1676 lines
60 KiB
C++
1676 lines
60 KiB
C++
/*
|
|
This file is part of Repetier-Firmware.
|
|
|
|
Repetier-Firmware is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Repetier-Firmware is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Repetier-Firmware. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
This firmware is a nearly complete rewrite of the sprinter firmware
|
|
by kliment (https://github.com/kliment/Sprinter)
|
|
which based on Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
|
|
*/
|
|
|
|
#include "Repetier.h"
|
|
|
|
uint8_t manageMonitor = 255; ///< Temp. we want to monitor with our host. 1+NUM_EXTRUDER is heated bed
|
|
unsigned int counterPeriodical = 0;
|
|
volatile uint8_t executePeriodical = 0;
|
|
uint8_t counter250ms = 25;
|
|
#if FEATURE_DITTO_PRINTING
|
|
uint8_t Extruder::dittoMode = 0;
|
|
#endif
|
|
#if MIXING_EXTRUDER > 0
|
|
int Extruder::mixingS;
|
|
uint8_t Extruder::mixingDir;
|
|
#endif // MIXING_EXTRUDER
|
|
#ifdef SUPPORT_MAX6675
|
|
extern int16_t read_max6675(uint8_t ss_pin);
|
|
#endif
|
|
#ifdef SUPPORT_MAX31855
|
|
extern int16_t read_max31855(uint8_t ss_pin);
|
|
#endif
|
|
|
|
#if ANALOG_INPUTS > 0
|
|
const uint8 osAnalogInputChannels[] PROGMEM = ANALOG_INPUT_CHANNELS;
|
|
uint8 osAnalogInputCounter[ANALOG_INPUTS];
|
|
uint osAnalogInputBuildup[ANALOG_INPUTS];
|
|
uint8 osAnalogInputPos=0; // Current sampling position
|
|
volatile uint osAnalogInputValues[ANALOG_INPUTS];
|
|
#endif
|
|
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_1
|
|
short temptable_generic1[GENERIC_THERM_NUM_ENTRIES][2];
|
|
#endif
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_2
|
|
short temptable_generic2[GENERIC_THERM_NUM_ENTRIES][2];
|
|
#endif
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_3
|
|
short temptable_generic3[GENERIC_THERM_NUM_ENTRIES][2];
|
|
#endif
|
|
/** Makes updates to temperatures and heater state every call.
|
|
|
|
Is called every 100ms.
|
|
*/
|
|
static uint8_t extruderTempErrors = 0;
|
|
|
|
void Extruder::manageTemperatures()
|
|
{
|
|
#if FEATURE_WATCHDOG
|
|
HAL::pingWatchdog();
|
|
#endif // FEATURE_WATCHDOG
|
|
uint8_t errorDetected = 0;
|
|
millis_t time = HAL::timeInMilliseconds(); // compare time for decouple tests
|
|
for(uint8_t controller = 0; controller < NUM_TEMPERATURE_LOOPS; controller++)
|
|
{
|
|
TemperatureController *act = tempController[controller];
|
|
// Handle automatic cooling of extruders
|
|
if(controller < NUM_EXTRUDER)
|
|
{
|
|
#if SHARED_COOLER && NUM_EXTRUDER >= 2 && EXT0_EXTRUDER_COOLER_PIN == EXT1_EXTRUDER_COOLER_PIN && EXT0_EXTRUDER_COOLER_PIN >= 0
|
|
if(controller == 0) {
|
|
bool enable = false;
|
|
for(uint8_t j = 0; j < NUM_EXTRUDER; j++) {
|
|
if(tempController[j]->currentTemperatureC >= EXTRUDER_FAN_COOL_TEMP || tempController[j]->targetTemperatureC >= EXTRUDER_FAN_COOL_TEMP) {
|
|
enable = true;
|
|
break;
|
|
}
|
|
}
|
|
extruder[0].coolerPWM = (enable ? extruder[0].coolerSpeed : 0);
|
|
}
|
|
#else
|
|
if(act->currentTemperatureC < EXTRUDER_FAN_COOL_TEMP && act->targetTemperatureC < EXTRUDER_FAN_COOL_TEMP)
|
|
extruder[controller].coolerPWM = 0;
|
|
else
|
|
extruder[controller].coolerPWM = extruder[controller].coolerSpeed;
|
|
#endif // NUM_EXTRUDER
|
|
}
|
|
|
|
if(controller == autotuneIndex) continue;
|
|
#if MIXING_EXTRUDER
|
|
if(controller > 0 && controller < NUM_EXTRUDER) continue; // Mixing extruder only test for ext 0
|
|
#endif
|
|
|
|
// Get Temperature
|
|
act->updateCurrentTemperature();
|
|
|
|
|
|
// Check for obvious sensor errors
|
|
if(!Printer::isAnyTempsensorDefect() && (act->currentTemperatureC < MIN_DEFECT_TEMPERATURE || act->currentTemperatureC > MAX_DEFECT_TEMPERATURE)) // no temp sensor or short in sensor, disable heater
|
|
{
|
|
extruderTempErrors++;
|
|
errorDetected = 1;
|
|
if(extruderTempErrors > 10) // Ignore short temporary failures
|
|
{
|
|
Printer::setAnyTempsensorDefect();
|
|
reportTempsensorError();
|
|
}
|
|
}
|
|
if(Printer::isAnyTempsensorDefect()) continue;
|
|
uint8_t on = act->currentTemperatureC >= act->targetTemperatureC ? LOW : HIGH;
|
|
if(!on && act->isAlarm())
|
|
{
|
|
beep(50 * (controller + 1), 3);
|
|
act->setAlarm(false); //reset alarm
|
|
}
|
|
|
|
// Run test if heater and sensor are decoupled
|
|
bool decoupleTestRequired = (time - act->lastDecoupleTest) > act->decoupleTestPeriod; // time enough for temperature change?
|
|
if(decoupleTestRequired && act->isDecoupleFullOrHold() && Printer::isPowerOn()) // Only test when powered
|
|
{
|
|
if(act->isDecoupleFull())
|
|
{
|
|
if(act->currentTemperatureC - act->lastDecoupleTemp < DECOUPLING_TEST_MIN_TEMP_RISE) // failed test
|
|
{
|
|
extruderTempErrors++;
|
|
errorDetected = 1;
|
|
if(extruderTempErrors > 10) // Ignore short temporary failures
|
|
{
|
|
Printer::setAnyTempsensorDefect();
|
|
UI_ERROR_P(Com::tHeaterDecoupled);
|
|
Com::printErrorFLN(Com::tHeaterDecoupledWarning);
|
|
Com::printF(PSTR("Error:Temp. raised to slow. Rise = "),act->currentTemperatureC - act->lastDecoupleTemp);
|
|
Com::printF(PSTR(" after "),(int32_t)(time-act->lastDecoupleTest));
|
|
Com::printFLN(PSTR(" ms"));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
act->stopDecouple();
|
|
act->startFullDecouple(time);
|
|
}
|
|
}
|
|
else // hold
|
|
{
|
|
if(fabs(act->currentTemperatureC - act->targetTemperatureC) > DECOUPLING_TEST_MAX_HOLD_VARIANCE) // failed test
|
|
{
|
|
extruderTempErrors++;
|
|
errorDetected = 1;
|
|
if(extruderTempErrors > 10) // Ignore short temporary failures
|
|
{
|
|
Printer::setAnyTempsensorDefect();
|
|
UI_ERROR_P(Com::tHeaterDecoupled);
|
|
Com::printErrorFLN(Com::tHeaterDecoupledWarning);
|
|
Com::printF(PSTR("Error:Could not hold temperature "),act->lastDecoupleTemp);
|
|
Com::printF(PSTR(" measured "),act->currentTemperatureC);
|
|
Com::printFLN(PSTR(" deg. C"));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
act->lastDecoupleTest = time - act->decoupleTestPeriod + 1000; // once running test every second
|
|
}
|
|
}
|
|
}
|
|
|
|
#if TEMP_PID
|
|
act->tempArray[act->tempPointer++] = act->currentTemperatureC;
|
|
act->tempPointer &= 3;
|
|
if(act->heatManager == HTR_PID)
|
|
{
|
|
uint8_t output;
|
|
float error = act->targetTemperatureC - act->currentTemperatureC;
|
|
if(act->targetTemperatureC < 20.0f)
|
|
{
|
|
output = 0; // off is off, even if damping term wants a heat peak!
|
|
act->stopDecouple();
|
|
}
|
|
else if(error > PID_CONTROL_RANGE)
|
|
{
|
|
output = act->pidMax;
|
|
act->startFullDecouple(time);
|
|
}
|
|
else if(error < -PID_CONTROL_RANGE)
|
|
output = 0;
|
|
else
|
|
{
|
|
act->startHoldDecouple(time);
|
|
float pidTerm = act->pidPGain * error;
|
|
act->tempIState = constrain(act->tempIState + error, act->tempIStateLimitMin, act->tempIStateLimitMax);
|
|
pidTerm += act->pidIGain * act->tempIState * 0.1; // 0.1 = 10Hz
|
|
float dgain = act->pidDGain * (act->tempArray[act->tempPointer]-act->currentTemperatureC) * 3.333f;
|
|
pidTerm += dgain;
|
|
#if SCALE_PID_TO_MAX==1
|
|
pidTerm = (pidTerm * act->pidMax) * 0.0039062;
|
|
#endif
|
|
output = constrain((int)pidTerm, 0, act->pidMax);
|
|
}
|
|
pwm_pos[act->pwmIndex] = output;
|
|
}
|
|
else if(act->heatManager == HTR_DEADTIME) // dead-time control
|
|
{
|
|
uint8_t output;
|
|
float error = act->targetTemperatureC - act->currentTemperatureC;
|
|
if(act->targetTemperatureC < 20.0f)
|
|
{
|
|
output = 0; // off is off, even if damping term wants a heat peak!
