c2 == 'I') {
//give integer display
//char c2 = (ram ? *(txt++) : pgm_read_byte(txt++));
txt++; // just skip c sign
ivalue = 0;
c2 = 'c';
} else ivalue = UI_TEMP_PRECISION;
if(c2 == 'r') { // Extruder relative mode
addStringP(Printer::relativeExtruderCoordinateMode ? Com::translatedF(UI_TEXT_YES_ID) : Com::translatedF(UI_TEXT_NO_ID));
break;
}
#if FEATURE_DITTO_PRINTING
if(c2 == 'd') { // ditto copy mode
addInt(Extruder::dittoMode, 1, ' ');
break;
}
#endif
if(c2 == 'j') { // jam control enabled
addStringOnOff(!Printer::isJamcontrolDisabled());
}
#if NUM_TEMPERATURE_LOOPS > 0
uint8_t eid = NUM_EXTRUDER; // default = BED if c2 not specified extruder number
if(c2 == 'c') eid = Extruder::current->id;
else if(c2 >= '0' && c2 <= '9') eid = c2 - '0';
if(Printer::isAnyTempsensorDefect()) {
if(eid == 0 && ++beepdelay > 30) beepdelay = 0; // beep every 30 seconds
if(beepdelay == 1) BEEP_LONG;
if(tempController[eid]->isSensorDefect()) {
addStringP(PSTR(" def "));
break;
} else if(tempController[eid]->isSensorDecoupled()) {
addStringP(PSTR(" dec "));
break;
}
}
#if EXTRUDER_JAM_CONTROL
if(tempController[eid]->isJammed()) {
if(++beepdelay > 10) beepdelay = 0; // beep every 10 seconds
if(beepdelay == 1) BEEP_LONG;
addStringP(PSTR(" jam "));
break;
}
#endif
#endif
if(c2 == 'c') fvalue = Extruder::current->tempControl.currentTemperatureC;
else if(c2 >= '0' && c2 <= '9') fvalue = extruder[c2 - '0'].tempControl.currentTemperatureC;
else if(c2 == 'b') fvalue = Extruder::getHeatedBedTemperature();
else if(c2 == 'B') {
ivalue = 0;
fvalue = Extruder::getHeatedBedTemperature();
}
#if FAN_THERMO_PIN > -1
else if(c2 == 't') {
fvalue = thermoController.currentTemperatureC;
ivalue = 0;
}
#endif
addFloat(fvalue, 3, ivalue);
break;
}
case 'E': // Target extruder temperature
if(c2 == 'c') fvalue = Extruder::current->tempControl.targetTemperatureC;
else if(c2 >= '0' && c2 <= '9') fvalue = extruder[c2 - '0'].tempControl.targetTemperatureC;
#if HAVE_HEATED_BED
else if(c2 == 'b') fvalue = heatedBedController.targetTemperatureC;
#endif
addFloat(fvalue, 3, 0 /*UI_TEMP_PRECISION*/);
break;
#if FAN_PIN > -1 && FEATURE_FAN_CONTROL
case 'F': // FAN speed
if(c2 == 's') addInt(floor(Printer::getFanSpeed() * 100 / 255 + 0.5f), 3);
else if(c2 == 'S') addInt(floor(Printer::getFan2Speed() * 100 / 255 + 0.5f), 3);
else if(c2 == 'i') addStringP((Printer::flag2 & PRINTER_FLAG2_IGNORE_M106_COMMAND) ? ui_selected : ui_unselected);
break;
#endif
case 'f':
if(c2 >= 'x' && c2 <= 'z') addFloat(Printer::maxFeedrate[c2 - 'x'], 5, 0);
else if(c2 >= 'X' && c2 <= 'Z') addFloat(Printer::homingFeedrate[c2 - 'X'], 5, 0);
break;
case 'i':
if(c2 == 's') addInt(stepperInactiveTime / 60000, 3);
else if(c2 == 'p') addInt(maxInactiveTime / 60000, 3);
break;
case 'O': // ops related stuff
break;
case 'P': // Print state related
if(c2 == 'n') { // print name
addString(Printer::printName);
} else if(c2 == 'l') {
addInt(Printer::currentLayer, 0);
} else if(c2 == 'L') {
addInt(Printer::maxLayer, 0);
} else if(c2 == 'p') {
addFloat(Printer::progress, 3, 1);
}
break;
case 'p': // preheat related
if(c2 >= '0' && c2 <= '6') {
addInt(extruder[c2 - '0'].tempControl.preheatTemperature, 3, ' ');
#if HAVE_HEATED_BED
} else if(c2 == 'b') {
addInt(heatedBedController.preheatTemperature, 3, ' ');
#endif
} else if(c2 == 'c') {
addInt(Extruder::current->tempControl.preheatTemperature, 3, ' ');
}
break;
case 'l':
if(c2 == 'a') addInt(lastAction, 4);
#if defined(CASE_LIGHTS_PIN) && CASE_LIGHTS_PIN >= 0
else if(c2 == 'o') addStringOnOff(READ(CASE_LIGHTS_PIN)); // Lights on/off
#endif
#if FEATURE_AUTOLEVEL
else if(c2 == 'l') addStringOnOff((Printer::isAutolevelActive())); // Autolevel on/off
#endif
break;
case 'o':
if(c2 == 's') {
#if SDSUPPORT
if(sd.sdactive && sd.sdmode && !statusMsg[0]) {
addStringP(Com::translatedF(UI_TEXT_PRINT_POS_ID));
float percent;
if(sd.filesize < 2000000) percent = sd.sdpos * 100.0 / sd.filesize;
else percent = (sd.sdpos >> 8) * 100.0 / (sd.filesize >> 8);
addFloat(percent, 3, 1);
if(col < MAX_COLS)
uid.printCols[col++] = '%';
} else
#endif
{
parse(statusMsg, true);
}
break;
}
if(c2 == 'c') {
addLong(baudrate, 6);
break;
}
if(c2 == 'e') {
if(errorMsg != 0) addStringP((char PROGMEM *)errorMsg);
break;
}
if(c2 == 'B') {
addInt((int)PrintLine::linesCount, 2);
break;
}
if(c2 == 'f') {
addInt(Printer::extrudeMultiply, 3);
break;
}
if(c2 == 'm') {
addInt(Printer::feedrateMultiply, 3);
break;
}
if(c2 == 'n') {
addInt(Extruder::current->id + 1, 1);
break;
}
if(c2 == 'p') {
// pwm position
#if SUPPORT_LASER
if(Printer::mode == PRINTER_MODE_LASER) {
if(LaserDriver::intens < LASER_PWM_MAX) {
float power = LaserDriver::intens * LASER_WATT / LASER_PWM_MAX; // Output Power = DIODEPower / Resolution * Value)
addFloat(power, 2, 1);
} else
addStringP(PSTR("Max."));
}
#endif
#if SUPPORT_CNC
if(Printer::mode == PRINTER_MODE_CNC) {
if(CNCDriver::spindleRpm < CNC_RPM_MAX)
addInt(CNCDriver::spindleRpm, 5);
else
addStringP(PSTR("Max."));
}
#endif
break;
}
//#########
#if FEATURE_SERVO > 0 && UI_SERVO_CONTROL > 0
if(c2 == 'S') {
addInt(servoPosition, 4);
break;
}
#endif
#if FEATURE_BABYSTEPPING
if(c2 == 'Y') {
// addInt(zBabySteps,0);
addFloat(static_cast<float>(Printer::zBabysteps) * Printer::invAxisStepsPerMM[Z_AXIS], 2, 2);
break;
}
#endif
// Extruder output level
if(c2 >= '0' && c2 <= '9') ivalue = pwm_pos[c2 - '0'];
#if HAVE_HEATED_BED
else if(c2 == 'b') ivalue = pwm_pos[heatedBedController.pwmIndex];
#endif
else if(c2 == 'C') ivalue = pwm_pos[Extruder::current->id];
ivalue = (ivalue * 100) / 255;
addInt(ivalue, 3);
if(col < MAX_COLS)
uid.printCols[col++] = '%';
break;
case 's': // Endstop positions
if(c2 == 'x') {
#if (X_MIN_PIN > -1) && MIN_HARDWARE_ENDSTOP_X
addStringOnOff(Endstops::xMin());
#else
addStringP(Com::translatedF(UI_TEXT_NA_ID));
#endif
}
if(c2 == 'X')
#if (X_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_X
addStringOnOff(Endstops::xMax());
#else
addStringP(Com::translatedF(UI_TEXT_NA_ID));
#endif
if(c2 == 'y')
#if (Y_MIN_PIN > -1)&& MIN_HARDWARE_ENDSTOP_Y
addStringOnOff(Endstops::yMin());
#else
addStringP(Com::translatedF(UI_TEXT_NA_ID));
#endif
if(c2 == 'Y')
#if (Y_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_Y
addStringOnOff(Endstops::yMax());
#else
addStringP(Com::translatedF(UI_TEXT_NA_ID));
#endif
if(c2 == 'z')
#if (Z_MIN_PIN > -1) && MIN_HARDWARE_ENDSTOP_Z
addStringOnOff(Endstops::zMin());
#else
addStringP(Com::translatedF(UI_TEXT_NA_ID));
#endif
if(c2 == 'Z')
#if (Z_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_Z
addStringOnOff(Endstops::zMax());
#else
addStringP(Com::translatedF(UI_TEXT_NA_ID));
#endif
if(c2 == 'P')
#if (Z_PROBE_PIN > -1)
addStringOnOff(Endstops::zProbe());
#else
addStringP(Com::translatedF(UI_TEXT_NA_ID));
#endif
break;
case 'S':
if(c2 >= 'x' && c2 <= 'z') addFloat(Printer::axisStepsPerMM[c2 - 'x'], 3, 1);
if(c2 == 'e') addFloat(Extruder::current->stepsPerMM, 3, 1);
break;
case 'T': // Print offsets
if(c2 == '2')
addFloat(-Printer::coordinateOffset[Z_AXIS], 2, 2);
else
addFloat(-Printer::coordinateOffset[c2 - '0'], 4, 0);
break;
case 'U':
if(c2 == 't') { // Printing time
#if EEPROM_MODE
bool alloff = true;
#if NUM_TEMPERATURE_LOOPS > 0
for(uint8_t i = 0; i < NUM_EXTRUDER; i++)
if(tempController[i]->targetTemperatureC > 15) alloff = false;
#endif
long seconds = (alloff ? 0 : (HAL::timeInMilliseconds() - Printer::msecondsPrinting) / 1000) + HAL::eprGetInt32(EPR_PRINTING_TIME);
long tmp = seconds / 86400;
seconds -= tmp * 86400;
addInt(tmp, 5);
addStringP(Com::translatedF(UI_TEXT_PRINTTIME_DAYS_ID));
tmp = seconds / 3600;
addInt(tmp, 2);
addStringP(Com::translatedF(UI_TEXT_PRINTTIME_HOURS_ID));
seconds -= tmp * 3600;
tmp = seconds / 60;
addInt(tmp, 2, '0');
addStringP(Com::translatedF(UI_TEXT_PRINTTIME_MINUTES_ID));
#endif
} else if(c2 == 'f') { // Filament usage
#if EEPROM_MODE
float dist = Printer::filamentPrinted * 0.001 + HAL::eprGetFloat(EPR_PRINTING_DISTANCE);
#else
float dist = Printer::filamentPrinted * 0.001;
#endif
addFloat(dist, (dist > 9999 ? 6 : 4), (dist > 9999 ? 0 : 1));
} else if(c2 == 'k') { // Filament usage in km
#if EEPROM_MODE
float dist = 0.001 * (Printer::filamentPrinted * 0.001 + HAL::eprGetFloat(EPR_PRINTING_DISTANCE));
#else
float dist = 0.001 * (Printer::filamentPrinted * 0.001);
#endif
addFloat(dist, (dist > 999 ? 5 : 3), (dist > 9999 ? 1 : 2));
} else if(c2 == 'h') { // Printing time in hours
#if EEPROM_MODE
bool alloff = true;
#if NUM_TEMPERATURE_LOOPS > 0
for(uint8_t i = 0; i < NUM_EXTRUDER; i++)
if(tempController[i]->targetTemperatureC > 15) alloff = false;
#endif
long seconds = (alloff ? 0 : (HAL::timeInMilliseconds() - Printer::msecondsPrinting) / 1000) + HAL::eprGetInt32(EPR_PRINTING_TIME);
long tmp = seconds / 3600;
addLong(tmp, 5); // 11 years of printing!
