

g V DC		
HW811	Z Motoren - ACT Motor 17HM541	17
Winkelschritt	$s_Z = 0.9$	Winkelschritt
Schritte pro Umdrehung	$steps_Z \coloneqq \frac{360}{s_Z} = 400$	Schritte pro Umdrehung
Mikroschrittmodus	$sm_Z \coloneqq \frac{1}{8}$	Mikroschrittmodus
Mikroschritte pro Umdrehung	$steps_m_Z \coloneqq \frac{steps_Z}{sm_Z} = 3200$	Mikroschritte pro Umdrehung
Zähnezahl Remenscheibe	t_Z := 0.8 mm	Steigung der Trapezgewindes
Zahnteilung	$i_Z \coloneqq 1$	Übersetzung
Mikroschritte pro mm	$e_Z \coloneqq rac{steps_m_Z \cdot i_Z}{t_Z} = 4000 \; rac{1}{mm}$	Mikroschritte pro mm
Auflösung	$r_Z\!\coloneqq\!rac{1}{e_Z}\!=\!0.25~\mu m$	Auflösung
	HW811 Winkelschritt Schritte pro Umdrehung Mikroschrittmodus Mikroschritte pro Umdrehung Zähnezahl Remenscheibe Zahnteilung Mikroschritte pro mm	HW811Z Motoren - ACT Motor 17HM541Winkelschritt $s_Z := 0.9$ Schritte pro Umdrehung $steps_Z := \frac{360}{s_Z} = 400$ Mikroschrittmodus $sm_Z := \frac{1}{8}$ Mikroschritte pro Umdrehung $steps_{-}m_Z := \frac{steps_Z}{sm_Z} = 3200$ Zähnezahl Remenscheibe $t_Z := 0.8 \ mm$ Zahnteilung $i_Z := 1$ Mikroschritte pro mm $e_Z := \frac{steps_{-}m_Z \cdot i_Z}{t_Z} = 4000 \ \frac{1}{mm}$

s_{XY} := 1.8	Winkelschritt
$steps_{XY} := \frac{360}{s_{XY}} = 200$ $sm_{XY} := \frac{1}{8}$ $steps_{MXY} := \frac{steps_{XY}}{sm_{XY}} = 1600$	Schritte pro Umdrehung
$sm_{XY} := \frac{1}{8}$	Mikroschrittmodus
$steps_m_{XY} := \frac{steps_{XY}}{sm_{XY}} = 1600$	Mikroschritte pro Umdrehung
z_{XY} := 20	Zähnezahl Remenscheibe
$t_{XY} \coloneqq 2$ mm	Zahnteilung
$e_{XY} \coloneqq rac{steps_m_{XY}}{z_{XY} \cdot t_{XY}} = 40 \; rac{1}{ extit{mm}}$	Mikroschritte pro mm
r_{XY} := $\frac{1}{e_{XY}}$ =25 μm	Auflösung

Extruder - Runice 42HS60-1504A 1,8° 60mm 70Ncm 1,5A