|
|
act->stopDecouple();
|
|
}
|
|
else if(error > PID_CONTROL_RANGE)
|
|
{
|
|
output = act->pidMax;
|
|
act->startFullDecouple(time);
|
|
}
|
|
else if(error < -PID_CONTROL_RANGE)
|
|
output = 0;
|
|
else
|
|
{
|
|
act->startHoldDecouple(time);
|
|
float raising = 3.333 * (act->currentTemperatureC - act->tempArray[act->tempPointer]); // raising dT/dt, 3.33 = reciproke of time interval (300 ms)
|
|
act->tempIState = 0.25 * (3.0 * act->tempIState + raising); // damp raising
|
|
output = (act->currentTemperatureC + act->tempIState * act->deadTime > act->targetTemperatureC ? 0 : act->pidDriveMax);
|
|
}
|
|
pwm_pos[act->pwmIndex] = output;
|
|
}
|
|
else
|
|
#endif
|
|
if(act->heatManager == HTR_SLOWBANG) // Bang-bang with reduced change frequency to save relais life
|
|
{
|
|
if (time - act->lastTemperatureUpdate > HEATED_BED_SET_INTERVAL)
|
|
{
|
|
pwm_pos[act->pwmIndex] = (on ? 255 : 0);
|
|
act->lastTemperatureUpdate = time;
|
|
if(on) act->startFullDecouple(time);
|
|
else act->stopDecouple();
|
|
}
|
|
}
|
|
else // Fast Bang-Bang fallback
|
|
{
|
|
pwm_pos[act->pwmIndex] = (on ? 255 : 0);
|
|
if(on) act->startFullDecouple(time);
|
|
else act->stopDecouple();
|
|
}
|
|
#ifdef MAXTEMP
|
|
if(act->currentTemperatureC > MAXTEMP) // Force heater off if MAXTEMP is exceeded
|
|
pwm_pos[act->pwmIndex] = 0;
|
|
#endif
|
|
#if LED_PIN>-1
|
|
if(act == &Extruder::current->tempControl)
|
|
WRITE(LED_PIN,on);
|
|
#endif
|
|
}
|
|
if(errorDetected == 0 && extruderTempErrors > 0)
|
|
extruderTempErrors--;
|
|
if(Printer::isAnyTempsensorDefect())
|
|
{
|
|
for(uint8_t i = 0; i < NUM_TEMPERATURE_LOOPS; i++)
|
|
{
|
|
pwm_pos[tempController[i]->pwmIndex] = 0;
|
|
}
|
|
Printer::debugLevel |= 8; // Go into dry mode
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void Extruder::initHeatedBed()
|
|
{
|
|
#if HAVE_HEATED_BED
|
|
#if TEMP_PID
|
|
heatedBedController.updateTempControlVars();
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if defined(USE_GENERIC_THERMISTORTABLE_1) || defined(USE_GENERIC_THERMISTORTABLE_2) || defined(USE_GENERIC_THERMISTORTABLE_3)
|
|
void createGenericTable(short table[GENERIC_THERM_NUM_ENTRIES][2],short minTemp,short maxTemp,float beta,float r0,float t0,float r1,float r2)
|
|
{
|
|
t0 += 273.15f;
|
|
float rs, vs;
|
|
if(r1==0)
|
|
{
|
|
rs = r2;
|
|
vs = GENERIC_THERM_VREF;
|
|
}
|
|
else
|
|
{
|
|
vs =static_cast<float>((GENERIC_THERM_VREF * r1) / (r1 + r2));
|
|
rs = (r2 * r1) / (r1 + r2);
|
|
}
|
|
float k = r0 * exp(-beta / t0);
|
|
float delta = (maxTemp-minTemp) / (GENERIC_THERM_NUM_ENTRIES - 1.0f);
|
|
for(uint8_t i = 0; i < GENERIC_THERM_NUM_ENTRIES; i++)
|
|
{
|
|
#if FEATURE_WATCHDOG
|
|
HAL::pingWatchdog();
|
|
#endif // FEATURE_WATCHDOG
|
|
float t = maxTemp - i * delta;
|
|
float r = exp(beta / (t + 272.65)) * k;
|
|
float v = 4092 * r * vs / ((rs + r) * GENERIC_THERM_VREF);
|
|
int adc = static_cast<int>(v);
|
|
t *= 8;
|
|
if(adc > 4092) adc = 4092;
|
|
table[i][0] = (adc >> (ANALOG_REDUCE_BITS));
|
|
table[i][1] = static_cast<int>(t);
|
|
#ifdef DEBUG_GENERIC
|
|
Com::printF(Com::tGenTemp,table[i][0]);
|
|
Com::printFLN(Com::tComma,table[i][1]);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/** \brief Initalizes all extruder.
|
|
|
|
Updates the pin configuration needed for the extruder and activates extruder 0.
|
|
Starts a interrupt based analog input reader, which is used by simple thermistors
|
|
for temperature reading.
|
|
*/
|
|
void Extruder::initExtruder()
|
|
{
|
|
uint8_t i;
|
|
Extruder::current = &extruder[0];
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_1
|
|
createGenericTable(temptable_generic1,GENERIC_THERM1_MIN_TEMP,GENERIC_THERM1_MAX_TEMP,GENERIC_THERM1_BETA,GENERIC_THERM1_R0,GENERIC_THERM1_T0,GENERIC_THERM1_R1,GENERIC_THERM1_R2);
|
|
#endif
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_2
|
|
createGenericTable(temptable_generic2,GENERIC_THERM2_MIN_TEMP,GENERIC_THERM2_MAX_TEMP,GENERIC_THERM2_BETA,GENERIC_THERM2_R0,GENERIC_THERM2_T0,GENERIC_THERM2_R1,GENERIC_THERM2_R2);
|
|
#endif
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_3
|
|
createGenericTable(temptable_generic3,GENERIC_THERM3_MIN_TEMP,GENERIC_THERM3_MAX_TEMP,GENERIC_THERM3_BETA,GENERIC_THERM3_R0,GENERIC_THERM3_T0,GENERIC_THERM3_R1,GENERIC_THERM3_R2);
|
|
#endif
|
|
#if defined(EXT0_STEP_PIN) && EXT0_STEP_PIN>-1
|
|
SET_OUTPUT(EXT0_DIR_PIN);
|
|
SET_OUTPUT(EXT0_STEP_PIN);
|
|
#endif
|
|
#if defined(EXT1_STEP_PIN) && EXT1_STEP_PIN>-1 && NUM_EXTRUDER>1
|
|
SET_OUTPUT(EXT1_DIR_PIN);
|
|
SET_OUTPUT(EXT1_STEP_PIN);
|
|
#endif
|
|
#if defined(EXT2_STEP_PIN) && EXT2_STEP_PIN>-1 && NUM_EXTRUDER>2
|
|
SET_OUTPUT(EXT2_DIR_PIN);
|
|
SET_OUTPUT(EXT2_STEP_PIN);
|
|
#endif
|
|
#if defined(EXT3_STEP_PIN) && EXT3_STEP_PIN>-1 && NUM_EXTRUDER>3
|
|
SET_OUTPUT(EXT3_DIR_PIN);
|
|
SET_OUTPUT(EXT3_STEP_PIN);
|
|
#endif
|
|
#if defined(EXT4_STEP_PIN) && EXT4_STEP_PIN>-1 && NUM_EXTRUDER>4
|
|
SET_OUTPUT(EXT4_DIR_PIN);
|
|
SET_OUTPUT(EXT4_STEP_PIN);
|
|
#endif
|
|
#if defined(EXT5_STEP_PIN) && EXT5_STEP_PIN>-1 && NUM_EXTRUDER>5
|
|
SET_OUTPUT(EXT5_DIR_PIN);
|
|
SET_OUTPUT(EXT5_STEP_PIN);
|
|
#endif
|
|
|
|
for(i=0; i<NUM_EXTRUDER; ++i)
|
|
{
|
|
Extruder *act = &extruder[i];
|
|
if(act->enablePin > -1)
|
|
{
|
|
HAL::pinMode(act->enablePin,OUTPUT);
|
|
if(!act->enableOn) HAL::digitalWrite(act->enablePin,HIGH);
|
|
}
|
|
act->tempControl.lastTemperatureUpdate = HAL::timeInMilliseconds();
|
|
#if defined(SUPPORT_MAX6675) || defined(SUPPORT_MAX31855)
|
|
if(act->tempControl.sensorType==101 || act->tempControl.sensorType==102)
|
|
{
|
|
WRITE(SCK_PIN,0);
|
|
SET_OUTPUT(SCK_PIN);
|
|
WRITE(MOSI_PIN,1);
|
|
SET_OUTPUT(MOSI_PIN);
|
|
WRITE(MISO_PIN,1);
|
|
SET_INPUT(MISO_PIN);
|
|
SET_OUTPUT(SS);
|
|
WRITE(SS,HIGH);
|
|
HAL::digitalWrite(act->tempControl.sensorPin,1);
|
|
HAL::pinMode(act->tempControl.sensorPin,OUTPUT);
|
|
}
|
|
#endif
|
|
}
|
|
#if HEATED_BED_HEATER_PIN>-1
|
|
SET_OUTPUT(HEATED_BED_HEATER_PIN);
|
|
WRITE(HEATED_BED_HEATER_PIN,HEATER_PINS_INVERTED);
|
|
Extruder::initHeatedBed();
|
|
#endif
|
|
HAL::analogStart();
|
|
|
|
}
|
|
void TemperatureController::updateTempControlVars()
|
|
{
|
|
#if TEMP_PID
|
|
if(heatManager==HTR_PID && pidIGain!=0) // prevent division by zero
|
|
{
|
|
tempIStateLimitMax = (float)pidDriveMax*10.0f/pidIGain;
|
|
tempIStateLimitMin = (float)pidDriveMin*10.0f/pidIGain;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/** \brief Select extruder ext_num.
|
|
|
|
This function changes and initalizes a new extruder. This is also called, after the eeprom values are changed.