#endif
}
break;
case 'x':
if(c2 >= '0' && c2 <= '7') {
if(c2 == '4') { // this sequence save 14 bytes of flash
addFloat(Printer::filamentPrinted * 0.001, 3, 2);
break;
}
if((c2 >= '0' && c2 <= '2') || (c2 >= '5' && c2 <= '7')) {
if(Printer::isHoming()) {
addStringP(PSTR(" Homing"));
break;
} else {
if(Printer::isAnimation() && ((c2 == '0' && !Printer::isXHomed()) || (c2 == '1' && !Printer::isYHomed()) || (c2 == '2' && !Printer::isZHomed()))) {
addStringP(PSTR(" ?.??"));
break;
}
}
}
if(c2 == '0')
fvalue = Printer::realXPosition();
else if(c2 == '1')
fvalue = Printer::realYPosition();
else if(c2 == '2')
fvalue = Printer::realZPosition();
//################ Workpiece Coordinates#########################################################
else if(c2 == '5')
fvalue = Printer::currentPosition[X_AXIS] + Printer::coordinateOffset[X_AXIS];
else if(c2 == '6')
fvalue = Printer::currentPosition[Y_AXIS] + Printer::coordinateOffset[Y_AXIS];
else if(c2 == '7')
fvalue = Printer::currentPosition[Z_AXIS] + Printer::coordinateOffset[Z_AXIS];
//############ End Workpiece Coordinates #########################################################
else
fvalue = (float)Printer::currentPositionSteps[E_AXIS] * Printer::invAxisStepsPerMM[E_AXIS];
addFloat(fvalue, 4, 2);
}
else if(c2 >= 'a' && c2 <= 'f') {
// %xa-%xf : Extruder state icon 0x08 or 0x09 or 0x0a (off) - works only with graphic displays!
fast8_t exid = c2 - 'a';
TemperatureController &t = extruder[exid].tempControl;
if(t.targetTemperatureC < 30)
addChar(0x0a);
else
addChar((t.currentTemperatureC + 4 < t.targetTemperatureC) && Printer::isAnimation() ? 0x08 : 0x09);
break;
}
#if HAVE_HEATED_BED
else if(c2 == 'B') {
// %xB : Bed icon state 0x0c or 0x0d or 0x0b (off) Bed state - works only with graphic displays!
if(heatedBedController.targetTemperatureC < 30)
addChar(0x0b);
else
addChar((heatedBedController.currentTemperatureC + 2 < heatedBedController.targetTemperatureC) && Printer::isAnimation() ? 0x0c : 0x0d);
}
#endif
break;
case 'X': // Extruder related
#if NUM_EXTRUDER>0
if(c2 >= '0' && c2 <= '9') {
addStringP(Extruder::current->id == c2 - '0' ? ui_selected : ui_unselected);
} else if(c2 == 'i') {
addFloat(currHeaterForSetup->pidIGain, 4, 2);
} else if(c2 == 'p') {
addFloat(currHeaterForSetup->pidPGain, 4, 2);
} else if(c2 == 'd') {
addFloat(currHeaterForSetup->pidDGain, 4, 2);
} else if(c2 == 'm') {
addInt(currHeaterForSetup->pidDriveMin, 3);
} else if(c2 == 'M') {
addInt(currHeaterForSetup->pidDriveMax, 3);
} else if(c2 == 'D') {
addInt(currHeaterForSetup->pidMax, 3);
} else if(c2 == 'w') {
addInt(Extruder::current->watchPeriod, 4);
}
#if RETRACT_DURING_HEATUP
else if(c2 == 'T') {
addInt(Extruder::current->waitRetractTemperature, 4);
} else if(c2 == 'U') {
addInt(Extruder::current->waitRetractUnits, 2);
}
#endif
else if(c2 == 'h') {
uint8_t hm = currHeaterForSetup->heatManager;
if(hm == HTR_PID)
addStringP(Com::translatedF(UI_TEXT_STRING_HM_PID_ID));
else if(hm == HTR_DEADTIME)
addStringP(Com::translatedF(UI_TEXT_STRING_HM_DEADTIME_ID));
else if(hm == HTR_SLOWBANG)
addStringP(Com::translatedF(UI_TEXT_STRING_HM_SLOWBANG_ID));
else
addStringP(Com::translatedF(UI_TEXT_STRING_HM_BANGBANG_ID));
}
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
else if(c2 == 'a') {
addFloat(Extruder::current->advanceK, 3, 0);
}
#endif
else if(c2 == 'l') {
addFloat(Extruder::current->advanceL, 3, 0);
}
#endif
else if(c2 == 'x') {
addFloat(Extruder::current->xOffset * Printer::invAxisStepsPerMM[X_AXIS], 3, 2);
} else if(c2 == 'y') {
addFloat(Extruder::current->yOffset * Printer::invAxisStepsPerMM[Y_AXIS], 3, 2);
} else if(c2 == 'z') {
addFloat(Extruder::current->zOffset * Printer::invAxisStepsPerMM[Z_AXIS], 3, 2);
} else if(c2 == 'f') {
addFloat(Extruder::current->maxStartFeedrate, 5, 0);
} else if(c2 == 'F') {
addFloat(Extruder::current->maxFeedrate, 5, 0);
} else if(c2 == 'A') {
addFloat(Extruder::current->maxAcceleration, 5, 0);
}
#endif
break;
case 'y':
#if DRIVE_SYSTEM == DELTA
if(c2 >= '0' && c2 <= '3') fvalue = (float)Printer::currentNonlinearPositionSteps[c2 - '0'] * Printer::invAxisStepsPerMM[c2 - '0'];
addFloat(fvalue, 3, 2);
#endif
break;
case 'z':
#if EEPROM_MODE != 0 && FEATURE_Z_PROBE
if(c2 == 'h') { // write z probe height
addFloat(EEPROM::zProbeHeight(), 3, 2);
break;
}
#endif
if(c2 == '2')
addFloat(-Printer::coordinateOffset[Z_AXIS], 2, 2);
else
addFloat(-Printer::coordinateOffset[c2 - '0'], 4, 0);
break;
case 'w':
if(c2 >= '0' && c2 <= '7') {
addLong(Printer::wizardStack[c2 - '0'].l);
}
break;
case 'W':
if(c2 >= '0' && c2 <= '7') {
addFloat(Printer::wizardStack[c2 - '0'].f, 0, 2);
} else if(c2 == 'A') {
addFloat(Printer::wizardStack[0].f, 0, 1);
} else if(c2 == 'B') {
addFloat(Printer::wizardStack[1].f, 0, 1);
}
break;
}
}
uid.printCols[col] = 0;
}
void UIDisplay::showLanguageSelectionWizard() {
#if EEPROM_MODE != 0
pushMenu(&ui_menu_languages_wiz, true);
#endif
}
void UIDisplay::setStatusP(PGM_P txt, bool error) {
if(!error && Printer::isUIErrorMessage()) return;
uint8_t i = 0;
while(i < 20) {
uint8_t c = pgm_read_byte(txt++);
if(!c) break;
statusMsg[i++] = c;
}
statusMsg[i] = 0;
if(error)
Printer::setUIErrorMessage(true);
}
void UIDisplay::setStatus(const char *txt, bool error) {
if(!error && Printer::isUIErrorMessage()) return;
uint8_t i = 0;
while(*txt && i < 20)
statusMsg[i++] = *txt++;
statusMsg[i] = 0;
if(error)
Printer::setUIErrorMessage(true);
}
const UIMenu * const ui_pages[UI_NUM_PAGES] PROGMEM = UI_PAGES;
uint16_t nFilesOnCard;
void UIDisplay::updateSDFileCount() {
#if SDSUPPORT
dir_t* p = NULL;
FatFile *root = sd.fat.vwd();
FatFile file;
root->rewind();
nFilesOnCard = 0;
while (file.openNext(root, O_READ)) {
HAL::pingWatchdog();
file.getName(tempLongFilename, LONG_FILENAME_LENGTH);
//while ((p = root->getLongFilename(p, NULL, 0, NULL))) {
// if (! (file.isFile() || file.isDir())) continue;
if (folderLevel >= SD_MAX_FOLDER_DEPTH && strcmp(tempLongFilename, "..") == 0) {
file.close();
continue;
}
if (tempLongFilename[0] == '.' && tempLongFilename[1] != '.') {
file.close();
continue; // MAC CRAP
}
nFilesOnCard++;
file.close();
if (nFilesOnCard > 5000) // Arbitrary maximum, limited only by how long someone would scroll
return;
}
#endif
}
void getSDFilenameAt(uint16_t filePos, char *filename) {
#if SDSUPPORT
dir_t* p = NULL;
FatFile *root = sd.fat.vwd();
FatFile file;
root->rewind();
while (file.openNext(root, O_READ)) {
HAL::pingWatchdog();
file.getName(tempLongFilename, LONG_FILENAME_LENGTH);
//while ((p = root->getLongFilename(p, NULL, 0, NULL))) {
// if (! (file.isFile() || file.isDir())) continue;
if (uid.folderLevel >= SD_MAX_FOLDER_DEPTH && strcmp(tempLongFilename, "..") == 0) {
file.close();
continue;
}
if (tempLongFilename[0] == '.' && tempLongFilename[1] != '.') {
file.close();
continue; // MAC CRAP
}
if (filePos--) {
file.close();
continue;
}
strcpy(filename, tempLongFilename);
if(file.isDir()) strcat(filename, "/"); // Set marker for directory
file.close();
break;
}
#endif
}
bool UIDisplay::isDirname(char *name) {
while(*name) name++;
name--;
return *name == '/';
}
void UIDisplay::goDir(char *name) {
#if SDSUPPORT
char *p = cwd;
while(*p)p++;
if(name[0] == '.' && name[1] == '.') {
if(folderLevel == 0) return;
p--;
p--;
while(*p != '/') p--;
p++;
*p = 0;
folderLevel--;
} else {
if(folderLevel >= SD_MAX_FOLDER_DEPTH) return;
while(*name) *p++ = *name++;
*p = 0;
folderLevel++;
}
sd.fat.chdir(cwd);
updateSDFileCount();
#endif
}
/** write file names at current position to lcd */
void sdrefresh(uint16_t &r, char cache[UI_ROWS][MAX_COLS + 1]) {
#if SDSUPPORT
dir_t* p = NULL;
uint16_t offset = uid.menuTop[uid.menuLevel];
FatFile *root;
FatFile file;
uint16_t length, skip;
sd.fat.chdir(uid.cwd);
root = sd.fat.vwd();
root->rewind();
skip = (offset > 0 ? offset - 1 : 0);
while (r + offset < nFilesOnCard + 1 && r < UI_ROWS && file.openNext(root, O_READ)) {
HAL::pingWatchdog();
file.getName(tempLongFilename, LONG_FILENAME_LENGTH);
//while ((p = root->getLongFilename(p, NULL, 0, NULL))) {
// if (! (file.isFile() || file.isDir())) continue;
if (uid.folderLevel >= SD_MAX_FOLDER_DEPTH && strcmp(tempLongFilename, "..") == 0) {
file.close();
continue;
}
if (tempLongFilename[0] == '.' && tempLongFilename[1] != '.') {
file.close();
continue; // MAC CRAP
}
// done if past last used entry
// skip deleted entry and entries for . and ..
// only list subdirectories and files
if(skip > 0) {
skip--;
file.close();
continue;
}
uid.col = 0;
if(r + offset == uid.menuPos[uid.menuLevel])
uid.printCols[uid.col++] = CHAR_SELECTOR;
else
uid.printCols[uid.col++] = ' ';
// print file name with possible blank fill
if(DIR_IS_SUBDIR(p))
uid.printCols[uid.col++] = bFOLD; // Prepend folder symbol
length = RMath::min((int)strlen(tempLongFilename), MAX_COLS - uid.col);
memcpy(uid.printCols + uid.col, tempLongFilename, length);
uid.col += length;
uid.printCols[uid.col] = 0;
strcpy(cache[r++], uid.printCols);
file.close();
}
#endif
}
#if defined(UI_HEAD) && UI_DISPLAY_TYPE == DISPLAY_U8G
FSTRINGVALUE(uiHead, UI_HEAD)
#endif
// Refresh current menu page
void UIDisplay::refreshPage() {
Endstops::update();
if(EVENT_UI_REFRESH_PAGE)
return;
#if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2
GD2::refresh();
#else
uint16_t r;
uint8_t mtype = UI_MENU_TYPE_INFO;
char cache[UI_ROWS + UI_ROWS_EXTRA][MAX_COLS + 1];
adjustMenuPos();
#if UI_AUTORETURN_TO_MENU_AFTER != 0
// Reset timeout on menu back when user active on menu
if (uid.encoderLast != encoderStartScreen)
ui_autoreturn_time = HAL::timeInMilliseconds() + UI_AUTORETURN_TO_MENU_AFTER;
#endif
encoderStartScreen = uid.encoderLast;
// Copy result into cache
Endstops::update();
// precompute parsed string later used
#if defined(UI_HEAD) && UI_DISPLAY_TYPE == DISPLAY_U8G
char head[MAX_COLS + 1];
col = 0;
parse(uiHead, false);
strcpy(head, uid.printCols);
#endif
char *text;
if(menuLevel == 0) { // Top level menu
if(menuPos[0] == 0 && Printer::isPrinting()) {
#if SDSUPPORT
if(sd.sdactive && sd.sdmode) {
Printer::progress = (static_cast<float>(sd.sdpos) * 100.0) / static_cast<float>(sd.filesize);
}
#endif
col = 0;
r = 0;
if(UI_ROWS > 2) {
text = (char*)Com::translatedF(UI_TEXT_PRINTNAME_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
}
col = 0;
text = (char*)Com::translatedF(UI_TEXT_PROGRESS_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
if(UI_ROWS >= 4) {
col = 0;
if(Printer::maxLayer > 0) {
text = (char*)Com::translatedF(UI_TEXT_LAYER_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
} else cache[r++][0] = 0; // unknown layer
if(UI_ROWS > 4) {
col = 0;
text = (char*)Com::translatedF(UI_TEXT_EMPTY_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
if(UI_ROWS > 5)