|
|
*/
|
|
void Extruder::selectExtruderById(uint8_t extruderId)
|
|
{
|
|
#if MIXING_EXTRUDER
|
|
if(extruderId >= VIRTUAL_EXTRUDER)
|
|
extruderId = 0;
|
|
for(uint8_t i = 0; i < NUM_EXTRUDER; i++)
|
|
Extruder::setMixingWeight(i,extruder[i].virtualWeights[extruderId]);
|
|
extruderId = 0;
|
|
#endif
|
|
if(extruderId >= NUM_EXTRUDER)
|
|
extruderId = 0;
|
|
#if NUM_EXTRUDER>1 && MIXING_EXTRUDER == 0
|
|
bool executeSelect = false;
|
|
if(extruderId != Extruder::current->id)
|
|
{
|
|
GCode::executeFString(Extruder::current->deselectCommands);
|
|
executeSelect = true;
|
|
}
|
|
Commands::waitUntilEndOfAllMoves();
|
|
#endif
|
|
Extruder::current->extrudePosition = Printer::currentPositionSteps[E_AXIS];
|
|
Extruder::current = &extruder[extruderId];
|
|
#ifdef SEPERATE_EXTRUDER_POSITIONS
|
|
// Use seperate extruder positions only if beeing told. Slic3r e.g. creates a continuous extruder position increment
|
|
Printer::currentPositionSteps[E_AXIS] = Extruder::current->extrudePosition;
|
|
#endif
|
|
Printer::destinationSteps[E_AXIS] = Printer::currentPositionSteps[E_AXIS];
|
|
Printer::axisStepsPerMM[E_AXIS] = Extruder::current->stepsPerMM;
|
|
Printer::invAxisStepsPerMM[E_AXIS] = 1.0f / Printer::axisStepsPerMM[E_AXIS];
|
|
Printer::maxFeedrate[E_AXIS] = Extruder::current->maxFeedrate;
|
|
// max_start_speed_units_per_second[E_AXIS] = Extruder::current->maxStartFeedrate;
|
|
Printer::maxAccelerationMMPerSquareSecond[E_AXIS] = Printer::maxTravelAccelerationMMPerSquareSecond[E_AXIS] = Extruder::current->maxAcceleration;
|
|
Printer::maxTravelAccelerationStepsPerSquareSecond[E_AXIS] =
|
|
Printer::maxPrintAccelerationStepsPerSquareSecond[E_AXIS] = Printer::maxAccelerationMMPerSquareSecond[E_AXIS] * Printer::axisStepsPerMM[E_AXIS];
|
|
#if USE_ADVANCE
|
|
Printer::minExtruderSpeed = (uint8_t)floor(HAL::maxExtruderTimerFrequency() / (Extruder::current->maxStartFeedrate*Extruder::current->stepsPerMM));
|
|
Printer::maxExtruderSpeed = (uint8_t)floor(HAL::maxExtruderTimerFrequency() / (Extruder::current->maxFeedrate*Extruder::current->stepsPerMM));
|
|
if(Printer::maxExtruderSpeed > 15) Printer::maxExtruderSpeed = 15;
|
|
if(Printer::maxExtruderSpeed >= Printer::minExtruderSpeed)
|
|
{
|
|
Printer::maxExtruderSpeed = Printer::minExtruderSpeed;
|
|
}
|
|
else
|
|
{
|
|
float maxdist = Extruder::current->maxFeedrate * Extruder::current->maxFeedrate * 0.00013888 / Extruder::current->maxAcceleration;
|
|
maxdist -= Extruder::current->maxStartFeedrate * Extruder::current->maxStartFeedrate * 0.5 / Extruder::current->maxAcceleration;
|
|
//Printer::extruderAccelerateDelay = (uint8_t)constrain(ceil(maxdist*Extruder::current->stepsPerMM/(Printer::minExtruderSpeed-Printer::maxExtruderSpeed)),1,255);
|
|
}
|
|
float fmax = ((float)HAL::maxExtruderTimerFrequency() / ((float)Printer::maxExtruderSpeed * Printer::axisStepsPerMM[E_AXIS])); // Limit feedrate to interrupt speed
|
|
if(fmax < Printer::maxFeedrate[E_AXIS]) Printer::maxFeedrate[E_AXIS] = fmax;
|
|
#endif
|
|
Extruder::current->tempControl.updateTempControlVars();
|
|
float cx, cy, cz;
|
|
Printer::realPosition(cx, cy, cz);
|
|
float oldfeedrate = Printer::feedrate;
|
|
Printer::offsetX = -Extruder::current->xOffset * Printer::invAxisStepsPerMM[X_AXIS];
|
|
Printer::offsetY = -Extruder::current->yOffset * Printer::invAxisStepsPerMM[Y_AXIS];
|
|
Commands::changeFeedrateMultiply(Printer::extrudeMultiply); // needed to adjust extrusionFactor to possibly different diameter
|
|
if(Printer::isHomed())
|
|
Printer::moveToReal(cx, cy, cz, IGNORE_COORDINATE, Printer::homingFeedrate[X_AXIS]);
|
|
Printer::feedrate = oldfeedrate;
|
|
Printer::updateCurrentPosition();
|
|
#if USE_ADVANCE
|
|
HAL::resetExtruderDirection();
|
|
#endif
|
|
|
|
#if NUM_EXTRUDER>1 && MIXING_EXTRUDER == 0
|
|
if(executeSelect) // Run only when changing
|
|
GCode::executeFString(Extruder::current->selectCommands);
|
|
#endif
|
|
}
|
|
|
|
void Extruder::setTemperatureForExtruder(float temperatureInCelsius,uint8_t extr,bool beep)
|
|
{
|
|
#if MIXING_EXTRUDER
|
|
extr = 0; // map any virtual extruder number to 0
|
|
#endif // MIXING_EXTRUDER
|
|
bool alloffs = true;
|
|
for(uint8_t i=0; i<NUM_EXTRUDER; i++)
|
|
if(tempController[i]->targetTemperatureC > 15) alloffs = false;
|
|
#ifdef MAXTEMP
|
|
if(temperatureInCelsius > MAXTEMP) temperatureInCelsius = MAXTEMP;
|
|
#endif
|
|
if(temperatureInCelsius < 0) temperatureInCelsius = 0;
|
|
TemperatureController *tc = tempController[extr];
|
|
if(tc->sensorType == 0) temperatureInCelsius = 0;
|
|
//if(temperatureInCelsius==tc->targetTemperatureC) return;
|
|
tc->setTargetTemperature(temperatureInCelsius);
|
|
if(beep && temperatureInCelsius > 30)
|
|
tc->setAlarm(true);
|
|
if(temperatureInCelsius >= EXTRUDER_FAN_COOL_TEMP) extruder[extr].coolerPWM = extruder[extr].coolerSpeed;
|
|
Com::printF(Com::tTargetExtr,extr,0);
|
|
Com::printFLN(Com::tColon,temperatureInCelsius,0);
|
|
#if FEATURE_DITTO_PRINTING
|
|
if(Extruder::dittoMode && extr == 0)
|
|
{
|
|
TemperatureController *tc2 = tempController[1];
|
|
tc2->setTargetTemperature(temperatureInCelsius);
|
|
if(temperatureInCelsius >= EXTRUDER_FAN_COOL_TEMP) extruder[1].coolerPWM = extruder[1].coolerSpeed;
|
|
#if NUM_EXTRUDER > 2
|
|
if(Extruder::dittoMode > 1 && extr == 0)
|
|
{
|
|
TemperatureController *tc2 = tempController[2];
|
|
tc2->setTargetTemperature(temperatureInCelsius);
|
|
if(temperatureInCelsius >= EXTRUDER_FAN_COOL_TEMP) extruder[2].coolerPWM = extruder[2].coolerSpeed;
|
|
}
|
|
#endif
|
|
#if NUM_EXTRUDER > 3
|
|
if(Extruder::dittoMode > 2 && extr == 0)
|
|
{
|
|
TemperatureController *tc2 = tempController[3];
|
|
tc2->setTargetTemperature(temperatureInCelsius);
|
|
if(temperatureInCelsius >= EXTRUDER_FAN_COOL_TEMP) extruder[3].coolerPWM = extruder[3].coolerSpeed;
|
|
}
|
|
#endif
|
|
}
|
|
#endif // FEATURE_DITTO_PRINTING
|
|
bool alloff = true;
|
|
for(uint8_t i = 0; i < NUM_EXTRUDER; i++)
|
|
if(tempController[i]->targetTemperatureC > 15) alloff = false;
|
|
#if EEPROM_MODE != 0
|
|
if(alloff && !alloffs) // All heaters are now switched off?
|
|
EEPROM::updatePrinterUsage();
|
|
#endif
|
|
if(alloffs && !alloff) // heaters are turned on, start measuring printing time
|
|
Printer::msecondsPrinting = HAL::timeInMilliseconds();
|
|
}
|
|
|
|
void Extruder::setHeatedBedTemperature(float temperatureInCelsius,bool beep)
|
|
{
|
|
#if HAVE_HEATED_BED
|
|
if(temperatureInCelsius>HEATED_BED_MAX_TEMP) temperatureInCelsius = HEATED_BED_MAX_TEMP;
|
|
if(temperatureInCelsius<0) temperatureInCelsius = 0;
|
|
if(heatedBedController.targetTemperatureC==temperatureInCelsius) return; // don't flood log with messages if killed
|
|
heatedBedController.setTargetTemperature(temperatureInCelsius);
|
|
if(beep && temperatureInCelsius>30) heatedBedController.setAlarm(true);
|
|
Com::printFLN(Com::tTargetBedColon,heatedBedController.targetTemperatureC,0);
|
|
#endif
|
|
}
|
|
|
|
float Extruder::getHeatedBedTemperature()
|
|
{
|
|
#if HAVE_HEATED_BED
|
|
TemperatureController *c = tempController[NUM_TEMPERATURE_LOOPS-1];
|
|
return c->currentTemperatureC;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
#if MIXING_EXTRUDER > 0
|
|
void Extruder::setMixingWeight(uint8_t extr,int weight)
|
|
{
|
|
uint8_t i;
|
|
mixingS = 0;
|
|
extruder[extr].mixingW = weight;
|
|
for(i=0; i<NUM_EXTRUDER; i++)
|
|
{
|
|
extruder[i].mixingE = extruder[i].mixingW;
|
|
mixingS += extruder[i].mixingW;
|
|
}
|
|
}
|
|
void Extruder::step()
|
|
{
|
|
uint8_t best = 255,i;
|
|
int bestError;
|
|
if(mixingDir)
|
|
{
|
|
bestError = -10000;
|
|
for(i = 0; i < NUM_EXTRUDER; i++)
|
|
{
|
|
if(extruder[i].mixingW == 0) continue;
|
|
if(extruder[i].mixingE > bestError)
|
|
{
|
|
bestError = extruder[i].mixingE;
|
|
best = i;
|
|
}
|
|
extruder[i].mixingE += extruder[i].mixingW;
|
|
}
|
|
if(best == 255) return; // no extruder has weight!
|
|
extruder[best].mixingE -= mixingS;
|
|
}
|
|
else
|
|
{
|
|
bestError = 10000;
|
|
for(i=0; i<NUM_EXTRUDER; i++)
|
|
{
|
|
if(extruder[i].mixingW == 0) continue;
|
|
if(extruder[i].mixingE < bestError)
|
|
{
|
|
bestError = extruder[i].mixingE;
|
|
best = i;
|
|
}
|
|
extruder[i].mixingE -= extruder[i].mixingW;
|
|
}
|
|
if(best == 255) return; // no extruder has weight!
|
|
extruder[best].mixingE += mixingS;
|
|
}
|
|
#if NUM_EXTRUDER > 0
|
|
if(best == 0) WRITE(EXT0_STEP_PIN, HIGH);
|
|
#endif
|
|
#if NUM_EXTRUDER > 1
|
|
if(best == 1) WRITE(EXT1_STEP_PIN, HIGH);
|
|
#endif
|
|
#if NUM_EXTRUDER > 2
|
|
if(best == 2) WRITE(EXT2_STEP_PIN, HIGH);
|
|
#endif
|
|
#if NUM_EXTRUDER > 3
|
|
if(best == 3) WRITE(EXT3_STEP_PIN, HIGH);
|
|
#endif
|
|
#if NUM_EXTRUDER > 4
|
|
if(best == 4) WRITE(EXT4_STEP_PIN, HIGH);
|
|
#endif
|
|
#if NUM_EXTRUDER > 5
|
|
if(best == 5) WRITE(EXT5_STEP_PIN, HIGH);
|
|
#endif
|
|
}
|
|
|
|
void Extruder::unstep()
|
|
{
|
|
#if NUM_EXTRUDER > 0
|
|
WRITE(EXT0_STEP_PIN, LOW);
|
|
#endif
|
|
#if NUM_EXTRUDER > 1
|
|
WRITE(EXT1_STEP_PIN, LOW);
|
|
#endif
|
|
#if NUM_EXTRUDER > 2
|
|
WRITE(EXT2_STEP_PIN, LOW);
|
|
#endif
|
|
#if NUM_EXTRUDER > 3
|
|
WRITE(EXT3_STEP_PIN, LOW);
|
|
#endif
|
|
#if NUM_EXTRUDER > 4
|
|
WRITE(EXT4_STEP_PIN, LOW);
|
|
#endif
|
|
#if NUM_EXTRUDER > 5
|
|
WRITE(EXT5_STEP_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void Extruder::setDirection(uint8_t dir)
|
|
{
|
|
mixingDir = dir;
|
|
#if NUM_EXTRUDER > 0
|
|
if(dir)
|
|
WRITE(EXT0_DIR_PIN,!EXT0_INVERSE);
|
|
else
|
|
WRITE(EXT0_DIR_PIN,EXT0_INVERSE);
|
|
#endif
|
|
#if defined(EXT1_DIR_PIN) && NUM_EXTRUDER > 1
|
|
if(dir)
|
|
WRITE(EXT1_DIR_PIN,!EXT1_INVERSE);
|
|
else
|
|
WRITE(EXT1_DIR_PIN,EXT1_INVERSE);
|
|
#endif
|
|
#if defined(EXT2_DIR_PIN) && NUM_EXTRUDER > 2
|
|
if(dir)
|
|
WRITE(EXT2_DIR_PIN,!EXT2_INVERSE);
|
|
else
|
|
WRITE(EXT2_DIR_PIN,EXT2_INVERSE);
|
|
#endif
|
|
#if defined(EXT3_DIR_PIN) && NUM_EXTRUDER > 3
|
|
if(dir)
|
|
WRITE(EXT3_DIR_PIN,!EXT3_INVERSE);
|
|
else
|
|
WRITE(EXT3_DIR_PIN,EXT3_INVERSE);
|
|
#endif
|
|
#if defined(EXT4_DIR_PIN) && NUM_EXTRUDER > 4
|
|
if(dir)
|
|
WRITE(EXT4_DIR_PIN,!EXT4_INVERSE);
|
|
else
|
|
WRITE(EXT4_DIR_PIN,EXT4_INVERSE);
|
|
#endif
|
|
#if defined(EXT5_DIR_PIN) && NUM_EXTRUDER > 5
|
|
if(dir)
|
|
WRITE(EXT5_DIR_PIN,!EXT5_INVERSE);
|
|
else
|
|
WRITE(EXT5_DIR_PIN,EXT5_INVERSE);
|
|
#endif
|
|
}
|
|
|
|
void Extruder::enable()
|
|
{
|
|
#if NUM_EXTRUDER > 0 && defined(EXT0_ENABLE_PIN) && EXT0_ENABLE_PIN > -1
|
|
WRITE(EXT0_ENABLE_PIN, EXT0_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 1 && defined(EXT1_ENABLE_PIN) && EXT1_ENABLE_PIN > -1
|
|
WRITE(EXT1_ENABLE_PIN, EXT1_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 2 && defined(EXT2_ENABLE_PIN) && EXT2_ENABLE_PIN > -1
|
|
WRITE(EXT2_ENABLE_PIN, EXT2_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 3 && defined(EXT3_ENABLE_PIN) && EXT3_ENABLE_PIN > -1
|
|
WRITE(EXT3_ENABLE_PIN, EXT3_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 4 && defined(EXT4_ENABLE_PIN) && EXT4_ENABLE_PIN > -1
|
|
WRITE(EXT4_ENABLE_PIN, EXT4_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 5 && defined(EXT5_ENABLE_PIN) && EXT5_ENABLE_PIN > -1
|
|
WRITE(EXT5_ENABLE_PIN, EXT5_ENABLE_ON );
|
|
#endif
|
|
}
|
|
#endif // MIXING_EXTRUDER > 0
|
|
|
|
void Extruder::disableCurrentExtruderMotor()
|
|
{
|
|
#if MIXING_EXTRUDER
|
|
#if NUM_EXTRUDER > 0 && defined(EXT0_ENABLE_PIN) && EXT0_ENABLE_PIN > -1
|
|
WRITE(EXT0_ENABLE_PIN, !EXT0_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 1 && defined(EXT1_ENABLE_PIN) && EXT1_ENABLE_PIN > -1
|
|
WRITE(EXT1_ENABLE_PIN, !EXT1_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 2 && defined(EXT2_ENABLE_PIN) && EXT2_ENABLE_PIN > -1
|
|
WRITE(EXT2_ENABLE_PIN, !EXT2_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 3 && defined(EXT3_ENABLE_PIN) && EXT3_ENABLE_PIN > -1
|
|
WRITE(EXT3_ENABLE_PIN, !EXT3_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 4 && defined(EXT4_ENABLE_PIN) && EXT4_ENABLE_PIN > -1
|
|
WRITE(EXT4_ENABLE_PIN, !EXT4_ENABLE_ON );
|
|
#endif
|
|
#if NUM_EXTRUDER > 5 && defined(EXT5_ENABLE_PIN) && EXT5_ENABLE_PIN > -1
|
|
WRITE(EXT5_ENABLE_PIN, !EXT5_ENABLE_ON );
|
|
#endif
|
|
#else // MIXING_EXTRUDER
|
|
if(Extruder::current->enablePin > -1)
|
|
digitalWrite(Extruder::current->enablePin,!Extruder::current->enableOn);
|
|
#if FEATURE_DITTO_PRINTING
|
|
if(Extruder::dittoMode)
|
|
{
|
|
if(extruder[1].enablePin > -1)
|
|
digitalWrite(extruder[1].enablePin,!extruder[1].enableOn);
|
|
#if NUM_EXTRUDER > 2
|
|
if(Extruder::dittoMode > 1 && extruder[2].enablePin > -1)
|
|
digitalWrite(extruder[2].enablePin,!extruder[2].enableOn);
|
|
#endif
|
|
#if NUM_EXTRUDER > 3
|
|
if(Extruder::dittoMode > 2 && extruder[3].enablePin > -1)
|
|
digitalWrite(extruder[3].enablePin,!extruder[3].enableOn);
|
|
#endif
|
|
}
|
|
#endif
|
|
#endif // MIXING_EXTRUDER
|
|
}
|
|
void Extruder::disableAllExtruderMotors()
|
|
{
|
|
for(byte i = 0; i < NUM_EXTRUDER; i++)
|
|
{
|
|
if(extruder[i].enablePin > -1)
|
|
digitalWrite(extruder[i].enablePin, !extruder[i].enableOn);
|
|
}
|
|
}
|
|
#define NUMTEMPS_1 28
|
|
// Epcos B57560G0107F000
|
|
const short temptable_1[NUMTEMPS_1][2] PROGMEM =
|
|
{
|
|
{0,4000},{92,2400},{105,2320},{121,2240},{140,2160},{162,2080},{189,2000},{222,1920},{261,1840},{308,1760},
|
|
{365,1680},{434,1600},{519,1520},{621,1440},{744,1360},{891,1280},{1067,1200},{1272,1120},
|
|
{1771,960},{2357,800},{2943,640},{3429,480},{3760,320},{3869,240},{3912,200},{3948,160},{4077,-160},{4094,-440}
|
|
};
|
|
#define NUMTEMPS_2 21
|
|
const short temptable_2[NUMTEMPS_2][2] PROGMEM =
|
|
{
|
|
{1*4, 848*8},{54*4, 275*8}, {107*4, 228*8}, {160*4, 202*8},{213*4, 185*8}, {266*4, 171*8}, {319*4, 160*8}, {372*4, 150*8},
|
|
{425*4, 141*8}, {478*4, 133*8},{531*4, 125*8},{584*4, 118*8},{637*4, 110*8},{690*4, 103*8},{743*4, 95*8},{796*4, 86*8},
|
|
{849*4, 77*8},{902*4, 65*8},{955*4, 49*8},{1008*4, 17*8},{1020*4, 0*8} //safety
|
|
};
|
|
|
|
#define NUMTEMPS_3 28
|
|
const short temptable_3[NUMTEMPS_3][2] PROGMEM =
|
|
{
|
|
{1*4,864*8},{21*4,300*8},{25*4,290*8},{29*4,280*8},{33*4,270*8},{39*4,260*8},{46*4,250*8},{54*4,240*8},{64*4,230*8},{75*4,220*8},
|
|
{90*4,210*8},{107*4,200*8},{128*4,190*8},{154*4,180*8},{184*4,170*8},{221*4,160*8},{265*4,150*8},{316*4,140*8},{375*4,130*8},
|
|
{441*4,120*8},{513*4,110*8},{588*4,100*8},{734*4,80*8},{856*4,60*8},{938*4,40*8},{986*4,20*8},{1008*4,0*8},{1018*4,-20*8}
|
|
};
|
|
|
|
#define NUMTEMPS_4 20
|
|
const short temptable_4[NUMTEMPS_4][2] PROGMEM =
|
|
{
|
|
{1*4, 430*8},{54*4, 137*8},{107*4, 107*8},{160*4, 91*8},{213*4, 80*8},{266*4, 71*8},{319*4, 64*8},{372*4, 57*8},{425*4, 51*8},
|
|
{478*4, 46*8},{531*4, 41*8},{584*4, 35*8},{637*4, 30*8},{690*4, 25*8},{743*4, 20*8},{796*4, 14*8},{849*4, 7*8},{902*4, 0*8},
|
|
{955*4, -11*8},{1008*4, -35*8}
|
|
};
|
|
|
|
#define NUMTEMPS_8 34
|
|
const short temptable_8[NUMTEMPS_8][2] PROGMEM =
|
|
{
|
|
{0,8000},{69,2400},{79,2320},{92,2240},{107,2160},{125,2080},{146,2000},{172,1920},{204,1840},{222,1760},{291,1680},{350,1600},
|
|
{422,1520},{511,1440},{621,1360},{755,1280},{918,1200},{1114,1120},{1344,1040},{1608,960},{1902,880},{2216,800},{2539,720},
|
|
{2851,640},{3137,560},{3385,480},{3588,400},{3746,320},{3863,240},{3945,160},{4002,80},{4038,0},{4061,-80},{4075,-160}
|
|
};
|
|
#define NUMTEMPS_9 67 // 100k Honeywell 135-104LAG-J01
|
|