strcpy(cache[r++], uid.printCols);
}
col = 0;
text = (char*)Com::translatedF(UI_TEXT_STATUS_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
}
}
//###RAyWB Change Mainpage for CNC and Laser Mode
else if
(menuPos[0] == 0 && (Printer::mode != PRINTER_MODE_FFF)) {
col = 0;
r = 0;
if(UI_ROWS > 2) {
text = (char*)Com::translatedF(UI_TEXT_MAINPAGE6_1_C_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
}
col = 0;
text = (char*)Com::translatedF(UI_TEXT_MAINPAGE6_2_C_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
col = 0;
text = (char*)Com::translatedF(UI_TEXT_MAINPAGE6_3_C_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
if(UI_ROWS > 4) {
col = 0;
if(Printer::mode == PRINTER_MODE_LASER)
text = (char*)Com::translatedF(UI_TEXT_MAINPAGE6_4_L_ID);
if(Printer::mode == PRINTER_MODE_CNC)
text = (char*)Com::translatedF(UI_TEXT_MAINPAGE6_4_C_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
}
if(UI_ROWS > 5) {
col = 0;
text = (char*)Com::translatedF(UI_TEXT_MAINPAGE6_5_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
}
col = 0;
text = (char*)Com::translatedF(UI_TEXT_MAINPAGE6_6_ID);
parse(text, false);
strcpy(cache[r++], uid.printCols);
}
//############################################################################################
else {
UIMenu *men = (UIMenu*)pgm_read_word(&(ui_pages[menuPos[0]]));
uint16_t nr = pgm_read_word_near(&(men->numEntries));
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
for(r = 0; r < nr && r < UI_ROWS + UI_ROWS_EXTRA; r++) {
UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[r]));
col = 0;
text = (char*)pgm_read_word(&(ent->text));
if(text == NULL)
text = (char*)Com::translatedF(pgm_read_word(&(ent->translation)));
parse(text, false);
strcpy(cache[r], uid.printCols);
}
}
} else {
UIMenu *men = (UIMenu*)menu[menuLevel];
uint16_t nr = pgm_read_word_near(&(men->numEntries));
mtype = pgm_read_byte((void*) & (men->menuType));
uint16_t offset = menuTop[menuLevel];
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
for(r = 0; r + offset < nr && r < UI_ROWS; ) {
UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[r + offset]));
if(!ent->showEntry()) {
offset++;
continue;
}
uint8_t entType = pgm_read_byte(&(ent->entryType)) & 127;
uint16_t entAction = pgm_read_word(&(ent->action));
col = 0;
if(entType >= 2 && entType <= 4) {
if(r + offset == menuPos[menuLevel] && activeAction != entAction)
uid.printCols[col++] = CHAR_SELECTOR;
else if(activeAction == entAction)
uid.printCols[col++] = CHAR_SELECTED;
else
uid.printCols[col++] = ' ';
}
char *text = (char*)pgm_read_word(&(ent->text));
if(text == NULL)
text = (char*)Com::translatedF(pgm_read_word(&(ent->translation)));
parse(text, false);
if(entType == 2) { // Draw sub menu marker at the right side
while(col < UI_COLS - 1) uid.printCols[col++] = ' ';
if(col > UI_COLS) {
uid.printCols[RMath::min(UI_COLS - 1, col)] = CHAR_RIGHT;
} else
uid.printCols[col] = CHAR_RIGHT; // Arrow right
uid.printCols[++col] = 0;
}
strcpy(cache[r], uid.printCols);
r++;
}
}
#if SDSUPPORT
if(mtype == UI_MENU_TYPE_FILE_SELECTOR) {
sdrefresh(r, cache);
}
#endif
uid.printCols[0] = 0;
while(r < UI_ROWS) // delete trailing empty rows
strcpy(cache[r++], uid.printCols);
// compute line scrolling values
uint8_t off0 = (shift <= 0 ? 0 : shift), y;
uint8_t off[UI_ROWS + UI_ROWS_EXTRA];
for(y = 0; y < UI_ROWS + UI_ROWS_EXTRA; y++) {
uint8_t len = strlen(cache[y]); // length of line content
off[y] = len > UI_COLS ? RMath::min(len - UI_COLS, off0) : 0;
if(len > UI_COLS) {
off[y] = RMath::min(len - UI_COLS, off0);
if(mtype == UI_MENU_TYPE_FILE_SELECTOR || mtype == UI_MENU_TYPE_SUBMENU) { // Copy first char to front
cache[y][off[y]] = cache[y][0];
}
} else off[y] = 0;
}
#if UI_DISPLAY_TYPE == DISPLAY_U8G
#define drawHProgressBar(x,y,width,height,progress) \
{u8g_DrawFrame(&u8g,x,y, width, height); \
int p = ceil((width-2) * progress / 100); \
u8g_DrawBox(&u8g,x+1,y+1, p, height-2);}
#define drawVProgressBar(x,y,width,height,progress) \
{u8g_DrawFrame(&u8g,x,y, width, height); \
int p = height-1 - ceil((height-2) * progress / 100); \
u8g_DrawBox(&u8g,x+1,y+p, width-2, (height-p));}
#if UI_DISPLAY_TYPE == DISPLAY_U8G
#if SDSUPPORT
unsigned long sdPercent = 0;
#endif
//fan
#if FAN_PIN > -1 && FEATURE_FAN_CONTROL
int fanPercent = 0;
char fanString[2];
#endif // FAN_PIN > -1 && FEATURE_FAN_CONTROL
if(menuLevel == 0 && menuPos[0] == 0 ) { // Main menu with special graphics
if(!Printer::isPrinting()) {
if(Printer::mode == PRINTER_MODE_FFF) { //###RAy enabling symbols only in printer mode
//ext1 and ext2 animation symbols
#if NUM_EXTRUDER < 3
if(extruder[0].tempControl.targetTemperatureC > 30)
#else
if(Extruder::current->tempControl.targetTemperatureC > 30)
#endif // NUM_EXTRUDER < 3
cache[0][0] = Printer::isAnimation() ? '\x08' : '\x09';
else
cache[0][0] = '\x0a'; //off
#if NUM_EXTRUDER == 2 && MIXING_EXTRUDER == 0
if(extruder[1].tempControl.targetTemperatureC > 30)
cache[1][0] = Printer::isAnimation() ? '\x08' : '\x09';
else
cache[1][0] = '\x0a'; //off
#endif // NUM_EXTRUDER == 2 && MIXING_EXTRUDER == 0
#if HAVE_HEATED_BED
//heated bed animated icons
uint8_t lin = 2 - ((NUM_EXTRUDER != 2) ? 1 : 0);
if(heatedBedController.targetTemperatureC > 30)
cache[lin][0] = Printer::isAnimation() ? '\x0c' : '\x0d';
else
cache[lin][0] = '\x0b';
#endif // HAVE_HEATED_BED
}//###Ray
#if FAN_PIN > -1 && FEATURE_FAN_CONTROL
//fan
fanPercent = Printer::getFanSpeed() * 100 / 255;
fanString[1] = 0;
if(fanPercent > 0) { //fan running animation
fanString[0] = Printer::isAnimation() ? '\x0e' : '\x0f';
} else {
fanString[0] = '\x0e';
}
#endif // FAN_PIN > -1 && FEATURE_FAN_CONTROL
#if SDSUPPORT
//SD Card
if(sd.sdactive) {
if(sd.sdactive && sd.sdmode) {
if(sd.filesize < 20000000) sdPercent = sd.sdpos * 100 / sd.filesize;
else sdPercent = (sd.sdpos >> 8) * 100 / (sd.filesize >> 8);
} else {
sdPercent = 0;
}
}
#endif // SDSUPPORT
}
}
#endif
//u8g picture loop
u8g_FirstPage(&u8g);
do {
if(menuLevel == 0 && menuPos[0] == 0 ) {
if(Printer::isPrinting()) {
#if defined(UI_HEAD)
// Show status line
u8g_SetColorIndex(&u8g, 1);
u8g_draw_box(&u8g, 0, 0, u8g_GetWidth(&u8g), UI_FONT_SMALL_HEIGHT + 1);
u8g_SetColorIndex(&u8g, 0);
u8g_SetFont(&u8g, UI_FONT_SMALL);
if(u8g_IsBBXIntersection(&u8g, 0, 1, 1, UI_FONT_SMALL_HEIGHT + 1))
printU8GRow(1, UI_FONT_SMALL_HEIGHT, head);
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
u8g_SetColorIndex(&u8g, 1);
drawHProgressBar(0, UI_FONT_HEIGHT * 2 + 2, 128, UI_FONT_HEIGHT - 1, Printer::progress);
if(u8g_IsBBXIntersection(&u8g, 0, UI_FONT_HEIGHT * 4 - UI_FONT_HEIGHT, 1, UI_FONT_HEIGHT))
printU8GRow(85, UI_FONT_HEIGHT * 4, cache[1]); // progress value
if(Printer::maxLayer > 0 && u8g_IsBBXIntersection(&u8g, 0, UI_FONT_HEIGHT * 5 - UI_FONT_HEIGHT, 1, UI_FONT_HEIGHT))
printU8GRow(0, UI_FONT_HEIGHT * 5, cache[2]); // Layer
if(u8g_IsBBXIntersection(&u8g, 0, UI_FONT_HEIGHT * 6 + 4 - UI_FONT_HEIGHT, 1, UI_FONT_HEIGHT))
printU8GRow(0, UI_FONT_HEIGHT * 6 + 2, cache[UI_ROWS - 1]);
#else
drawHProgressBar(0, UI_FONT_HEIGHT * 1 + 2, 128, UI_FONT_HEIGHT - 1, Printer::progress);
if(u8g_IsBBXIntersection(&u8g, 0, UI_FONT_HEIGHT * 3 + 2 - UI_FONT_HEIGHT, 1, UI_FONT_HEIGHT))
printU8GRow(85, UI_FONT_HEIGHT * 3 + 2, cache[1]); // progress value
if(Printer::maxLayer > 0 && u8g_IsBBXIntersection(&u8g, 0, UI_FONT_HEIGHT * 4 + 8 - UI_FONT_HEIGHT, 1, UI_FONT_HEIGHT))
printU8GRow(0, UI_FONT_HEIGHT * 4 + 8, cache[2]); // Layer
if(u8g_IsBBXIntersection(&u8g, 0, UI_FONT_HEIGHT * 6 + 4 - UI_FONT_HEIGHT, 1, UI_FONT_HEIGHT))
printU8GRow(0, UI_FONT_HEIGHT * 6 + 2, cache[UI_ROWS - 1]);
#endif
printRow(0, cache[0], NULL, UI_COLS); // Object name
} else { // not printing
u8g_SetFont(&u8g, UI_FONT_SMALL);
uint8_t py = 8;
for(uint8_t r = 0; r < 3; r++) {
if(u8g_IsBBXIntersection(&u8g, 0, py - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(0, py, cache[r]);
py += 10;
}
#if FAN_PIN > -1 && FEATURE_FAN_CONTROL
//fan
if(u8g_IsBBXIntersection(&u8g, 0, 30 - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(117, 30, fanString);
drawVProgressBar(116, 0, 9, 20, fanPercent);
#endif
if(u8g_IsBBXIntersection(&u8g, 0, 42 - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(0, 42, cache[3]); //multiplier + extruded
if(u8g_IsBBXIntersection(&u8g, 0, 52 - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(0, 52, cache[4]); //buffer usage
#if SDSUPPORT
//SD Card
if(sd.sdactive && u8g_IsBBXIntersection(&u8g, 66, 52 - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT)) {
printU8GRow(66, 52, const_cast<char *>("SD"));
drawHProgressBar(79, 46, 46, 6, sdPercent);
}
#endif // SDSUPPORT
//Status
py = u8g_GetHeight(&u8g) - 2;
if(u8g_IsBBXIntersection(&u8g, 70, py - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(0, py, cache[5]);
//divider lines
u8g_DrawHLine(&u8g, 0, 32, u8g_GetWidth(&u8g));
if ( u8g_IsBBXIntersection(&u8g, 54, 0, 1, 55) ) {
u8g_draw_vline(&u8g, 112, 0, 32);
u8g_draw_vline(&u8g, 62, 0, 54);
}
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
} // not printing
} // menu level 0 page 0
else {
#endif // UI_DISPLAY_TYPE == DISPLAY_U8G
#if defined(UI_HEAD) && UI_DISPLAY_TYPE == DISPLAY_U8G
// Show status line
u8g_SetColorIndex(&u8g, 1);
u8g_draw_box(&u8g, 0, 0, u8g_GetWidth(&u8g), UI_FONT_SMALL_HEIGHT + 1);
u8g_SetColorIndex(&u8g, 0);
u8g_SetFont(&u8g, UI_FONT_SMALL);
if(u8g_IsBBXIntersection(&u8g, 0, 1, 1, UI_FONT_SMALL_HEIGHT + 1))
printU8GRow(1, UI_FONT_SMALL_HEIGHT, head);
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
u8g_SetColorIndex(&u8g, 1);
if(menuLevel == 0) {
u8g_SetFont(&u8g, UI_FONT_SMALL);
for(y = 0; y < UI_ROWS; y++) {
int h0 = UI_FONT_HEIGHT + y * (UI_FONT_SMALL_HEIGHT + 1);
if(u8g_IsBBXIntersection(&u8g, 0, h0, 1, UI_FONT_SMALL_HEIGHT + 1))
printU8GRow(14, h0 + UI_FONT_SMALL_HEIGHT + 1, &cache[y][off[y]]);
}
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
printRow(4, &cache[5][off[5]], NULL, UI_COLS);
} else {
#endif
for(y = 0; y < UI_ROWS; y++)
printRow(y, &cache[y][off[y]], NULL, UI_COLS);
#if defined(UI_HEAD) && UI_DISPLAY_TYPE == DISPLAY_U8G
}
#endif
#if UI_DISPLAY_TYPE == DISPLAY_U8G
}
} while( u8g_NextPage(&u8g) ); //end picture loop
#endif
#endif
Printer::toggleAnimation();
}
void UIDisplay::pushMenu(const UIMenu *men, bool refresh) {
if(men == menu[menuLevel]) {
refreshPage();
return;
}
if(menuLevel + 1 >= UI_MENU_MAXLEVEL) return; // Max. depth reached. No more memory to down further.
menuLevel++;
menu[menuLevel] = men;
menuTop[menuLevel] = menuPos[menuLevel] = 0;
#if SDSUPPORT
UIMenu *men2 = (UIMenu*)menu[menuLevel];
if(pgm_read_byte(&(men2->menuType)) == 1) {
// Menu is Open files list
updateSDFileCount();
// Keep menu position in file list, more user friendly.