const short temptable_9[NUMTEMPS_9][2] PROGMEM =
|
|
{
|
|
{1*4, 941*8},{19*4, 362*8},{37*4, 299*8}, //top rating 300C
|
|
{55*4, 266*8},{73*4, 245*8},{91*4, 229*8},{109*4, 216*8},{127*4, 206*8},{145*4, 197*8},{163*4, 190*8},{181*4, 183*8},{199*4, 177*8},
|
|
{217*4, 171*8},{235*4, 166*8},{253*4, 162*8},{271*4, 157*8},{289*4, 153*8},{307*4, 149*8},{325*4, 146*8},{343*4, 142*8},{361*4, 139*8},
|
|
{379*4, 135*8},{397*4, 132*8},{415*4, 129*8},{433*4, 126*8},{451*4, 123*8},{469*4, 121*8},{487*4, 118*8},{505*4, 115*8},{523*4, 112*8},
|
|
{541*4, 110*8},{559*4, 107*8},{577*4, 105*8},{595*4, 102*8},{613*4, 99*8},{631*4, 97*8},{649*4, 94*8},{667*4, 92*8},{685*4, 89*8},
|
|
{703*4, 86*8},{721*4, 84*8},{739*4, 81*8},{757*4, 78*8},{775*4, 75*8},{793*4, 72*8},{811*4, 69*8},{829*4, 66*8},{847*4, 62*8},
|
|
{865*4, 59*8},{883*4, 55*8},{901*4, 51*8},{919*4, 46*8},{937*4, 41*8},
|
|
{955*4, 35*8},{973*4, 27*8},{991*4, 17*8},{1009*4, 1*8},{1023*4, 0} //to allow internal 0 degrees C
|
|
};
|
|
#define NUMTEMPS_10 20 // 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
|
|
const short temptable_10[NUMTEMPS_10][2] PROGMEM =
|
|
{
|
|
{1*4, 704*8},{54*4, 216*8},{107*4, 175*8},{160*4, 152*8},{213*4, 137*8},{266*4, 125*8},{319*4, 115*8},{372*4, 106*8},{425*4, 99*8},
|
|
{478*4, 91*8},{531*4, 85*8},{584*4, 78*8},{637*4, 71*8},{690*4, 65*8},{743*4, 58*8},{796*4, 50*8},{849*4, 42*8},{902*4, 31*8},
|
|
{955*4, 17*8},{1008*4, 0}
|
|
};
|
|
#define NUMTEMPS_11 31 // 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
|
|
const short temptable_11[NUMTEMPS_11][2] PROGMEM =
|
|
{
|
|
{1*4, 936*8},{36*4, 300*8},{71*4, 246*8},{106*4, 218*8},{141*4, 199*8},{176*4, 185*8},{211*4, 173*8},{246*4, 163*8},{281*4, 155*8},
|
|
{316*4, 147*8},{351*4, 140*8},{386*4, 134*8},{421*4, 128*8},{456*4, 122*8},{491*4, 117*8},{526*4, 112*8},{561*4, 107*8},{596*4, 102*8},
|
|
{631*4, 97*8},{666*4, 92*8},{701*4, 87*8},{736*4, 81*8},{771*4, 76*8},{806*4, 70*8},{841*4, 63*8},{876*4, 56*8},{911*4, 48*8},
|
|
{946*4, 38*8},{981*4, 23*8},{1005*4, 5*8},{1016*4, 0}
|
|
};
|
|
#define NUMTEMPS_12 31 // 100k RS thermistor 198-961 (4.7k pullup)
|
|
const short temptable_12[NUMTEMPS_12][2] PROGMEM =
|
|
{
|
|
{1*4, 929*8},{36*4, 299*8},{71*4, 246*8},{106*4, 217*8},{141*4, 198*8},{176*4, 184*8},{211*4, 173*8},{246*4, 163*8},{281*4, 154*8},{316*4, 147*8},
|
|
{351*4, 140*8},{386*4, 134*8},{421*4, 128*8},{456*4, 122*8},{491*4, 117*8},{526*4, 112*8},{561*4, 107*8},{596*4, 102*8},{631*4, 97*8},{666*4, 91*8},
|
|
{701*4, 86*8},{736*4, 81*8},{771*4, 76*8},{806*4, 70*8},{841*4, 63*8},{876*4, 56*8},{911*4, 48*8},{946*4, 38*8},{981*4, 23*8},{1005*4, 5*8},{1016*4, 0*8}
|
|
};
|
|
#if NUM_TEMPS_USERTHERMISTOR0>0
|
|
const short temptable_5[NUM_TEMPS_USERTHERMISTOR0][2] PROGMEM = USER_THERMISTORTABLE0 ;
|
|
#endif
|
|
#if NUM_TEMPS_USERTHERMISTOR1>0
|
|
const short temptable_6[NUM_TEMPS_USERTHERMISTOR1][2] PROGMEM = USER_THERMISTORTABLE1 ;
|
|
#endif
|
|
#if NUM_TEMPS_USERTHERMISTOR2>0
|
|
const short temptable_7[NUM_TEMPS_USERTHERMISTOR2][2] PROGMEM = USER_THERMISTORTABLE2 ;
|
|
#endif
|
|
const short * const temptables[12] PROGMEM = {(short int *)&temptable_1[0][0],(short int *)&temptable_2[0][0],(short int *)&temptable_3[0][0],(short int *)&temptable_4[0][0]
|
|
#if NUM_TEMPS_USERTHERMISTOR0>0
|
|
,(short int *)&temptable_5[0][0]
|
|
#else
|
|
,0
|
|
#endif
|
|
#if NUM_TEMPS_USERTHERMISTOR1>0
|
|
,(short int *)&temptable_6[0][0]
|
|
#else
|
|
,0
|
|
#endif
|
|
#if NUM_TEMPS_USERTHERMISTOR2>0
|
|
,(short int *)&temptable_7[0][0]
|
|
#else
|
|
,0
|
|
#endif
|
|
,(short int *)&temptable_8[0][0]
|
|
,(short int *)&temptable_9[0][0]
|
|
,(short int *)&temptable_10[0][0]
|
|
,(short int *)&temptable_11[0][0]
|
|
,(short int *)&temptable_12[0][0]
|
|
};
|
|
const uint8_t temptables_num[12] PROGMEM = {NUMTEMPS_1,NUMTEMPS_2,NUMTEMPS_3,NUMTEMPS_4,NUM_TEMPS_USERTHERMISTOR0,NUM_TEMPS_USERTHERMISTOR1,NUM_TEMPS_USERTHERMISTOR2,NUMTEMPS_8,
|
|
NUMTEMPS_9,NUMTEMPS_10,NUMTEMPS_11,NUMTEMPS_12
|
|
};
|
|
|
|
|
|
void TemperatureController::updateCurrentTemperature()
|
|
{
|
|
uint8_t type = sensorType;
|
|
// get raw temperature
|
|
switch(type)
|
|
{
|
|
case 0:
|
|
currentTemperature = 25;
|
|
break;
|
|
#if ANALOG_INPUTS>0
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
case 9:
|
|
case 10:
|
|
case 11:
|
|
case 12:
|
|
case 97:
|
|
case 98:
|
|
case 99:
|
|
currentTemperature = (1023 << (2 - ANALOG_REDUCE_BITS)) - (osAnalogInputValues[sensorPin] >> (ANALOG_REDUCE_BITS)); // Convert to 10 bit result
|
|
break;
|
|
case 50: // User defined PTC table
|
|
case 51:
|
|
case 52:
|
|
case 60: // HEATER_USES_AD8495 (Delivers 5mV/degC)
|
|
case 100: // AD595
|
|
currentTemperature = (osAnalogInputValues[sensorPin] >> (ANALOG_REDUCE_BITS));
|
|
break;
|
|
#endif
|
|
#ifdef SUPPORT_MAX6675
|
|
case 101: // MAX6675
|
|
currentTemperature = read_max6675(sensorPin);
|
|
break;
|
|
#endif
|
|
#ifdef SUPPORT_MAX31855
|
|
case 102: // MAX31855
|
|
currentTemperature = read_max31855(sensorPin);
|
|
break;
|
|
#endif
|
|
default:
|
|
currentTemperature = 4095; // unknown method, return high value to switch heater off for safety
|
|
}
|
|
int currentTemperature = this->currentTemperature;
|
|
//OUT_P_I_LN("OC for raw ",raw_temp);
|
|
switch(type)
|
|
{
|
|
case 0:
|
|
currentTemperatureC = 25;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
case 9:
|
|
case 10:
|
|
case 11:
|
|
case 12:
|
|
{
|
|
type--;
|
|
uint8_t num = pgm_read_byte(&temptables_num[type])<<1;
|
|
uint8_t i=2;
|
|
const short *temptable = (const short *)pgm_read_word(&temptables[type]); //pgm_read_word_near(&temptables[type]);
|
|
short oldraw = pgm_read_word(&temptable[0]);
|
|
short oldtemp = pgm_read_word(&temptable[1]);
|
|
short newraw,newtemp;
|
|
currentTemperature = (1023<<(2-ANALOG_REDUCE_BITS))-currentTemperature;
|
|
while(i<num)
|
|
{
|
|
newraw = pgm_read_word(&temptable[i++]);
|
|
newtemp = pgm_read_word(&temptable[i++]);
|
|
if (newraw > currentTemperature)
|
|
{
|
|
//OUT_P_I("RC O:",oldtemp);OUT_P_I_LN(" OR:",oldraw);
|
|
//OUT_P_I("RC N:",newtemp);OUT_P_I_LN(" NR:",newraw);
|
|
currentTemperatureC = TEMP_INT_TO_FLOAT(oldtemp + (float)(currentTemperature-oldraw)*(float)(newtemp-oldtemp)/(newraw-oldraw));
|
|
return;
|
|
}
|
|
oldtemp = newtemp;
|
|
oldraw = newraw;
|
|
}
|
|
// Overflow: Set to last value in the table
|
|
currentTemperatureC = TEMP_INT_TO_FLOAT(newtemp);
|
|
}
|
|
break;
|
|
case 50: // User defined PTC thermistor
|
|
case 51:
|
|
case 52:
|
|
{
|
|
type-=46;
|
|
uint8_t num = pgm_read_byte(&temptables_num[type])<<1;
|
|
uint8_t i=2;
|
|
const short *temptable = (const short *)pgm_read_word(&temptables[type]); //pgm_read_word_near(&temptables[type]);
|
|
short oldraw = pgm_read_word(&temptable[0]);
|
|
short oldtemp = pgm_read_word(&temptable[1]);
|
|
short newraw,newtemp;
|
|
while(i<num)
|
|
{
|
|
newraw = pgm_read_word(&temptable[i++]);
|
|
newtemp = pgm_read_word(&temptable[i++]);
|
|
if (newraw > currentTemperature)
|
|
{
|
|
currentTemperatureC = TEMP_INT_TO_FLOAT(oldtemp + (float)(currentTemperature-oldraw)*(float)(newtemp-oldtemp)/(newraw-oldraw));
|
|
return;
|
|
}
|
|
oldtemp = newtemp;
|
|
oldraw = newraw;
|
|
}
|
|
// Overflow: Set to last value in the table
|
|
currentTemperatureC = TEMP_INT_TO_FLOAT(newtemp);
|
|
break;
|
|
}
|
|
case 60: // AD8495 (Delivers 5mV/degC vs the AD595's 10mV)
|
|
currentTemperatureC = ((float)currentTemperature * 1000.0f / (1024 << (2 - ANALOG_REDUCE_BITS)));
|
|
break;
|
|
case 100: // AD595
|
|
//return (int)((long)raw_temp * 500/(1024<<(2-ANALOG_REDUCE_BITS)));
|
|
currentTemperatureC = ((float)currentTemperature * 500.0f / (1024 << (2 - ANALOG_REDUCE_BITS)));
|
|
break;
|
|
#ifdef SUPPORT_MAX6675
|
|
case 101: // MAX6675
|
|
currentTemperatureC = (float)currentTemperature / 4.0;
|
|
break;
|
|
#endif
|
|
#ifdef SUPPORT_MAX31855
|
|
case 102: // MAX31855
|
|
currentTemperatureC = (float)currentTemperature / 4.0;
|
|
break;
|
|
#endif
|
|
#if defined(USE_GENERIC_THERMISTORTABLE_1) || defined(USE_GENERIC_THERMISTORTABLE_2) || defined(USE_GENERIC_THERMISTORTABLE_3)
|
|
case 97:
|
|
case 98:
|
|
case 99:
|
|
{
|
|
uint8_t i=2;
|
|
const short *temptable;
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_1
|
|
if(type == 97)
|
|
temptable = (const short *)temptable_generic1;
|
|
#endif
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_2
|
|
if(type == 98)
|
|
temptable = (const short *)temptable_generic2;
|
|
#endif
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_3
|
|
if(type == 99)
|
|
temptable = (const short *)temptable_generic3;
|
|
#endif
|
|
short oldraw = temptable[0];
|
|
short oldtemp = temptable[1];
|
|
short newraw,newtemp;
|
|
currentTemperature = (1023<<(2-ANALOG_REDUCE_BITS))-currentTemperature;
|
|
while(i<GENERIC_THERM_NUM_ENTRIES*2)
|
|
{
|
|
newraw = temptable[i++];
|
|
newtemp = temptable[i++];
|
|
if (newraw > currentTemperature)
|
|
{
|
|
//OUT_P_I("RC O:",oldtemp);OUT_P_I_LN(" OR:",oldraw);
|
|
//OUT_P_I("RC N:",newtemp);OUT_P_I_LN(" NR:",newraw);
|
|
currentTemperatureC = TEMP_INT_TO_FLOAT(oldtemp + (float)(currentTemperature-oldraw)*(float)(newtemp-oldtemp)/(newraw-oldraw));
|
|
return;
|
|
}
|
|
oldtemp = newtemp;
|
|
oldraw = newraw;
|
|
}
|
|
// Overflow: Set to last value in the table
|
|
currentTemperatureC = TEMP_INT_TO_FLOAT(newtemp);
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void TemperatureController::setTargetTemperature(float target)
|
|
{
|
|
targetTemperatureC = target;
|
|
stopDecouple();
|
|
int temp = TEMP_FLOAT_TO_INT(target);
|
|
uint8_t type = sensorType;
|
|
switch(sensorType)
|
|
{
|
|
case 0:
|
|
targetTemperature = 0;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
case 9:
|
|
case 10:
|
|
case 11:
|
|
case 12:
|
|
{
|
|
type--;
|
|
uint8_t num = pgm_read_byte(&temptables_num[type]) << 1;
|
|
uint8_t i = 2;
|
|
const short *temptable = (const short *)pgm_read_word(&temptables[type]); //pgm_read_word(&temptables[type]);
|
|
short oldraw = pgm_read_word(&temptable[0]);
|
|
short oldtemp = pgm_read_word(&temptable[1]);
|
|
short newraw = 0,newtemp;
|
|
while(i<num)
|
|
{
|
|
newraw = pgm_read_word(&temptable[i++]);
|
|
newtemp = pgm_read_word(&temptable[i++]);
|
|
if (newtemp < temp)
|
|
{
|
|
targetTemperature = (1023 << (2 - ANALOG_REDUCE_BITS))- oldraw + (int32_t)(oldtemp - temp) * (int32_t)(oldraw - newraw) / (oldtemp - newtemp);
|
|
return;
|
|
}
|
|
oldtemp = newtemp;
|
|
oldraw = newraw;
|
|
}
|
|
// Overflow: Set to last value in the table
|
|
targetTemperature = (1023<<(2-ANALOG_REDUCE_BITS))-newraw;
|
|
break;
|
|
}
|
|
case 50: // user defined PTC thermistor
|
|
case 51:
|
|
case 52:
|
|
{
|
|
type -= 46;
|
|
uint8_t num = pgm_read_byte(&temptables_num[type]) << 1;
|
|
uint8_t i = 2;
|
|
const short *temptable = (const short *)pgm_read_word(&temptables[type]); //pgm_read_word(&temptables[type]);
|
|
short oldraw = pgm_read_word(&temptable[0]);
|
|
short oldtemp = pgm_read_word(&temptable[1]);
|
|
short newraw = 0,newtemp;
|
|
while(i<num)
|
|
{
|
|
newraw = pgm_read_word(&temptable[i++]);
|
|
newtemp = pgm_read_word(&temptable[i++]);
|
|
if (newtemp > temp)
|
|
{
|
|
targetTemperature = oldraw + (int32_t)(oldtemp-temp) * (int32_t)(oldraw-newraw) / (oldtemp-newtemp);
|
|
return;
|
|
}
|
|
oldtemp = newtemp;
|
|
oldraw = newraw;
|
|
}
|
|
// Overflow: Set to last value in the table
|
|
targetTemperature = newraw;
|
|
break;
|
|
}
|
|
case 60: // HEATER_USES_AD8495 (Delivers 5mV/degC)
|
|
targetTemperature = (int)((int32_t)temp * (1024 << (2 - ANALOG_REDUCE_BITS))/ 1000);
|
|
break;
|
|
case 100: // HEATER_USES_AD595
|
|
targetTemperature = (int)((int32_t)temp * (1024 << (2 - ANALOG_REDUCE_BITS))/ 500);
|
|
break;
|
|
#ifdef SUPPORT_MAX6675
|
|
case 101: // defined HEATER_USES_MAX6675
|
|
targetTemperature = temp * 4;
|
|
break;
|
|
#endif
|
|
#ifdef SUPPORT_MAX31855
|
|
case 102: // defined HEATER_USES_MAX31855
|
|
targetTemperature = temp * 4;
|
|
break;
|
|
#endif
|
|
#if defined(USE_GENERIC_THERMISTORTABLE_1) || defined(USE_GENERIC_THERMISTORTABLE_2) || defined(USE_GENERIC_THERMISTORTABLE_3)
|
|
case 97:
|
|
case 98:
|
|
case 99:
|
|
{
|
|
uint8_t i = 2;
|
|
const short *temptable;
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_1
|
|
if(type == 97)
|
|
temptable = (const short *)temptable_generic1;
|
|
#endif
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_2
|
|
if(type == 98)
|
|
temptable = (const short *)temptable_generic2;
|
|
#endif
|
|
#ifdef USE_GENERIC_THERMISTORTABLE_3
|
|
if(type == 99)
|
|
temptable = (const short *)temptable_generic3;
|
|
#endif
|
|
short oldraw = temptable[0];
|
|
short oldtemp = temptable[1];
|
|
short newraw,newtemp;
|
|
while(i<GENERIC_THERM_NUM_ENTRIES*2)
|
|
{
|
|
newraw = temptable[i++];
|
|
newtemp = temptable[i++];
|
|
if (newtemp < temp)
|
|
{
|
|
targetTemperature = (1023 << (2 - ANALOG_REDUCE_BITS)) - oldraw + (int32_t)(oldtemp-temp) * (int32_t)(oldraw-newraw) / (oldtemp-newtemp);
|
|
return;
|
|
}
|
|
oldtemp = newtemp;
|
|
oldraw = newraw;
|
|
}
|
|
// Overflow: Set to last value in the table
|
|
targetTemperature = (1023 << (2 - ANALOG_REDUCE_BITS)) - newraw;
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
uint8_t autotuneIndex = 255;
|
|
void Extruder::disableAllHeater()
|
|
{
|
|
for(uint8_t i=0; i<NUM_TEMPERATURE_LOOPS; i++)
|
|
{
|
|
TemperatureController *c = tempController[i];
|
|
c->targetTemperature = 0;
|
|
c->targetTemperatureC = 0;
|
|
pwm_pos[c->pwmIndex] = 0;
|
|
}
|
|
autotuneIndex = 255;
|
|
}
|
|
|
|
#if TEMP_PID
|
|
void TemperatureController::autotunePID(float temp,uint8_t controllerId,bool storeValues)
|
|
{
|
|
float currentTemp;
|
|
int cycles = 0;
|
|
bool heating = true;
|
|
|
|
uint32_t temp_millis = HAL::timeInMilliseconds();
|
|
uint32_t t1 = temp_millis;
|
|
uint32_t t2 = temp_millis;
|
|
int32_t t_high = 0;
|
|
int32_t t_low;
|
|
|
|
int32_t bias = pidMax >> 1;
|
|
int32_t d = pidMax >> 1;
|
|
float Ku, Tu;
|
|
float Kp = 0, Ki = 0, Kd = 0;
|
|
float maxTemp = 20, minTemp = 20;
|
|
|
|
Com::printInfoFLN(Com::tPIDAutotuneStart);
|
|
|
|
Extruder::disableAllHeater(); // switch off all heaters.