// If file list changed, still need to reset position.
if (menuPos[menuLevel] > nFilesOnCard) {
//This exception can happen if the card was unplugged or modified.
menuTop[menuLevel] = 0;
menuPos[menuLevel] = UI_MENU_BACKCNT; // if top entry is back, default to next useful item
}
} else
#endif
{
// With or without SDCARD, being here means the menu is not a files list
// Reset menu to top
menuTop[menuLevel] = 0;
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[0]));
uint16_t entAction = pgm_read_word(&(ent->action));
menuPos[menuLevel] = entAction == UI_ACTION_BACK ? 1 : 0; // if top entry is back, default to next useful item
}
if(refresh)
refreshPage();
}
void UIDisplay::popMenu(bool refresh) {
if(menuLevel > 0) menuLevel--;
Printer::setAutomount(false);
activeAction = 0;
if(refresh)
refreshPage();
}
void UIDisplay::showMessage(int id) {
uid.menuLevel = 0;
Printer::setUIErrorMessage(true);
switch(id) {
case 1:
uid.pushMenu(&ui_msg_leveling_error, true);
break;
case 2:
uid.pushMenu(&ui_msg_defectsensor, true);
break;
case 3:
uid.pushMenu(&ui_msg_decoupled, true);
break;
case 4:
uid.pushMenu(&ui_msg_slipping, true);
break;
}
}
int UIDisplay::okAction(bool allowMoves) {
if(Printer::isUIErrorMessage()) {
Printer::setUIErrorMessage(false);
// return 0;
}
BEEP_SHORT
#if UI_HAS_KEYS == 1
if(menuLevel == 0) { // Enter menu
menuLevel = 1;
menuTop[1] = 0;
menuPos[1] = UI_MENU_BACKCNT; // if top entry is back, default to next useful item
menu[1] = &ui_menu_main;
return 0;
}
const UIMenu *men = (const UIMenu*)menu[menuLevel];
//uint8_t nr = pgm_read_word_near(&(menu->numEntries));
uint8_t mtype = pgm_read_byte(&(men->menuType)) & 63;
UIMenuEntry **entries;
UIMenuEntry *ent;
unsigned char entType;
unsigned int action;
#if SDSUPPORT
if(mtype == UI_MENU_TYPE_FILE_SELECTOR) {
uint8_t filePos = menuPos[menuLevel] - 1;
char filename[LONG_FILENAME_LENGTH + 1];
if(menuPos[menuLevel] == 0) { // Selected back instead of file
if(folderLevel > 0) {
filename[0] = filename[1] = '.';
filename[2] = 0;
goDir(filename);
menuTop[menuLevel] = 0;
menuPos[menuLevel] = 1;
refreshPage();
oldMenuLevel = -1;
return 0;
} else {
return executeAction(UI_ACTION_BACK, allowMoves);
}
}
if(!sd.sdactive)
return 0;
getSDFilenameAt(filePos, filename);
if(isDirname(filename)) { // Directory change selected
goDir(filename);
menuTop[menuLevel] = 0;
menuPos[menuLevel] = 1;
refreshPage();
oldMenuLevel = -1;
return 0;
}
int16_t shortAction; // renamed to avoid scope confusion
if (Printer::isAutomount())
shortAction = UI_ACTION_SD_PRINT;
else {
men = menu[menuLevel - 1];
entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
ent = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel - 1]]));
shortAction = pgm_read_word(&(ent->action));
}
sd.file.close();
sd.fat.chdir(cwd);
EVENT_START_UI_ACTION(shortAction);
switch(shortAction) {
case UI_ACTION_SD_PRINT:
if (sd.selectFile(filename, false)) {
sd.startPrint();
BEEP_LONG;
menuLevel = 0;
}
break;
case UI_ACTION_SD_DELETE:
if(sd.sdactive) {
sd.sdmode = 0;
sd.file.close();
if(sd.fat.remove(filename)) {
Com::printFLN(Com::tFileDeleted);
BEEP_LONG
if(menuPos[menuLevel] > 0)
menuPos[menuLevel]--;
updateSDFileCount();
} else {
Com::printFLN(Com::tDeletionFailed);
}
}
break;
}
return 0;
}
#endif
entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
ent = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
entType = pgm_read_byte(&(ent->entryType));// 0 = Info, 1 = Headline, 2 = submenu ref, 3 = direct action command, 4 = modify action
action = pgm_read_word(&(ent->action));
if(mtype == UI_MENU_TYPE_MODIFICATION_MENU) { // action menu
action = pgm_read_word(&(men->id));
finishAction(action);
return executeAction(UI_ACTION_BACK, true);
}
if(mtype == UI_MENU_TYPE_SUBMENU && entType == 4) { // Modify action
if(activeAction) { // finish action
finishAction(action);
activeAction = 0;
} else
activeAction = action;
return 0;
}
if(mtype == UI_MENU_TYPE_WIZARD) {
action = pgm_read_word(&(men->id));
if(!EVENT_UI_OVERRIDE_EXECUTE(action, allowMoves))
switch(action) {
#if FEATURE_RETRACTION
case UI_ACTION_WIZARD_FILAMENTCHANGE: { // filament change is finished
// BEEP_SHORT;
popMenu(true);
Extruder::current->retractDistance(EEPROM_FLOAT(RETRACTION_LENGTH));
#if FILAMENTCHANGE_REHOME
if(Printer::isHomedAll()) {
#if Z_HOME_DIR > 0
Printer::homeAxis(true, true, FILAMENTCHANGE_REHOME == 2);
#else
Printer::homeAxis(true, true, false);
#endif
}
#endif
Printer::coordinateOffset[Z_AXIS] = Printer::popWizardVar().f;
Printer::coordinateOffset[Y_AXIS] = Printer::popWizardVar().f;
Printer::coordinateOffset[X_AXIS] = Printer::popWizardVar().f;
if(Printer::isHomedAll()) {
Printer::GoToMemoryPosition(true, true, false, false, Printer::homingFeedrate[X_AXIS]);
Printer::GoToMemoryPosition(false, false, true, false, Printer::homingFeedrate[Z_AXIS]);
}
Extruder::current->retractDistance(-EEPROM_FLOAT(RETRACTION_LENGTH));
Printer::currentPositionSteps[E_AXIS] = Printer::popWizardVar().l; // set e to starting position
Commands::waitUntilEndOfAllMoves(); // catch retract/extrude in case no filament was inserted no jam report occurs
Printer::setJamcontrolDisabled(false);
Printer::setBlockingReceive(false);
}
break;
#if EXTRUDER_JAM_CONTROL
case UI_ACTION_WIZARD_JAM_REHEAT: // user saw problem and takes action
popMenu(false);
pushMenu(&ui_wiz_jamwaitheat, true);
Extruder::unpauseExtruders();
popMenu(false);
pushMenu(&ui_wiz_filamentchange, true);
break;
case UI_ACTION_WIZARD_JAM_WAITHEAT: // called while heating - should do nothing user must wait
BEEP_LONG;
break;
#endif // EXTRUDER_JAM_CONTROL
#endif
case UI_ACTION_MESSAGE:
popMenu(true);
break;
case UI_ACTION_STATE:
break;
#if FEATURE_AUTOLEVEL & FEATURE_Z_PROBE
case UI_ACTION_AUTOLEVEL2:
uid.popMenu(false);
uid.pushMenu(&ui_msg_calibrating_bed, true);
runBedLeveling(2);
uid.popMenu(true);
break;
#endif
#if DISTORTION_CORRECTION
case UI_ACTION_MEASURE_DISTORTION2:
uid.popMenu(false);
uid.pushMenu(&ui_msg_calibrating_bed, true);
Printer::measureDistortion();
uid.popMenu(true);
break;
#endif
default:
EVENT_UI_OK_WIZARD(action);
break;
}
return 0;
}
if(entType == 2) { // Enter submenu
pushMenu((UIMenu*)action, false);
// BEEP_SHORT
#if HAVE_HEATED_BED
if(action == pgm_read_word(&ui_menu_conf_bed.action)) // enter Bed configuration menu
currHeaterForSetup = &heatedBedController;
else
#endif
currHeaterForSetup = &(Extruder::current->tempControl);
Printer::setMenuMode(MENU_MODE_FULL_PID, currHeaterForSetup->heatManager == 1);
Printer::setMenuMode(MENU_MODE_DEADTIME, currHeaterForSetup->heatManager == 3);
return 0;
}
if(entType == 3) {
return executeAction(action, allowMoves);
}
return executeAction(UI_ACTION_BACK, allowMoves);
#endif
}
//#define INCREMENT_MIN_MAX(a,steps,_min,_max) if ( (increment<0) && (_min>=0) && (a<_min-increment*steps) ) {a=_min;} else { a+=increment*steps; if(a<_min) a=_min; else if(a>_max) a=_max;};
// this version not have single byte variable rollover bug
#define INCREMENT_MIN_MAX(a,steps,_min,_max) a = constrain((a + increment * steps), _min, _max);
void UIDisplay::adjustMenuPos() {
if(menuLevel == 0) return;
UIMenu *men = (UIMenu*)menu[menuLevel];
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
uint8_t mtype = HAL::readFlashByte((PGM_P) & (men->menuType)) & 127;
uint16_t numEntries = pgm_read_word(&(men->numEntries));
if(mtype != 2) return;
UIMenuEntry *entry;
while(menuPos[menuLevel] > 0) { // Go up until we reach visible position
entry = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
if(pgm_read_byte((void*) & (entry->entryType)) == 1) // skip headlines
menuPos[menuLevel]--;
else if(entry->showEntry())
break;
else
menuPos[menuLevel]--;
}
// with bad luck the only visible option was in the opposite direction
while(menuPos[menuLevel] < numEntries - 1) { // Go down until we reach visible position
entry = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
if(pgm_read_byte((void*) & (entry->entryType)) == 1) // skip headlines
menuPos[menuLevel]++;
else if(entry->showEntry())
break;
else
menuPos[menuLevel]++;
}
uint16_t skipped = 0;
bool modified;
if(menuTop[menuLevel] > menuPos[menuLevel])
menuTop[menuLevel] = menuPos[menuLevel];
do {
skipped = 0;
modified = false;
for(uint8_t r = menuTop[menuLevel]; r < menuPos[menuLevel]; r++) {
UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[r]));
if(!ent->showEntry())
skipped++;
}
if((menuTop[menuLevel] + skipped + UI_ROWS) - 1 < menuPos[menuLevel]) {
//menuTop[menuLevel] = (menuPos[menuLevel] + 1) - UI_ROWS;
menuTop[menuLevel] = ((int)menuPos[menuLevel] + 1);
menuTop[menuLevel] -= UI_ROWS; // yes looks stupid but did not work otherwise with 5 rows why ever
modified = true;
}
} while(modified);
}
bool UIDisplay::isWizardActive() {
UIMenu *men = (UIMenu*)menu[menuLevel];
return (HAL::readFlashByte((PGM_P) & (men->menuType)) & 127) == 5;
}
bool UIDisplay::isSticky() {
UIMenu *men = (UIMenu*)menu[menuLevel];
uint8_t mt = HAL::readFlashByte((PGM_P) & (men->menuType));
return ((mt & 128) == 128) || mt == 5;
}
bool UIDisplay::nextPreviousAction(int16_t next, bool allowMoves) {
if(Printer::isUIErrorMessage()) {
Printer::setUIErrorMessage(false);
// return true;
}
millis_t actTime = HAL::timeInMilliseconds();
millis_t dtReal;
millis_t dt = dtReal = actTime - lastNextPrev;
lastNextPrev = actTime;
if(dt < SPEED_MAX_MILLIS) dt = SPEED_MAX_MILLIS;
if(dt > SPEED_MIN_MILLIS) {
dt = SPEED_MIN_MILLIS;
lastNextAccumul = 1;
}
float f = (float)(SPEED_MIN_MILLIS - dt) / (float)(SPEED_MIN_MILLIS - SPEED_MAX_MILLIS);
lastNextAccumul = 1.0f + (float)SPEED_MAGNIFICATION * f * f;
#if UI_DYNAMIC_ENCODER_SPEED
int16_t dynSp = lastNextAccumul / 16;
if(dynSp < 1) dynSp = 1;
if(dynSp > 30) dynSp = 30;
next *= dynSp;
#endif
#if UI_HAS_KEYS == 1
if(menuLevel == 0) {
lastSwitch = HAL::timeInMilliseconds();
if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0)) {
menuPos[0]++;
if(menuPos[0] >= UI_NUM_PAGES)
menuPos[0] = 0;
} else {
menuPos[0] = (menuPos[0] == 0 ? UI_NUM_PAGES - 1 : menuPos[0] - 1);
}
return true;
}
UIMenu *men = (UIMenu*)menu[menuLevel];
uint8_t nr = pgm_read_word_near(&(men->numEntries));
uint8_t mtype = HAL::readFlashByte((PGM_P) & (men->menuType)) & 127;
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
UIMenuEntry *testEnt;
// 0 = Info, 1 = Headline, 2 = sub menu ref, 3 = direct action command
//uint8_t entType = HAL::readFlashByte((PGM_P)&(ent->entryType));
unsigned int action = pgm_read_word(&(ent->action));
if(mtype == UI_MENU_TYPE_SUBMENU && activeAction == 0) { // browse through menu items
if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0)) {
while(menuPos[menuLevel] + 1 < nr) {
menuPos[menuLevel]++;
testEnt = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
if(testEnt->showEntry())
break;
}
} else if(menuPos[menuLevel] > 0) {
while(menuPos[menuLevel] > 0) {
menuPos[menuLevel]--;
testEnt = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
if(testEnt->showEntry())
break;
}
}
shift = -2; // reset shift position
adjustMenuPos();
return true;
}
#if SDSUPPORT
if(mtype == UI_MENU_TYPE_FILE_SELECTOR) { // SD listing
if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0)) {
menuPos[menuLevel] += 1; // abs(next);
if(menuPos[menuLevel] > nFilesOnCard) menuPos[menuLevel] = nFilesOnCard;
} else if(menuPos[menuLevel] > 0) {
if(menuPos[menuLevel] > 1 /* abs(next) */)
menuPos[menuLevel] -= 1; // abs(next);
else
menuPos[menuLevel] = 0;
}
if(menuTop[menuLevel] > menuPos[menuLevel]) {
menuTop[menuLevel] = menuPos[menuLevel];
} else if(menuTop[menuLevel] + UI_ROWS <= menuPos[menuLevel]) {
menuTop[menuLevel] = (menuPos[menuLevel] + 1);
menuTop[menuLevel] -= static_cast<uint16_t>(UI_ROWS); // DO NOT COMBINE IN ONE LINE - WILL NOT COMPILE CORRECTLY THEN!