|
|
autotuneIndex = controllerId;
|
|
pwm_pos[pwmIndex] = pidMax;
|
|
if(controllerId<NUM_EXTRUDER)
|
|
{
|
|
extruder[controllerId].coolerPWM = extruder[controllerId].coolerSpeed;
|
|
extruder[0].coolerPWM = extruder[0].coolerSpeed;
|
|
}
|
|
for(;;)
|
|
{
|
|
#if FEATURE_WATCHDOG
|
|
HAL::pingWatchdog();
|
|
#endif // FEATURE_WATCHDOG
|
|
|
|
updateCurrentTemperature();
|
|
currentTemp = currentTemperatureC;
|
|
unsigned long time = HAL::timeInMilliseconds();
|
|
maxTemp = RMath::max(maxTemp,currentTemp);
|
|
minTemp = RMath::min(minTemp,currentTemp);
|
|
if(heating == true && currentTemp > temp) // switch heating -> off
|
|
{
|
|
if(time - t2 > (controllerId < NUM_EXTRUDER ? 2500 : 1500))
|
|
{
|
|
heating=false;
|
|
pwm_pos[pwmIndex] = (bias - d);
|
|
t1 = time;
|
|
t_high = t1 - t2;
|
|
maxTemp=temp;
|
|
}
|
|
}
|
|
if(heating == false && currentTemp < temp)
|
|
{
|
|
if(time - t1 > (controllerId < NUM_EXTRUDER ? 5000 : 3000))
|
|
{
|
|
heating = true;
|
|
t2 = time;
|
|
t_low=t2 - t1; // half wave length
|
|
if(cycles > 0)
|
|
{
|
|
bias += (d*(t_high - t_low))/(t_low + t_high);
|
|
bias = constrain(bias, 20 ,pidMax - 20);
|
|
if(bias > pidMax/2) d = pidMax - 1 - bias;
|
|
else d = bias;
|
|
|
|
Com::printF(Com::tAPIDBias,bias);
|
|
Com::printF(Com::tAPIDD,d);
|
|
Com::printF(Com::tAPIDMin,minTemp);
|
|
Com::printFLN(Com::tAPIDMax,maxTemp);
|
|
if(cycles > 2)
|
|
{
|
|
// Parameter according Ziegler¡§CNichols method: http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
|
|
Ku = (4.0 * d) / (3.14159*(maxTemp-minTemp));
|
|
Tu = ((float)(t_low + t_high)/1000.0);
|
|
Com::printF(Com::tAPIDKu,Ku);
|
|
Com::printFLN(Com::tAPIDTu,Tu);
|
|
Kp = 0.6*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu*0.125;
|
|
Com::printFLN(Com::tAPIDClassic);
|
|
Com::printFLN(Com::tAPIDKp,Kp);
|
|
Com::printFLN(Com::tAPIDKi,Ki);
|
|
Com::printFLN(Com::tAPIDKd,Kd);
|
|
/*
|
|
Kp = 0.33*Ku;
|
|
Ki = Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
OUT_P_LN(" Some overshoot");
|
|
OUT_P_F_LN(" Kp: ",Kp);
|
|
OUT_P_F_LN(" Ki: ",Ki);
|
|
OUT_P_F_LN(" Kd: ",Kd);
|
|
Kp = 0.2*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
OUT_P_LN(" No overshoot");
|
|
OUT_P_F_LN(" Kp: ",Kp);
|
|
OUT_P_F_LN(" Ki: ",Ki);
|
|
OUT_P_F_LN(" Kd: ",Kd);
|
|
*/
|
|
}
|
|
}
|
|
pwm_pos[pwmIndex] = (bias + d);
|
|
cycles++;
|
|
minTemp=temp;
|
|
}
|
|
}
|
|
if(currentTemp > (temp + 40))
|
|
{
|
|
Com::printErrorFLN(Com::tAPIDFailedHigh);
|
|
Extruder::disableAllHeater();
|
|
return;
|
|
}
|
|
if(time - temp_millis > 1000)
|
|
{
|
|
temp_millis = time;
|
|
Commands::printTemperatures();
|
|
}
|
|
if(((time - t1) + (time - t2)) > (10L*60L*1000L*2L)) // 20 Minutes
|
|
{
|
|
Com::printErrorFLN(Com::tAPIDFailedTimeout);
|
|
Extruder::disableAllHeater();
|
|
return;
|
|
}
|
|
if(cycles > 5)
|
|
{
|
|
Com::printInfoFLN(Com::tAPIDFinished);
|
|
Extruder::disableAllHeater();
|
|
if(storeValues)
|
|
{
|
|
pidPGain = Kp;
|
|
pidIGain = Ki;
|
|
pidDGain = Kd;
|
|
heatManager = HTR_PID;
|
|
EEPROM::storeDataIntoEEPROM();
|
|
}
|
|
return;
|
|
}
|
|
UI_MEDIUM;
|
|
UI_SLOW(true);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/** \brief Writes monitored temperatures.
|
|
|
|
This function is called every 250ms to write the monitored temperature. If monitoring is
|
|
disabled, the function is not called.
|
|
*/
|
|
void writeMonitor()
|
|
{
|
|
Com::printF(Com::tMTEMPColon,(long)HAL::timeInMilliseconds());
|
|
TemperatureController *act = tempController[manageMonitor];
|
|
Com::printF(Com::tSpace,act->currentTemperatureC);
|
|
Com::printF(Com::tSpace,act->targetTemperatureC, 0);
|
|
Com::printFLN(Com::tSpace,pwm_pos[act->pwmIndex]);
|
|
}
|
|
|
|
bool reportTempsensorError()
|
|
{
|
|
if(!Printer::isAnyTempsensorDefect()) return false;
|
|
for(uint8_t i = 0; i < NUM_TEMPERATURE_LOOPS; i++)
|
|
{
|
|
if(i == NUM_EXTRUDER) Com::printF(Com::tHeatedBed);
|
|
else Com::printF(Com::tExtruderSpace,i);
|
|
int temp = tempController[i]->currentTemperatureC;
|
|
if(temp < MIN_DEFECT_TEMPERATURE || temp > MAX_DEFECT_TEMPERATURE)
|
|
Com::printFLN(Com::tTempSensorDefect);
|
|
else
|
|
Com::printFLN(Com::tTempSensorWorking);
|
|
}
|
|
Com::printErrorFLN(Com::tDryModeUntilRestart);
|
|
return true;
|
|
}
|
|
|
|
#ifdef SUPPORT_MAX6675
|
|
int16_t read_max6675(uint8_t ss_pin)
|
|
{
|
|
int16_t max6675_temp = 0;
|
|
HAL::spiInit(1);
|
|
HAL::digitalWrite(ss_pin, 0); // enable TT_MAX6675
|
|
HAL::delayMicroseconds(1); // ensure 100ns delay - a bit extra is fine
|
|
max6675_temp = HAL::spiReceive(0);
|
|
max6675_temp <<= 8;
|
|
max6675_temp |= HAL::spiReceive(0);
|
|
HAL::digitalWrite(ss_pin, 1); // disable TT_MAX6675
|
|
return max6675_temp & 4 ? 2000 : max6675_temp >> 3; // thermocouple open?
|
|
}
|
|
#endif
|
|
#ifdef SUPPORT_MAX31855
|
|
int16_t read_max31855(uint8_t ss_pin)
|
|
{
|
|
uint32_t data = 0;
|
|
int16_t temperature;
|
|
HAL::spiInit(1);
|
|
HAL::digitalWrite(ss_pin, 0); // enable TT_MAX31855
|
|
HAL::delayMicroseconds(1); // ensure 100ns delay - a bit extra is fine
|
|
|
|
for (unsigned short byte = 0; byte < 4; byte++)
|
|
{
|
|
data <<= 8;
|
|
data |= HAL::spiReceive();
|
|
}
|
|
|
|
HAL::digitalWrite(ss_pin, 1); // disable TT_MAX31855
|
|
|
|
//Process temp
|
|
if (data & 0x00010000)
|
|
return 20000; //Some form of error.
|
|
else
|
|
{
|
|
data = data >> 18;
|
|
temperature = data & 0x00001FFF;
|
|
|
|
if (data & 0x00002000)
|
|
{
|
|
data = ~data;
|
|
temperature = -1 * ((data & 0x00001FFF) + 1);
|
|
}
|
|
}
|
|
return temperature;
|
|
}
|
|
#endif
|
|
|
|
#if FEATURE_RETRACTION
|
|
void Extruder::retractDistance(float dist) {
|
|
float oldFeedrate = Printer::feedrate;
|
|
int32_t distance = static_cast<int32_t>(dist * stepsPerMM / Printer::extrusionFactor);
|
|
int32_t oldEPos = Printer::currentPositionSteps[E_AXIS];
|
|
PrintLine::moveRelativeDistanceInSteps(0, 0, 0, -distance,distance > 0 ? EEPROM_FLOAT(RETRACTION_SPEED) : EEPROM_FLOAT(RETRACTION_UNDO_SPEED), false, false);
|
|
Printer::currentPositionSteps[E_AXIS] = oldEPos; // restore previous extruder position
|
|
Printer::feedrate = oldFeedrate;
|
|
}
|
|
|
|
void Extruder::retract(bool isRetract,bool isLong) {
|
|
float oldFeedrate = Printer::feedrate;
|
|
float distance = (isLong ? EEPROM_FLOAT( RETRACTION_LONG_LENGTH) : EEPROM_FLOAT(RETRACTION_LENGTH));
|
|
int32_t zlift = static_cast<int32_t>(EEPROM_FLOAT(RETRACTION_Z_LIFT) * Printer::axisStepsPerMM[Z_AXIS]);
|
|
int32_t oldZPos = Printer::currentPositionSteps[Z_AXIS];
|
|