}
shift = -2; // reset shift position
return true;
}
#endif
if(mtype == UI_MENU_TYPE_MODIFICATION_MENU || mtype == UI_MENU_TYPE_WIZARD) action = pgm_read_word(&(men->id));
else action = activeAction;
int16_t increment = next;
EVENT_START_NEXTPREVIOUS(action, increment);
switch(action) {
case UI_ACTION_FANSPEED:
Commands::setFanSpeed(Printer::getFanSpeed() + increment * 3, true);
break;
case UI_ACTION_FAN2SPEED:
Commands::setFan2Speed(Printer::getFan2Speed() + increment * 3);
break;
case UI_ACTION_XPOSITION:
if(!allowMoves) return false;
#if UI_SPEEDDEPENDENT_POSITIONING
{
float d = 0.01 * (float)increment * lastNextAccumul;
if(fabs(d) * 1000 > Printer::maxFeedrate[X_AXIS] * dtReal)
d *= Printer::maxFeedrate[X_AXIS] * dtReal / (1000 * fabs(d));
long steps = (long)(d * Printer::axisStepsPerMM[X_AXIS]);
steps = ( increment < 0 ? RMath::min(steps, (long)increment) : RMath::max(steps, (long)increment));
PrintLine::moveRelativeDistanceInStepsReal(steps, 0, 0, 0, Printer::maxFeedrate[X_AXIS], false, false);
}
#else
PrintLine::moveRelativeDistanceInStepsReal(increment, 0, 0, 0, Printer::homingFeedrate[X_AXIS], false, false);
#endif
Commands::printCurrentPosition();
break;
case UI_ACTION_YPOSITION:
if(!allowMoves) return false;
#if UI_SPEEDDEPENDENT_POSITIONING
{
float d = 0.01 * (float)increment * lastNextAccumul;
if(fabs(d) * 1000 > Printer::maxFeedrate[Y_AXIS] * dtReal)
d *= Printer::maxFeedrate[Y_AXIS] * dtReal / (1000 * fabs(d));
long steps = (long)(d * Printer::axisStepsPerMM[Y_AXIS]);
steps = ( increment < 0 ? RMath::min(steps, (long)increment) : RMath::max(steps, (long)increment));
PrintLine::moveRelativeDistanceInStepsReal(0, steps, 0, 0, Printer::maxFeedrate[Y_AXIS], false, false);
}
#else
PrintLine::moveRelativeDistanceInStepsReal(0, increment, 0, 0, Printer::homingFeedrate[Y_AXIS], false, false);
#endif
Commands::printCurrentPosition();
break;
case UI_ACTION_ZPOSITION_NOTEST:
if(!allowMoves) return false;
Printer::setNoDestinationCheck(true);
goto ZPOS1;
case UI_ACTION_ZPOSITION:
if(!allowMoves) return false;
ZPOS1:
#if UI_SPEEDDEPENDENT_POSITIONING
{
float d = 0.01 * (float)increment * lastNextAccumul;
if(fabs(d) * 1000 > Printer::maxFeedrate[Z_AXIS] * dtReal)
d *= Printer::maxFeedrate[Z_AXIS] * dtReal / (1000 * fabs(d));
long steps = (long)(d * Printer::axisStepsPerMM[Z_AXIS]);
steps = ( increment < 0 ? RMath::min(steps, (long)increment) : RMath::max(steps, (long)increment));
PrintLine::moveRelativeDistanceInStepsReal(0, 0, steps, 0, Printer::maxFeedrate[Z_AXIS], false, false);
}
#else
PrintLine::moveRelativeDistanceInStepsReal(0, 0, ((long)increment * Printer::axisStepsPerMM[Z_AXIS]) / 100, 0, Printer::homingFeedrate[Z_AXIS], false, false);
#endif
Printer::setNoDestinationCheck(false);
Commands::printCurrentPosition();
break;
case UI_ACTION_XPOSITION_FAST:
if(!allowMoves) return false;
PrintLine::moveRelativeDistanceInStepsReal(Printer::axisStepsPerMM[X_AXIS] * increment, 0, 0, 0, Printer::homingFeedrate[X_AXIS], true, false);
Commands::printCurrentPosition();
break;
case UI_ACTION_YPOSITION_FAST:
if(!allowMoves) return false;
PrintLine::moveRelativeDistanceInStepsReal(0, Printer::axisStepsPerMM[Y_AXIS] * increment, 0, 0, Printer::homingFeedrate[Y_AXIS], true, false);
Commands::printCurrentPosition();
break;
case UI_ACTION_ZPOSITION_FAST_NOTEST:
if(!allowMoves) return false;
Printer::setNoDestinationCheck(true);
goto ZPOS2;
case UI_ACTION_ZPOSITION_FAST:
if(!allowMoves) return false;
ZPOS2:
PrintLine::moveRelativeDistanceInStepsReal(0, 0, Printer::axisStepsPerMM[Z_AXIS] * increment, 0, Printer::homingFeedrate[Z_AXIS], true, false);
Printer::setNoDestinationCheck(false);
Commands::printCurrentPosition();
break;
case UI_ACTION_MEASURE_ZP_REALZ:
Printer::wizardStack[0].f += 0.01 * static_cast<float>(increment);
break;
case UI_ACTION_EPOSITION:
if(!allowMoves) return false;
PrintLine::moveRelativeDistanceInSteps(0, 0, 0, Printer::axisStepsPerMM[E_AXIS]*increment / Printer::extrusionFactor, UI_SET_EXTRUDER_FEEDRATE, true, false, false);
Commands::printCurrentPosition();
break;
#if FEATURE_RETRACTION
case UI_ACTION_WIZARD_FILAMENTCHANGE: // filament change is finished
Extruder::current->retractDistance(-increment);
Commands::waitUntilEndOfAllMoves();
Extruder::current->disableCurrentExtruderMotor();
break;
#endif
case UI_ACTION_Z_BABYSTEPS:
#if FEATURE_BABYSTEPPING
{
previousMillisCmd = HAL::timeInMilliseconds();
#if UI_DYNAMIC_ENCODER_SPEED
increment /= dynSp; // we need fixed speeds or we get in trouble here!
#endif
int16_t diff = increment * BABYSTEP_MULTIPLICATOR;
if(abs((int)Printer::zBabysteps + diff) < 30000 && abs(diff) < 2000) {
InterruptProtectedBlock noint;
Printer::zBabystepsMissing += diff;
Printer::zBabysteps += diff;
}
}
#endif
break;
case UI_ACTION_HEATED_BED_TEMP:
#if HAVE_HEATED_BED
{
int tmp = (int)heatedBedController.targetTemperatureC;
if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0;
if(tmp == 0 && increment > 0) tmp = UI_SET_MIN_HEATED_BED_TEMP;
else tmp += increment;
if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0;
else if(tmp > UI_SET_MAX_HEATED_BED_TEMP) tmp = UI_SET_MAX_HEATED_BED_TEMP;
Extruder::setHeatedBedTemperature(tmp);
}
#endif
break;
case UI_ACTION_EXTRUDER0_TEMP:
#if NUM_EXTRUDER > 1
case UI_ACTION_EXTRUDER1_TEMP:
#endif
#if NUM_EXTRUDER > 2
case UI_ACTION_EXTRUDER2_TEMP:
#endif
#if NUM_EXTRUDER > 3
case UI_ACTION_EXTRUDER3_TEMP:
#endif
#if NUM_EXTRUDER > 4
case UI_ACTION_EXTRUDER4_TEMP:
#endif
#if NUM_EXTRUDER > 5
case UI_ACTION_EXTRUDER5_TEMP:
#endif
{
int tmp = (int)extruder[action - UI_ACTION_EXTRUDER0_TEMP].tempControl.targetTemperatureC;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
if(tmp == 0 && increment > 0) tmp = UI_SET_MIN_EXTRUDER_TEMP;
else tmp += increment;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP;
Extruder::setTemperatureForExtruder(tmp, action - UI_ACTION_EXTRUDER0_TEMP);
}
break;
case UI_ACTION_EXTRUDER_TEMP: {
int tmp = (int)Extruder::current->tempControl.targetTemperatureC;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
if(tmp == 0 && increment > 0) tmp = UI_SET_MIN_EXTRUDER_TEMP;
else tmp += increment;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP;
Extruder::setTemperatureForExtruder(tmp, Extruder::current->id);
}
break;
case UI_ACTION_BED_PREHEAT:
#if HAVE_HEATED_BED
{
int tmp = (int)heatedBedController.preheatTemperature + increment;
if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = UI_SET_MIN_HEATED_BED_TEMP;
else if(tmp > UI_SET_MAX_HEATED_BED_TEMP) tmp = UI_SET_MAX_HEATED_BED_TEMP;
heatedBedController.preheatTemperature = static_cast<int16_t>(tmp);
}
#endif
break;
case UI_ACTION_EXT0_PREHEAT:
case UI_ACTION_EXT1_PREHEAT:
case UI_ACTION_EXT2_PREHEAT:
case UI_ACTION_EXT3_PREHEAT:
case UI_ACTION_EXT4_PREHEAT:
case UI_ACTION_EXT5_PREHEAT: {
int tmp = (int)extruder[action - UI_ACTION_EXT0_PREHEAT].tempControl.preheatTemperature + increment;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = UI_SET_MIN_EXTRUDER_TEMP;
else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP;
extruder[action - UI_ACTION_EXT0_PREHEAT].tempControl.preheatTemperature = static_cast<int16_t>(tmp);
}
break;
case UI_ACTION_FEEDRATE_MULTIPLY: {
int fr = Printer::feedrateMultiply;
INCREMENT_MIN_MAX(fr, 1, 25, 500);
Commands::changeFeedrateMultiply(fr);
}
break;
case UI_ACTION_FLOWRATE_MULTIPLY: {
INCREMENT_MIN_MAX(Printer::extrudeMultiply, 1, 25, 500);
Commands::changeFlowrateMultiply(Printer::extrudeMultiply);
}
break;
#if UI_BED_COATING
case UI_ACTION_COATING_CUSTOM:
INCREMENT_MIN_MAX(Printer::zBedOffset, 0.01, -1.0, 199.0);
break;
#endif
case UI_ACTION_STEPPER_INACTIVE: {
uint8_t inactT = stepperInactiveTime / 60000;
INCREMENT_MIN_MAX(inactT, 1, 0, 240);
stepperInactiveTime = inactT * 60000;
}
break;
case UI_ACTION_MAX_INACTIVE: {
uint8_t inactT = maxInactiveTime / 60000;
INCREMENT_MIN_MAX(inactT, 1, 0, 240);
maxInactiveTime = inactT * 60000;
}
break;
case UI_ACTION_PRINT_ACCEL_X:
case UI_ACTION_PRINT_ACCEL_Y:
case UI_ACTION_PRINT_ACCEL_Z:
#if DRIVE_SYSTEM != DELTA
INCREMENT_MIN_MAX(Printer::maxAccelerationMMPerSquareSecond[action - UI_ACTION_PRINT_ACCEL_X], ((action == UI_ACTION_PRINT_ACCEL_Z) ? 1 : 100), 0, 10000);
#else
INCREMENT_MIN_MAX(Printer::maxAccelerationMMPerSquareSecond[action - UI_ACTION_PRINT_ACCEL_X], 100, 0, 10000);
#endif
Printer::updateDerivedParameter();
break;
case UI_ACTION_MOVE_ACCEL_X:
case UI_ACTION_MOVE_ACCEL_Y:
case UI_ACTION_MOVE_ACCEL_Z:
#if DRIVE_SYSTEM != DELTA
INCREMENT_MIN_MAX(Printer::maxTravelAccelerationMMPerSquareSecond[action - UI_ACTION_MOVE_ACCEL_X], ((action == UI_ACTION_MOVE_ACCEL_Z) ? 1 : 100), 0, 10000);
#else
INCREMENT_MIN_MAX(Printer::maxTravelAccelerationMMPerSquareSecond[action - UI_ACTION_MOVE_ACCEL_X], 100, 0, 10000);
#endif
Printer::updateDerivedParameter();
break;
case UI_ACTION_MAX_JERK:
INCREMENT_MIN_MAX(Printer::maxJerk, 0.1, 1, 99.9);
break;
#if DRIVE_SYSTEM != DELTA
case UI_ACTION_MAX_ZJERK:
INCREMENT_MIN_MAX(Printer::maxZJerk, 0.1, 0.1, 99.9);
break;
#endif
case UI_ACTION_HOMING_FEEDRATE_X:
case UI_ACTION_HOMING_FEEDRATE_Y:
case UI_ACTION_HOMING_FEEDRATE_Z:
INCREMENT_MIN_MAX(Printer::homingFeedrate[action - UI_ACTION_HOMING_FEEDRATE_X], 1, 1, 1000);
break;
case UI_ACTION_MAX_FEEDRATE_X:
case UI_ACTION_MAX_FEEDRATE_Y:
case UI_ACTION_MAX_FEEDRATE_Z:
INCREMENT_MIN_MAX(Printer::maxFeedrate[action - UI_ACTION_MAX_FEEDRATE_X], 1, 1, 1000);
break;
case UI_ACTION_STEPS_X:
case UI_ACTION_STEPS_Y:
case UI_ACTION_STEPS_Z:
INCREMENT_MIN_MAX(Printer::axisStepsPerMM[action - UI_ACTION_STEPS_X], 0.1, 0, 999);
Printer::updateDerivedParameter();
break;
case UI_ACTION_XOFF:
case UI_ACTION_YOFF: {
float tmp = -Printer::coordinateOffset[action - UI_ACTION_XOFF];
INCREMENT_MIN_MAX(tmp, 1, -999, 999);
Printer::coordinateOffset[action - UI_ACTION_XOFF] = -tmp;
}
break;
case UI_ACTION_ZOFF: {
float tmp = -Printer::coordinateOffset[Z_AXIS];
INCREMENT_MIN_MAX(tmp, 0.01, -9.99, 9.99);
Printer::coordinateOffset[Z_AXIS] = -tmp;
}
break;
case UI_ACTION_BAUDRATE:
#if EEPROM_MODE != 0
{
int16_t p = 0;
int32_t rate;
do {
rate = pgm_read_dword(&(baudrates[(uint8_t)p]));
if(rate == baudrate) break;
p++;
} while(rate != 0);
if(rate == 0) p -= 2;
p += increment;
if(p < 0) p = 0;
if(p > static_cast<int16_t>(sizeof(baudrates) / 4) - 2)
p = sizeof(baudrates) / 4 - 2;
baudrate = pgm_read_dword(&(baudrates[p]));
}
#endif
break;
case UI_ACTION_SERVOPOS:
#if FEATURE_SERVO > 0 && UI_SERVO_CONTROL > 0
INCREMENT_MIN_MAX(servoPosition, 5, 500, 2500);
HAL::servoMicroseconds(UI_SERVO_CONTROL - 1, servoPosition, 500);
#endif
break;
case UI_ACTION_PID_PGAIN:
INCREMENT_MIN_MAX(currHeaterForSetup->pidPGain, 0.1, 0, 200);
break;
case UI_ACTION_PID_IGAIN:
INCREMENT_MIN_MAX(currHeaterForSetup->pidIGain, 0.01, 0, 100);
if(&Extruder::current->tempControl == currHeaterForSetup)
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_PID_DGAIN:
INCREMENT_MIN_MAX(currHeaterForSetup->pidDGain, 0.1, 0, 200);
break;
case UI_ACTION_DRIVE_MIN:
INCREMENT_MIN_MAX(currHeaterForSetup->pidDriveMin, 1, 1, 255);
break;
case UI_ACTION_DRIVE_MAX:
INCREMENT_MIN_MAX(currHeaterForSetup->pidDriveMax, 1, 1, 255);
break;
case UI_ACTION_PID_MAX:
INCREMENT_MIN_MAX(currHeaterForSetup->pidMax, 1, 1, 255);
break;
case UI_ACTION_X_OFFSET:
INCREMENT_MIN_MAX(Extruder::current->xOffset, RMath::max(static_cast<int32_t>(1), static_cast<int32_t>(Printer::axisStepsPerMM[X_AXIS] / 100)), -9999999, 9999999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_Y_OFFSET:
INCREMENT_MIN_MAX(Extruder::current->yOffset, RMath::max(static_cast<int32_t>(1), static_cast<int32_t>(Printer::axisStepsPerMM[Y_AXIS] / 100)), -9999999, 9999999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_Z_OFFSET:
INCREMENT_MIN_MAX(Extruder::current->zOffset, RMath::max(static_cast<int32_t>(1), static_cast<int32_t>(Printer::axisStepsPerMM[Z_AXIS] / 100)), -9999999, 9999999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_STEPS:
INCREMENT_MIN_MAX(Extruder::current->stepsPerMM, 0.1, 1, 99999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_ACCELERATION:
INCREMENT_MIN_MAX(Extruder::current->maxAcceleration, 10, 10, 99999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_MAX_FEEDRATE:
INCREMENT_MIN_MAX(Extruder::current->maxFeedrate, 1, 1, 999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_START_FEEDRATE:
INCREMENT_MIN_MAX(Extruder::current->maxStartFeedrate, 1, 1, 999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_HEATMANAGER:
INCREMENT_MIN_MAX(currHeaterForSetup->heatManager, 1, 0, 3);
Printer::setMenuMode(MENU_MODE_FULL_PID, currHeaterForSetup->heatManager == 1); // show PIDS only with PID controller selected
Printer::setMenuMode(MENU_MODE_DEADTIME, currHeaterForSetup->heatManager == 3);
break;
case UI_ACTION_EXTR_WATCH_PERIOD:
INCREMENT_MIN_MAX(Extruder::current->watchPeriod, 1, 0, 999);
break;
#if RETRACT_DURING_HEATUP
case UI_ACTION_EXTR_WAIT_RETRACT_TEMP:
INCREMENT_MIN_MAX(Extruder::current->waitRetractTemperature, 1, 100, UI_SET_MAX_EXTRUDER_TEMP);
break;
case UI_ACTION_EXTR_WAIT_RETRACT_UNITS:
INCREMENT_MIN_MAX(Extruder::current->waitRetractUnits, 1, 0, 99);
break;
#endif
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
case UI_ACTION_ADVANCE_K:
INCREMENT_MIN_MAX(Extruder::current->advanceK, 1, 0, 200);
break;
#endif
case UI_ACTION_ADVANCE_L:
INCREMENT_MIN_MAX(Extruder::current->advanceL, 1, 0, 600);
break;
#endif
#if FEATURE_AUTOLEVEL
case UI_ACTION_AUTOLEVEL2:
popMenu(true);
break;
#endif
#if DISTORTION_CORRECTION
case UI_ACTION_MEASURE_DISTORTION2:
popMenu(true);
break;
#endif
default:
EVENT_UI_NEXTPREVIOUS(action, allowMoves, increment);
break;
}
#if UI_AUTORETURN_TO_MENU_AFTER!=0
ui_autoreturn_time = HAL::timeInMilliseconds() + UI_AUTORETURN_TO_MENU_AFTER;
#endif
#endif
return true;
}
#if UI_BED_COATING
void UIDisplay::menuAdjustHeight(const UIMenu *men, float offset) {
#if EEPROM_MODE != 0
//If there is something to change
if (EEPROM::zProbeZOffset() != offset) {
HAL::eprSetFloat(EPR_Z_PROBE_Z_OFFSET, offset);
EEPROM::storeDataIntoEEPROM(false);
}
#endif
Printer::zBedOffset = offset;
//Display message
pushMenu(men, false);
BEEP_SHORT;
Printer::homeAxis(true, true, true);
Commands::printCurrentPosition();
menuLevel = 0;
activeAction = 0;
UI_STATUS_UPD_F(Com::translatedF(UI_TEXT_PRINTER_READY_ID));
}
#endif
void UIDisplay::finishAction(unsigned int action) {
if(EVENT_UI_FINISH_ACTION(action))
return;
switch(action) {
#if UI_BED_COATING
case UI_ACTION_COATING_CUSTOM:
menuAdjustHeight(&ui_menu_coating_custom, Printer::zBedOffset);
break;
#endif
#if EEPROM_MODE != 0
case UI_ACTION_BED_PREHEAT:
#if HAVE_HEATED_BED
{
HAL::eprSetInt16(EPR_BED_PREHEAT_TEMP, heatedBedController.preheatTemperature);
EEPROM::updateChecksum();
}
#endif
break;
case UI_ACTION_EXT0_PREHEAT:
case UI_ACTION_EXT1_PREHEAT:
case UI_ACTION_EXT2_PREHEAT:
case UI_ACTION_EXT3_PREHEAT:
case UI_ACTION_EXT4_PREHEAT:
case UI_ACTION_EXT5_PREHEAT: {
int i = action - UI_ACTION_EXT0_PREHEAT;
int o = i * EEPROM_EXTRUDER_LENGTH + EEPROM_EXTRUDER_OFFSET;
Extruder *e = &extruder[i];
HAL::eprSetInt16(o + EPR_EXTRUDER_PREHEAT, e->tempControl.preheatTemperature);
EEPROM::updateChecksum();
}
break;
#endif
}
}
// Actions are events from user input. Depending on the current state, each
// action can behave differently. Other actions do always the same like home, disable extruder etc.
int UIDisplay::executeAction(unsigned int action, bool allowMoves) {
int ret = 0;
#if UI_HAS_KEYS == 1
if(action & UI_ACTION_TOPMENU) { // Go to start menu
menuLevel = 0;
}
action &= 8191; // strip out higher level flags
if(action >= 2000 && action < 3000) {
setStatusP(Com::translatedF(UI_TEXT_STRING_ACTION_ID));
} else if(!EVENT_UI_OVERRIDE_EXECUTE(action, allowMoves))
switch(action) {
case UI_ACTION_OK:
ret = okAction(allowMoves);
break;
case UI_ACTION_BACK:
if(uid.isWizardActive()) break; // wizards can not exit before finished
popMenu(false);
break;
case UI_ACTION_MESSAGE:
popMenu(true);
break;
case UI_ACTION_NEXT:
if(!nextPreviousAction(1, allowMoves))
ret = UI_ACTION_NEXT;
break;
case UI_ACTION_PREVIOUS:
if(!nextPreviousAction(-1, allowMoves))
ret = UI_ACTION_PREVIOUS;
break;
case UI_ACTION_MENU_UP:
if(menuLevel > 0) menuLevel--;
break;
case UI_ACTION_TOP_MENU:
menuLevel = 0;
break;
case UI_ACTION_EMERGENCY_STOP:
Commands::emergencyStop();
break;
case UI_ACTION_HOME_ALL:
if(!allowMoves) return UI_ACTION_HOME_ALL;
uid.pushMenu(&ui_msg_homing, true);
Printer::homeAxis(true, true, true);
Commands::printCurrentPosition();
uid.popMenu(true);
break;
case UI_ACTION_HOME_X:
if(!allowMoves) return UI_ACTION_HOME_X;
uid.pushMenu(&ui_msg_homing, true);
Printer::homeAxis(true, false, false);
Commands::printCurrentPosition();
uid.popMenu(true);
break;
case UI_ACTION_HOME_Y:
if(!allowMoves) return UI_ACTION_HOME_Y;
uid.pushMenu(&ui_msg_homing, true);
Printer::homeAxis(false, true, false);
Commands::printCurrentPosition();
uid.popMenu(true);
break;
case UI_ACTION_HOME_Z:
if(!allowMoves) return UI_ACTION_HOME_Z;
uid.pushMenu(&ui_msg_homing, true);
Printer::homeAxis(false, false, true);
Commands::printCurrentPosition();
uid.popMenu(true);
break;
case UI_ACTION_SET_ORIGIN:
if(!allowMoves) return UI_ACTION_SET_ORIGIN;
Printer::setOrigin(-Printer::currentPosition[X_AXIS], -Printer::currentPosition[Y_AXIS], -Printer::currentPosition[Z_AXIS]);
break;
case UI_ACTION_TOGGLE_JAMCONTROL:
Printer::setJamcontrolDisabled(!Printer::isJamcontrolDisabled());
break;
case UI_ACTION_DEBUG_ECHO:
Printer::toggleEcho();
break;
case UI_ACTION_DEBUG_INFO:
Printer::toggleInfo();
break;
case UI_ACTION_DEBUG_ERROR:
Printer::toggleErrors();
break;
case UI_ACTION_DEBUG_ENDSTOP:
Printer::toggleEndStop();
break;
case UI_ACTION_DEBUG_DRYRUN:
Printer::toggleDryRun();
if(Printer::debugDryrun()) { // simulate movements without printing
for(int i = 0; i < NUM_EXTRUDER; i++)
Extruder::setTemperatureForExtruder(0, i);
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(0);
#endif
}
break;
case UI_ACTION_POWER:
#if PS_ON_PIN >= 0 // avoid compiler errors when the power supply pin is disabled
{
GCode gc; //not fully initialized but processMCode only needs M set for commands 80/81
gc.M = Printer::isPowerOn() ? 81 : 80;
Commands::processMCode(&gc);
}
#endif
break;
#if CASE_LIGHTS_PIN >= 0
case UI_ACTION_LIGHTS_ONOFF:
TOGGLE(CASE_LIGHTS_PIN);
#ifdef CASE_LIGHTS2_PIN
TOGGLE(CASE_LIGHTS2_PIN);
#endif
Printer::reportCaseLightStatus();
UI_STATUS_F(Com::translatedF(UI_TEXT_LIGHTS_ONOFF_ID));
break;
#endif
case UI_ACTION_PREHEAT_SINGLE:
UI_STATUS_F(Com::translatedF(UI_TEXT_PREHEAT_SINGLE_ID));
#if NUM_EXTRUDER > 0
Extruder::setTemperatureForExtruder(extruder[0].tempControl.preheatTemperature, 0);
#endif
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(heatedBedController.preheatTemperature);
#endif
break;
case UI_ACTION_PREHEAT_ALL:
UI_STATUS_F(Com::translatedF(UI_TEXT_PREHEAT_ALL_ID));
#if NUM_EXTRUDER > 0
for(fast8_t i = 0; i < NUM_EXTRUDER; i++)
Extruder::setTemperatureForExtruder(extruder[i].tempControl.preheatTemperature, i);
#endif
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(heatedBedController.preheatTemperature);
#endif
break;
case UI_ACTION_COOLDOWN:
UI_STATUS_F(Com::translatedF(UI_TEXT_COOLDOWN_ID));
#if NUM_EXTRUDER > 0
for(int i = 0; i < NUM_EXTRUDER; i++)
Extruder::setTemperatureForExtruder(0, i);
#endif
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(0);
#endif
break;
case UI_ACTION_HEATED_BED_OFF:
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(0);
#endif
break;
case UI_ACTION_EXTRUDER0_OFF:
#if NUM_EXTRUDER > 1
case UI_ACTION_EXTRUDER1_OFF:
#endif
#if NUM_EXTRUDER > 2
case UI_ACTION_EXTRUDER2_OFF:
#endif
#if NUM_EXTRUDER > 3
case UI_ACTION_EXTRUDER3_OFF:
#endif
#if NUM_EXTRUDER > 4
case UI_ACTION_EXTRUDER4_OFF:
#endif
#if NUM_EXTRUDER > 5
case UI_ACTION_EXTRUDER5_OFF:
#endif
Extruder::setTemperatureForExtruder(0, action - UI_ACTION_EXTRUDER0_OFF);
break;
case UI_ACTION_DISABLE_STEPPER:
Printer::kill(true);
break;
case UI_ACTION_RESET_EXTRUDER:
Printer::currentPositionSteps[E_AXIS] = 0;
break;
case UI_ACTION_EXTRUDER_RELATIVE:
Printer::relativeExtruderCoordinateMode = !Printer::relativeExtruderCoordinateMode;
break;
case UI_ACTION_SELECT_EXTRUDER0:
#if NUM_EXTRUDER > 1
case UI_ACTION_SELECT_EXTRUDER1:
#endif
#if NUM_EXTRUDER > 2
case UI_ACTION_SELECT_EXTRUDER2:
#endif
#if NUM_EXTRUDER > 3
case UI_ACTION_SELECT_EXTRUDER3:
#endif
#if NUM_EXTRUDER > 4
case UI_ACTION_SELECT_EXTRUDER4:
#endif
#if NUM_EXTRUDER > 5
case UI_ACTION_SELECT_EXTRUDER5:
#endif
if(!allowMoves) return action;
Extruder::selectExtruderById(static_cast<uint8_t>(action - UI_ACTION_SELECT_EXTRUDER0));
currHeaterForSetup = &(Extruder::current->tempControl);
Printer::setMenuMode(MENU_MODE_FULL_PID, currHeaterForSetup->heatManager == 1);
Printer::setMenuMode(MENU_MODE_DEADTIME, currHeaterForSetup->heatManager == 3);
break;
#if FEATURE_DITTO_PRINTING
case UI_DITTO_0:
case UI_DITTO_1:
case UI_DITTO_2:
case UI_DITTO_3:
#if DUAL_X_AXIS
Extruder::dittoMode = 0;
Extruder::selectExtruderById(0);
Printer::homeXAxis();
if( action - UI_DITTO_0 > 0) {
#if LAZY_DUAL_X_AXIS
PrintLine::moveRelativeDistanceInSteps(-Extruder::current->xOffset, 0, 0, 0, EXTRUDER_SWITCH_XY_SPEED, true, true);
#endif
Extruder::current = &extruder[1];
PrintLine::moveRelativeDistanceInSteps(-Extruder::current->xOffset + static_cast<int32_t>(Printer::xLength * 0.5 * Printer::axisStepsPerMM[X_AXIS]), 0, 0, 0, EXTRUDER_SWITCH_XY_SPEED, true, true);
Printer::currentPositionSteps[X_AXIS] = Printer::xMinSteps;
Extruder::current = &extruder[0];
Extruder::dittoMode = 1;
}
#else
Extruder::dittoMode = action - UI_DITTO_0;
#endif
Extruder::dittoMode = action - UI_DITTO_0;
break;
#endif
#if EEPROM_MODE != 0
case UI_ACTION_STORE_EEPROM:
EEPROM::storeDataIntoEEPROM(false);
pushMenu(&ui_menu_eeprom_saved, false);
BEEP_LONG;
break;
case UI_ACTION_LOAD_EEPROM:
EEPROM::readDataFromEEPROM(true);
Extruder::selectExtruderById(Extruder::current->id);
pushMenu(&ui_menu_eeprom_loaded, false);
BEEP_LONG;
break;
case UI_ACTION_RESET_EEPROM:
EEPROM::restoreEEPROMSettingsFromConfiguration();
EEPROM::storeDataIntoEEPROM(false);
pushMenu(&ui_menu_eeprom_reset, false);
BEEP_LONG;
break;
#endif
#if SDSUPPORT
case UI_ACTION_SD_DELETE:
if(sd.sdactive) {
pushMenu(&ui_menu_sd_fileselector, false);
} else {
UI_ERROR_P(Com::translatedF(UI_TEXT_NOSDCARD_ID));
}
break;
case UI_ACTION_SD_PRINT:
if(sd.sdactive) {
pushMenu(&ui_menu_sd_fileselector, false);
}
break;
case UI_ACTION_SD_PAUSE:
if(!allowMoves)
ret = UI_ACTION_SD_PAUSE;
else
sd.pausePrint(true);
break;
case UI_ACTION_SD_CONTINUE:
if(!allowMoves) ret = UI_ACTION_SD_CONTINUE;
else sd.continuePrint(true);
break;
case UI_ACTION_SD_PRI_PAU_CONT:
if(!allowMoves) ret = UI_ACTION_SD_PRI_PAU_CONT;
else {
if(Printer::isMenuMode(MENU_MODE_SD_PRINTING + MENU_MODE_PAUSED))
sd.continuePrint(true);
else if(Printer::isMenuMode(MENU_MODE_SD_PRINTING))
sd.pausePrint(true);
else if(sd.sdactive)
pushMenu(&ui_menu_sd_fileselector, false);
}
break;
case UI_ACTION_SD_STOP:
if(!allowMoves) ret = UI_ACTION_SD_STOP;
else sd.stopPrint();
break;
case UI_ACTION_SD_UNMOUNT:
sd.unmount();
break;
case UI_ACTION_SD_MOUNT:
sd.mount();
break;
case UI_ACTION_MENU_SDCARD:
pushMenu(&ui_menu_sd, false);
break;
#endif
case UI_ACTION_STOP:
pushMenu(&ui_menu_askstop, true);
break;
case UI_ACTION_STOP_CONFIRMED:
Printer::stopPrint();
break;
case UI_ACTION_CONTINUE:
Printer::continuePrint();
break;
#if FAN_PIN>-1 && FEATURE_FAN_CONTROL
case UI_ACTION_FAN_OFF:
case UI_ACTION_FAN_25:
case UI_ACTION_FAN_50:
case UI_ACTION_FAN_75:
Commands::setFanSpeed((action - UI_ACTION_FAN_OFF) * 64, true);
break;
case UI_ACTION_FAN_FULL:
Commands::setFanSpeed(255, true);
break;
case UI_ACTION_FAN_SUSPEND: {
static uint8_t lastFanSpeed = 255;
if(Printer::getFanSpeed() == 0)
Commands::setFanSpeed(lastFanSpeed, true);
else {
lastFanSpeed = Printer::getFanSpeed();
Commands::setFanSpeed(0, true);
}
}
break;
case UI_ACTION_IGNORE_M106:
Printer::flag2 ^= PRINTER_FLAG2_IGNORE_M106_COMMAND;
break;
#endif
case UI_ACTION_MENU_XPOS:
pushMenu(&ui_menu_xpos, false);
break;
case UI_ACTION_MENU_YPOS:
pushMenu(&ui_menu_ypos, false);
break;
case UI_ACTION_MENU_ZPOS:
pushMenu(&ui_menu_zpos, false);
break;
case UI_ACTION_MENU_XPOSFAST:
pushMenu(&ui_menu_xpos_fast, false);
break;
case UI_ACTION_MENU_YPOSFAST:
pushMenu(&ui_menu_ypos_fast, false);
break;
case UI_ACTION_MENU_ZPOSFAST:
pushMenu(&ui_menu_zpos_fast, false);
break;
case UI_ACTION_MENU_QUICKSETTINGS:
pushMenu(&ui_menu_quick, false);
break;
case UI_ACTION_MENU_EXTRUDER:
pushMenu(&ui_menu_extruder, false);
break;
case UI_ACTION_MENU_POSITIONS:
pushMenu(&ui_menu_positions, false);
break;
#ifdef UI_USERMENU1
case UI_ACTION_SHOW_USERMENU1:
pushMenu(&UI_USERMENU1, false);
break;
#endif
#ifdef UI_USERMENU2
case UI_ACTION_SHOW_USERMENU2:
pushMenu(&UI_USERMENU2, false);
break;
#endif
#ifdef UI_USERMENU3
case UI_ACTION_SHOW_USERMENU3:
pushMenu(&UI_USERMENU3, false);
break;
#endif
#ifdef UI_USERMENU4
case UI_ACTION_SHOW_USERMENU4:
pushMenu(&UI_USERMENU4, false);
break;
#endif
#ifdef UI_USERMENU5
case UI_ACTION_SHOW_USERMENU5:
pushMenu(&UI_USERMENU5, false);
break;
#endif
#ifdef UI_USERMENU6
case UI_ACTION_SHOW_USERMENU6:
pushMenu(&UI_USERMENU6, false);
break;
#endif
#ifdef UI_USERMENU7
case UI_ACTION_SHOW_USERMENU7:
pushMenu(&UI_USERMENU7, false);
break;
#endif
#ifdef UI_USERMENU8
case UI_ACTION_SHOW_USERMENU8:
pushMenu(&UI_USERMENU8, false);
break;
#endif
#ifdef UI_USERMENU9
case UI_ACTION_SHOW_USERMENU9:
pushMenu(&UI_USERMENU9, false);
break;
#endif
#ifdef UI_USERMENU10
case UI_ACTION_SHOW_USERMENU10:
pushMenu(&UI_USERMENU10, false);
break;
#endif
#if FEATURE_RETRACTION
case UI_ACTION_WIZARD_FILAMENTCHANGE: {
popMenu(false);
if(Printer::isBlockingReceive()) break;
Printer::setJamcontrolDisabled(true);
Com::printFLN(PSTR("important: Filament change required!"));
Printer::setBlockingReceive(true);
BEEP_LONG;
pushMenu(&ui_wiz_filamentchange, true);
Printer::resetWizardStack();
Printer::pushWizardVar(Printer::currentPositionSteps[E_AXIS]);
Printer::pushWizardVar(Printer::coordinateOffset[X_AXIS]);
Printer::pushWizardVar(Printer::coordinateOffset[Y_AXIS]);
Printer::pushWizardVar(Printer::coordinateOffset[Z_AXIS]);
if(!Printer::isMenuMode(MENU_MODE_SD_PRINTING + MENU_MODE_PAUSED))
Printer::MemoryPosition();
Extruder::current->retractDistance(FILAMENTCHANGE_SHORTRETRACT);
Printer::currentPositionSteps[E_AXIS] = 0;
Printer::moveToParkPosition();
Extruder::current->retractDistance(FILAMENTCHANGE_LONGRETRACT);
Extruder::current->disableCurrentExtruderMotor();
}
break;
#if EXTRUDER_JAM_CONTROL
case UI_ACTION_WIZARD_JAM_EOF: {
Printer::setJamcontrolDisabled(true);
Printer::setBlockingReceive(true);
Printer::resetWizardStack();
Printer::pushWizardVar(Printer::currentPositionSteps[E_AXIS]);
Printer::pushWizardVar(Printer::coordinateOffset[X_AXIS]);
Printer::pushWizardVar(Printer::coordinateOffset[Y_AXIS]);
Printer::pushWizardVar(Printer::coordinateOffset[Z_AXIS]);
Printer::MemoryPosition();
Extruder::current->retractDistance(FILAMENTCHANGE_SHORTRETRACT);
Printer::currentPositionSteps[E_AXIS] = 0;
Printer::moveToParkPosition();
//Extruder::current->retractDistance(FILAMENTCHANGE_LONGRETRACT);
Extruder::pauseExtruders(false);
Commands::waitUntilEndOfAllMoves();
#if FILAMENTCHANGE_REHOME
Printer::disableXStepper();
Printer::disableYStepper();
#if Z_HOME_DIR > 0 && FILAMENTCHANGE_REHOME == 2
Printer::disableZStepper();
#endif
#endif
pushMenu(&ui_wiz_jamreheat, true);
}
break;
#endif // EXTRUDER_JAM_CONTROL
#endif // FEATURE_RETRACTION
case UI_ACTION_X_UP:
case UI_ACTION_X_DOWN:
if(!allowMoves) return action;
PrintLine::moveRelativeDistanceInStepsReal(((action == UI_ACTION_X_UP) ? 1.0 : -1.0) * Printer::axisStepsPerMM[X_AXIS], 0, 0, 0, Printer::homingFeedrate[X_AXIS], false, false);
break;
case UI_ACTION_Y_UP:
case UI_ACTION_Y_DOWN:
if(!allowMoves) return action;
PrintLine::moveRelativeDistanceInStepsReal(0, ((action == UI_ACTION_Y_UP) ? 1.0 : -1.0) * Printer::axisStepsPerMM[Y_AXIS], 0, 0, Printer::homingFeedrate[Y_AXIS], false, false);
break;
case UI_ACTION_Z_UP:
case UI_ACTION_Z_DOWN:
if(!allowMoves) return action;
PrintLine::moveRelativeDistanceInStepsReal(0, 0, ((action == UI_ACTION_Z_UP) ? 1.0 : -1.0) * Printer::axisStepsPerMM[Z_AXIS], 0, Printer::homingFeedrate[Z_AXIS], false, false);
break;
case UI_ACTION_EXTRUDER_UP:
case UI_ACTION_EXTRUDER_DOWN:
if(!allowMoves) return action;
PrintLine::moveRelativeDistanceInStepsReal(0, 0, 0, ((action == UI_ACTION_EXTRUDER_UP) ? 1.0 : -1.0) * Printer::axisStepsPerMM[E_AXIS], UI_SET_EXTRUDER_FEEDRATE, false, false);
break;
case UI_ACTION_EXTRUDER_TEMP_UP: {
int tmp = (int)(Extruder::current->tempControl.targetTemperatureC) + 1;
if(tmp == 1) tmp = UI_SET_MIN_EXTRUDER_TEMP;
else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP;
Extruder::setTemperatureForExtruder(tmp, Extruder::current->id);
}
break;
case UI_ACTION_EXTRUDER_TEMP_DOWN: {
int tmp = (int)(Extruder::current->tempControl.targetTemperatureC) - 1;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
Extruder::setTemperatureForExtruder(tmp, Extruder::current->id);
}
break;
case UI_ACTION_HEATED_BED_UP:
#if HAVE_HEATED_BED
{
int tmp = (int)heatedBedController.targetTemperatureC + 1;
if(tmp == 1) tmp = UI_SET_MIN_HEATED_BED_TEMP;
else if(tmp > UI_SET_MAX_HEATED_BED_TEMP) tmp = UI_SET_MAX_HEATED_BED_TEMP;
Extruder::setHeatedBedTemperature(tmp);
}
#endif
break;
#if MAX_HARDWARE_ENDSTOP_Z
case UI_ACTION_SET_MEASURED_ORIGIN: {
Printer::updateCurrentPosition();
Printer::zLength -= Printer::currentPosition[Z_AXIS];
Printer::currentPositionSteps[Z_AXIS] = 0;
Printer::updateDerivedParameter();
#if NONLINEAR_SYSTEM
transformCartesianStepsToDeltaSteps(Printer::currentPositionSteps, Printer::currentNonlinearPositionSteps);
#endif
Printer::updateCurrentPosition(true);
Com::printFLN(Com::tZProbePrinterHeight, Printer::zLength);
#if EEPROM_MODE != 0
EEPROM::storeDataIntoEEPROM(false);
Com::printFLN(Com::tEEPROMUpdated);
#endif
Commands::printCurrentPosition();
}
break;
#endif
case UI_ACTION_SET_P1:
#if SOFTWARE_LEVELING
for (uint8_t i = 0; i < 3; i++) {
Printer::levelingP1[i] = Printer::currentPositionSteps[i];
}
#endif
break;
case UI_ACTION_SET_P2:
#if SOFTWARE_LEVELING
for (uint8_t i = 0; i < 3; i++) {
Printer::levelingP2[i] = Printer::currentPositionSteps[i];
}
#endif
break;
case UI_ACTION_SET_P3:
#if SOFTWARE_LEVELING
for (uint8_t i = 0; i < 3; i++) {
Printer::levelingP3[i] = Printer::currentPositionSteps[i];
}
#endif
break;
case UI_ACTION_CALC_LEVEL:
#if SOFTWARE_LEVELING
int32_t factors[4];
PrintLine::calculatePlane(factors, Printer::levelingP1, Printer::levelingP2, Printer::levelingP3);
Com::printFLN(Com::tLevelingCalc);
Com::printFLN(Com::tTower1, PrintLine::calcZOffset(factors, Printer::deltaAPosXSteps, Printer::deltaAPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]);
Com::printFLN(Com::tTower2, PrintLine::calcZOffset(factors, Printer::deltaBPosXSteps, Printer::deltaBPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]);
Com::printFLN(Com::tTower3, PrintLine::calcZOffset(factors, Printer::deltaCPosXSteps, Printer::deltaCPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]);
#endif
break;
#if FEATURE_Z_PROBE
case UI_ACTION_MEASURE_ZPROBE_HEIGHT:
Printer::wizardStackPos = 0;
Printer::wizardStack[0].f = Printer::currentPosition[Z_AXIS];
uid.pushMenu(&ui_menu_mzp, true);
break;
case UI_ACTION_MEASURE_ZPROBE_HEIGHT2:
Printer::measureZProbeHeight(Printer::wizardStack[0].f);
uid.popMenu(true);
break;
#endif
case UI_ACTION_HEATED_BED_DOWN:
#if HAVE_HEATED_BED
{
int tmp = (int)heatedBedController.targetTemperatureC - 1;
if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0;
Extruder::setHeatedBedTemperature(tmp);
}
#endif
break;
case UI_ACTION_FAN_UP:
Commands::setFanSpeed(Printer::getFanSpeed() + 32, true);
break;
case UI_ACTION_FAN_DOWN:
Commands::setFanSpeed(Printer::getFanSpeed() - 32, true);
break;
case UI_ACTION_KILL:
Commands::emergencyStop();
break;
case UI_ACTION_RESET:
HAL::resetHardware();
break;
case UI_ACTION_PAUSE:
Printer::pausePrint();
//Com::printFLN(PSTR("RequestPause:"));
break;
#if UI_BED_COATING
case UI_ACTION_NOCOATING:
menuAdjustHeight(&ui_menu_nocoating_action, 0);
break;
case UI_ACTION_BUILDTAK:
menuAdjustHeight(&ui_menu_buildtak_action, 0.4);
break;
case UI_ACTION_KAPTON:
menuAdjustHeight(&ui_menu_kapton_action, 0.04);
break;
case UI_ACTION_GLUESTICK:
menuAdjustHeight(&ui_menu_gluestick_action, 0.04);
break;
case UI_ACTION_BLUETAPE:
menuAdjustHeight(&ui_menu_bluetape_action, 0.15);
break;
case UI_ACTION_PETTAPE:
menuAdjustHeight(&ui_menu_pettape_action, 0.09);
break;
#endif
#if FEATURE_AUTOLEVEL
case UI_ACTION_AUTOLEVEL_ONOFF:
Printer::setAutolevelActive(!Printer::isAutolevelActive());
break;
#endif
#ifdef DEBUG_PRINT
case UI_ACTION_WRITE_DEBUG:
Com::printF(PSTR("Buf. Read Idx:"), (int)GCode::bufferReadIndex);
Com::printF(PSTR(" Buf. Write Idx:"), (int)GCode::bufferWriteIndex);
Com::printF(PSTR(" Comment:"), (int)GCode::commentDetected);
Com::printF(PSTR(" Buf. Len:"), (int)GCode::bufferLength);
Com::printF(PSTR(" Wait resend:"), (int)GCode::waitingForResend);
Com::printFLN(PSTR(" Recv. Write Pos:"), (int)GCode::commandsReceivingWritePosition);
//Com::printF(PSTR("Min. XY Speed:"),Printer::minimumSpeed);
//Com::printF(PSTR(" Min. Z Speed:"),Printer::minimumZSpeed);
Com::printF(PSTR(" Buffer:"), PrintLine::linesCount);
Com::printF(PSTR(" Lines pos:"), (int)PrintLine::linesPos);
Com::printFLN(PSTR(" Write Pos:"), (int)PrintLine::linesWritePos);
Com::printFLN(PSTR("Wait loop:"), debugWaitLoop);
Com::printF(PSTR("sd mode:"), (int)sd.sdmode);
Com::printF(PSTR(" pos:"), sd.sdpos);
Com::printFLN(PSTR(" of "), sd.filesize);
break;
#endif
case UI_ACTION_TEMP_DEFECT:
Printer::setAnyTempsensorDefect();
break;
case UI_ACTION_LANGUAGE_EN:
case UI_ACTION_LANGUAGE_DE:
case UI_ACTION_LANGUAGE_NL:
case UI_ACTION_LANGUAGE_PT:
case UI_ACTION_LANGUAGE_IT:
case UI_ACTION_LANGUAGE_ES:
case UI_ACTION_LANGUAGE_SE:
case UI_ACTION_LANGUAGE_FR:
case UI_ACTION_LANGUAGE_CZ:
case UI_ACTION_LANGUAGE_PL:
case UI_ACTION_LANGUAGE_TR:
case UI_ACTION_LANGUAGE_FI:
Com::selectLanguage(action - UI_ACTION_LANGUAGE_EN);
#if EEPROM_MODE != 0
EEPROM::storeDataIntoEEPROM(0); // remember for next start
#endif
break;
#if FEATURE_AUTOLEVEL
case UI_ACTION_AUTOLEVEL:
uid.pushMenu(&ui_msg_clearbed1, true);
break;
#endif
#if DISTORTION_CORRECTION
case UI_ACTION_MEASURE_DISTORTION:
uid.pushMenu(&ui_msg_clearbed2, true);
break;
case UI_ACTION_TOGGLE_DISTORTION:
if(Printer::distortion.isEnabled())
Printer::distortion.disable(true);
else
Printer::distortion.enable(true);
break;
#endif
default:
EVENT_UI_EXECUTE(action, allowMoves);
break;
}
refreshPage();
#if UI_AUTORETURN_TO_MENU_AFTER!=0
ui_autoreturn_time = HAL::timeInMilliseconds() + UI_AUTORETURN_TO_MENU_AFTER;
#endif
#endif
return ret;
}
void UIDisplay::mediumAction() {
#if UI_HAS_I2C_ENCODER>0
uiCheckSlowEncoder();
#endif
}
// Gets calls from main tread only
void UIDisplay::slowAction(bool allowMoves) {
millis_t time = HAL::timeInMilliseconds();
uint8_t refresh = 0;
#if UI_HAS_KEYS == 1
// delayed action open?
if(allowMoves && delayedAction != 0) {
executeAction(delayedAction, true);
delayedAction = 0;
}
// Update key buffer
InterruptProtectedBlock noInts;
if((flags & (UI_FLAG_FAST_KEY_ACTION + UI_FLAG_KEY_TEST_RUNNING)) == 0) {
flags |= UI_FLAG_KEY_TEST_RUNNING;
noInts.unprotect();
#if defined(UI_I2C_HOTEND_LED) || defined(UI_I2C_HEATBED_LED) || defined(UI_I2C_FAN_LED)
{
// check temps and set appropriate leds
int led = 0;
#if NUM_EXTRUDER>0 && defined(UI_I2C_HOTEND_LED)
led |= (tempController[Extruder::current->id]->targetTemperatureC > 0 ? UI_I2C_HOTEND_LED : 0);
#endif
#if HAVE_HEATED_BED && defined(UI_I2C_HEATBED_LED)
led |= (heatedBedController.targetTemperatureC > 0 ? UI_I2C_HEATBED_LED : 0);
#endif
#if FAN_PIN>=0 && defined(UI_I2C_FAN_LED)
led |= (Printer::getFanSpeed() > 0 ? UI_I2C_FAN_LED : 0);
#endif
// update the leds
uid.outputMask = ~led & (UI_I2C_HEATBED_LED | UI_I2C_HOTEND_LED | UI_I2C_FAN_LED);
}
#endif
uint16_t nextAction = 0;
EVENT_CHECK_SLOW_KEYS(nextAction);
uiCheckSlowKeys(nextAction);
#ifdef HAS_USER_KEYS
ui_check_Ukeys(nextAction);
#endif
if(lastButtonAction != nextAction) {
lastButtonStart = time;
lastButtonAction = nextAction;
noInts.protect();
flags |= UI_FLAG_SLOW_KEY_ACTION; // Mark slow action
}
noInts.protect();
flags &= ~UI_FLAG_KEY_TEST_RUNNING;
}
noInts.protect();
if((flags & UI_FLAG_SLOW_ACTION_RUNNING) == 0) {
flags |= UI_FLAG_SLOW_ACTION_RUNNING;
// Reset click encoder
noInts.protect();
int16_t encodeChange = encoderPos;
encoderPos = 0;
noInts.unprotect();
int newAction;
if(encodeChange) { // encoder changed
Com::writeToAll = true;
nextPreviousAction(encodeChange, allowMoves);
BEEP_SHORT
refresh = 1;
}
if(lastAction != lastButtonAction) {
if(lastButtonAction == 0) {
if(lastAction >= 2000 && lastAction < 3000)
statusMsg[0] = 0;
lastAction = 0;
noInts.protect();
flags &= ~(UI_FLAG_FAST_KEY_ACTION + UI_FLAG_SLOW_KEY_ACTION);
} else if(time - lastButtonStart > UI_KEY_BOUNCETIME) { // New key pressed
lastAction = lastButtonAction;
BEEP_SHORT
Com::writeToAll = true;
if((newAction = executeAction(lastAction, allowMoves)) == 0) {
nextRepeat = time + UI_KEY_FIRST_REPEAT;
repeatDuration = UI_KEY_FIRST_REPEAT;
} else {
if(delayedAction == 0)
delayedAction = newAction;
}
}
} else if(lastAction < 1000 && lastAction) { // Repeatable key
if(time - nextRepeat < 10000) {
if(delayedAction == 0)
delayedAction = executeAction(lastAction, allowMoves);
else
executeAction(lastAction, allowMoves);
repeatDuration -= UI_KEY_REDUCE_REPEAT;
if(repeatDuration < UI_KEY_MIN_REPEAT) repeatDuration = UI_KEY_MIN_REPEAT;
nextRepeat = time + repeatDuration;
BEEP_SHORT
}
}
noInts.protect();
flags &= ~UI_FLAG_SLOW_ACTION_RUNNING;
}
noInts.unprotect();
#endif
#if UI_AUTORETURN_TO_MENU_AFTER != 0
if(menuLevel > 0 && ui_autoreturn_time < time && !uid.isSticky()) { // Go to top menu after x seconds
lastSwitch = time;
menuLevel = 0;
activeAction = 0;
}
#endif
if(uid.isWizardActive())
previousMillisCmd = HAL::timeInMilliseconds(); // prevent stepper/heater disable from timeout during active wizard
if(menuLevel == 0 && time > 4000) { // Top menu refresh/switch
if(time - lastSwitch > UI_PAGES_DURATION) {
lastSwitch = time;
#if !defined(UI_DISABLE_AUTO_PAGESWITCH) || !UI_DISABLE_AUTO_PAGESWITCH
menuPos[0]++;
if(menuPos[0] >= UI_NUM_PAGES)
menuPos[0] = 0;
#endif
refresh = 1;
} else if(time - lastRefresh >= 1000) refresh = 1;
} else if(time - lastRefresh >= 800) {
//UIMenu *men = (UIMenu*)menu[menuLevel];
//uint8_t mtype = pgm_read_byte((void*)&(men->menuType));
//if(mtype!=1)
refresh = 1;
}
if(refresh) { // does lcd need a refresh?
#if defined(TRY_AUTOREPAIR_LCD_ERRORS)
#if defined(HAS_AUTOREPAIR)
repairLCD();
#else
#error TRY_AUTOREPAIR_LCD_ERRORS is not supported for your display type!
#endif
#endif
if (menuLevel > 1 || Printer::isAutomount()) {
shift++;
if(shift + UI_COLS > MAX_COLS + 1)
shift = -2;
} else
shift = -2;
refreshPage();
lastRefresh = time;
}
}
// Gets called from inside an interrupt with interrupts allowed!
void UIDisplay::fastAction() {
#if UI_HAS_KEYS == 1
// Check keys
InterruptProtectedBlock noInts;
if((flags & (UI_FLAG_KEY_TEST_RUNNING + UI_FLAG_SLOW_KEY_ACTION)) == 0) {
flags |= UI_FLAG_KEY_TEST_RUNNING;
uint16_t nextAction = 0;
EVENT_CHECK_FAST_KEYS(nextAction);
uiCheckKeys(nextAction);
// ui_check_Ukeys(nextAction);
if(lastButtonAction != nextAction) {
lastButtonStart = HAL::timeInMilliseconds();
lastButtonAction = nextAction;
flags |= UI_FLAG_FAST_KEY_ACTION;
}
flags &= ~UI_FLAG_KEY_TEST_RUNNING;
}
#endif
}
#if defined(UI_REVERSE_ENCODER) && UI_REVERSE_ENCODER == 1
#if UI_ENCODER_SPEED==0
const int8_t encoder_table[16] PROGMEM = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0}; // Full speed
#elif UI_ENCODER_SPEED==1
const int8_t encoder_table[16] PROGMEM = {0, 0, 1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 1, 0, 0}; // Half speed
#else
const int8_t encoder_table[16] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0}; // Quart speed
#endif
#else
#if UI_ENCODER_SPEED==0
const int8_t encoder_table[16] PROGMEM = {0, 1, -1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 0, -1, 1, 0}; // Full speed
#elif UI_ENCODER_SPEED==1
const int8_t encoder_table[16] PROGMEM = {0, 0, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 0, 0}; // Half speed
#else
//const int8_t encoder_table[16] PROGMEM = {0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0}; // Quart speed
//const int8_t encoder_table[16] PROGMEM = {0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0}; // Quart speed
const int8_t encoder_table[16] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0}; // Quart speed
#endif
#endif
#endif
#if defined(CUSTOM_EVENTS)
#include "CustomEventsImpl.h"
#endif