float oldZPosF = Printer::currentPosition[Z_AXIS];
|
|
if(isRetract && !isRetracted()) {
|
|
retractDistance(distance);
|
|
setRetracted(true);
|
|
if(zlift > 0)
|
|
PrintLine::moveRelativeDistanceInStepsReal(0,0,zlift,0,Printer::maxFeedrate[Z_AXIS], false);
|
|
} else if(!isRetract && isRetracted()) {
|
|
distance += (isLong ? EEPROM_FLOAT(RETRACTION_UNDO_EXTRA_LONG_LENGTH) : EEPROM_FLOAT(RETRACTION_UNDO_EXTRA_LENGTH) );
|
|
if(zlift > 0)
|
|
PrintLine::moveRelativeDistanceInStepsReal(0,0,-zlift,0,Printer::maxFeedrate[Z_AXIS], false);
|
|
retractDistance(-distance);
|
|
setRetracted(false);
|
|
}
|
|
Printer::currentPositionSteps[Z_AXIS] = oldZPos; // z lift should have no visible impact
|
|
Printer::currentPosition[Z_AXIS] = oldZPosF;
|
|
Printer::feedrate = oldFeedrate;
|
|
}
|
|
#endif
|
|
|
|
Extruder *Extruder::current;
|
|
|
|
#if NUM_EXTRUDER>0
|
|
const char ext0_select_cmd[] PROGMEM = EXT0_SELECT_COMMANDS;
|
|
const char ext0_deselect_cmd[] PROGMEM = EXT0_DESELECT_COMMANDS;
|
|
#endif
|
|
#if NUM_EXTRUDER>1
|
|
const char ext1_select_cmd[] PROGMEM = EXT1_SELECT_COMMANDS;
|
|
const char ext1_deselect_cmd[] PROGMEM = EXT1_DESELECT_COMMANDS;
|
|
#endif
|
|
#if NUM_EXTRUDER>2
|
|
const char ext2_select_cmd[] PROGMEM = EXT2_SELECT_COMMANDS;
|
|
const char ext2_deselect_cmd[] PROGMEM = EXT2_DESELECT_COMMANDS;
|
|
#endif
|
|
#if NUM_EXTRUDER>3
|
|
const char ext3_select_cmd[] PROGMEM = EXT3_SELECT_COMMANDS;
|
|
const char ext3_deselect_cmd[] PROGMEM = EXT3_DESELECT_COMMANDS;
|
|
#endif
|
|
#if NUM_EXTRUDER>4
|
|
const char ext4_select_cmd[] PROGMEM = EXT4_SELECT_COMMANDS;
|
|
const char ext4_deselect_cmd[] PROGMEM = EXT4_DESELECT_COMMANDS;
|
|
#endif
|
|
#if NUM_EXTRUDER>5
|
|
const char ext5_select_cmd[] PROGMEM = EXT5_SELECT_COMMANDS;
|
|
const char ext5_deselect_cmd[] PROGMEM = EXT5_DESELECT_COMMANDS;
|
|
#endif
|
|
|
|
Extruder extruder[NUM_EXTRUDER] =
|
|
{
|
|
#if NUM_EXTRUDER > 0
|
|
{
|
|
0,EXT0_X_OFFSET,EXT0_Y_OFFSET,EXT0_STEPS_PER_MM,EXT0_ENABLE_PIN,EXT0_ENABLE_ON,
|
|
EXT0_MAX_FEEDRATE,EXT0_MAX_ACCELERATION,EXT0_MAX_START_FEEDRATE,0,EXT0_WATCHPERIOD
|
|
,EXT0_WAIT_RETRACT_TEMP,EXT0_WAIT_RETRACT_UNITS
|
|
#if USE_ADVANCE
|
|
#if ENABLE_QUADRATIC_ADVANCE
|
|
,EXT0_ADVANCE_K
|
|
#endif
|
|
,EXT0_ADVANCE_L,EXT0_ADVANCE_BACKLASH_STEPS
|
|
#endif
|
|
#if MIXING_EXTRUDER > 0
|
|
,10,10,{10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10}
|
|
#endif
|
|
,{
|
|
0,EXT0_TEMPSENSOR_TYPE,EXT0_SENSOR_INDEX,0,0,0,0,0,EXT0_HEAT_MANAGER
|
|
#if TEMP_PID
|
|
,0,EXT0_PID_INTEGRAL_DRIVE_MAX,EXT0_PID_INTEGRAL_DRIVE_MIN,EXT0_PID_PGAIN_OR_DEAD_TIME,EXT0_PID_I,EXT0_PID_D,EXT0_PID_MAX,0,0,0,{0,0,0,0}
|
|
#endif
|
|
,0,0,0,EXT0_DECOUPLE_TEST_PERIOD
|
|
}
|
|
,ext0_select_cmd,ext0_deselect_cmd,EXT0_EXTRUDER_COOLER_SPEED,0,0,0
|
|
}
|
|
#endif
|
|
#if NUM_EXTRUDER > 1
|
|
,{
|
|
1,EXT1_X_OFFSET,EXT1_Y_OFFSET,EXT1_STEPS_PER_MM,EXT1_ENABLE_PIN,EXT1_ENABLE_ON,
|
|
EXT1_MAX_FEEDRATE,EXT1_MAX_ACCELERATION,EXT1_MAX_START_FEEDRATE,0,EXT1_WATCHPERIOD
|
|
,EXT1_WAIT_RETRACT_TEMP,EXT1_WAIT_RETRACT_UNITS
|
|
#if USE_ADVANCE
|
|
#if ENABLE_QUADRATIC_ADVANCE
|
|
,EXT1_ADVANCE_K
|
|
#endif
|
|
,EXT1_ADVANCE_L,EXT1_ADVANCE_BACKLASH_STEPS
|
|
#endif
|
|
#if MIXING_EXTRUDER > 0
|
|
,10,10,{10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10}
|
|
#endif
|
|
,{
|
|
1,EXT1_TEMPSENSOR_TYPE,EXT1_SENSOR_INDEX,0,0,0,0,0,EXT1_HEAT_MANAGER
|
|
#if TEMP_PID
|
|
,0,EXT1_PID_INTEGRAL_DRIVE_MAX,EXT1_PID_INTEGRAL_DRIVE_MIN,EXT1_PID_PGAIN_OR_DEAD_TIME,EXT1_PID_I,EXT1_PID_D,EXT1_PID_MAX,0,0,0,{0,0,0,0}
|
|
#endif
|
|
,0,0,0,EXT1_DECOUPLE_TEST_PERIOD
|
|
}
|
|
,ext1_select_cmd,ext1_deselect_cmd,EXT1_EXTRUDER_COOLER_SPEED,0,0,0
|
|
}
|
|
#endif
|
|
#if NUM_EXTRUDER > 2
|
|
,{
|
|
2,EXT2_X_OFFSET,EXT2_Y_OFFSET,EXT2_STEPS_PER_MM,EXT2_ENABLE_PIN,EXT2_ENABLE_ON,
|
|
EXT2_MAX_FEEDRATE,EXT2_MAX_ACCELERATION,EXT2_MAX_START_FEEDRATE,0,EXT2_WATCHPERIOD
|
|
,EXT2_WAIT_RETRACT_TEMP,EXT2_WAIT_RETRACT_UNITS
|
|
#if USE_ADVANCE
|
|
#if ENABLE_QUADRATIC_ADVANCE
|
|
,EXT2_ADVANCE_K
|
|
#endif
|
|
,EXT2_ADVANCE_L,EXT2_ADVANCE_BACKLASH_STEPS
|
|
#endif
|
|
#if MIXING_EXTRUDER > 0
|
|
,10,10,{10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10}
|
|
#endif
|
|
,{
|
|
2,EXT2_TEMPSENSOR_TYPE,EXT2_SENSOR_INDEX,0,0,0,0,0,EXT2_HEAT_MANAGER
|
|
#if TEMP_PID
|
|
,0,EXT2_PID_INTEGRAL_DRIVE_MAX,EXT2_PID_INTEGRAL_DRIVE_MIN,EXT2_PID_PGAIN_OR_DEAD_TIME,EXT2_PID_I,EXT2_PID_D,EXT2_PID_MAX,0,0,0,{0,0,0,0}
|
|
#endif
|
|
,0,0,0,EXT2_DECOUPLE_TEST_PERIOD
|
|
}
|
|
,ext2_select_cmd,ext2_deselect_cmd,EXT2_EXTRUDER_COOLER_SPEED,0,0,0
|
|
}
|
|
#endif
|
|
#if NUM_EXTRUDER > 3
|
|
,{
|
|
3,EXT3_X_OFFSET,EXT3_Y_OFFSET,EXT3_STEPS_PER_MM,EXT3_ENABLE_PIN,EXT3_ENABLE_ON,
|
|
EXT3_MAX_FEEDRATE,EXT3_MAX_ACCELERATION,EXT3_MAX_START_FEEDRATE,0,EXT3_WATCHPERIOD
|
|
,EXT3_WAIT_RETRACT_TEMP,EXT3_WAIT_RETRACT_UNITS
|
|
#if USE_ADVANCE
|
|
#if ENABLE_QUADRATIC_ADVANCE
|
|
,EXT3_ADVANCE_K
|
|
#endif
|
|
,EXT3_ADVANCE_L,EXT3_ADVANCE_BACKLASH_STEPS
|
|
#endif
|
|
#if MIXING_EXTRUDER > 0
|
|
,10,10,{10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10}
|
|
#endif
|
|
,{
|
|
3,EXT3_TEMPSENSOR_TYPE,EXT3_SENSOR_INDEX,0,0,0,0,0,EXT3_HEAT_MANAGER
|
|
#if TEMP_PID
|
|
,0,EXT3_PID_INTEGRAL_DRIVE_MAX,EXT3_PID_INTEGRAL_DRIVE_MIN,EXT3_PID_PGAIN_OR_DEAD_TIME,EXT3_PID_I,EXT3_PID_D,EXT3_PID_MAX,0,0,0,{0,0,0,0}
|
|
#endif
|
|
,0,0,0,EXT3_DECOUPLE_TEST_PERIOD
|
|
}
|
|
,ext3_select_cmd,ext3_deselect_cmd,EXT3_EXTRUDER_COOLER_SPEED,0,0,0
|
|
}
|
|
#endif
|
|
#if NUM_EXTRUDER > 4
|
|
,{
|
|
4,EXT4_X_OFFSET,EXT4_Y_OFFSET,EXT4_STEPS_PER_MM,EXT4_ENABLE_PIN,EXT4_ENABLE_ON,
|
|
EXT4_MAX_FEEDRATE,EXT4_MAX_ACCELERATION,EXT4_MAX_START_FEEDRATE,0,EXT4_WATCHPERIOD
|
|
,EXT4_WAIT_RETRACT_TEMP,EXT4_WAIT_RETRACT_UNITS
|
|
#if USE_ADVANCE
|
|
#if ENABLE_QUADRATIC_ADVANCE
|
|
,EXT4_ADVANCE_K
|
|
#endif
|
|
,EXT4_ADVANCE_L,EXT4_ADVANCE_BACKLASH_STEPS
|
|
#endif
|
|
#if MIXING_EXTRUDER > 0
|
|
,10,10,{10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10}
|
|
#endif
|
|
,{
|
|
4,EXT4_TEMPSENSOR_TYPE,EXT4_SENSOR_INDEX,0,0,0,0,0,EXT4_HEAT_MANAGER
|
|
#if TEMP_PID
|
|
,0,EXT4_PID_INTEGRAL_DRIVE_MAX,EXT4_PID_INTEGRAL_DRIVE_MIN,EXT4_PID_PGAIN_OR_DEAD_TIME,EXT4_PID_I,EXT4_PID_D,EXT4_PID_MAX,0,0,0,{0,0,0,0}
|
|
#endif
|
|
,0,0,0,EXT4_DECOUPLE_TEST_PERIOD
|
|
}
|
|
,ext4_select_cmd,ext4_deselect_cmd,EXT4_EXTRUDER_COOLER_SPEED,0,0,0
|
|
}
|
|
#endif
|
|
#if NUM_EXTRUDER > 5
|
|
,{
|
|
5,EXT5_X_OFFSET,EXT5_Y_OFFSET,EXT5_STEPS_PER_MM,EXT5_ENABLE_PIN,EXT5_ENABLE_ON,
|
|
EXT5_MAX_FEEDRATE,EXT5_MAX_ACCELERATION,EXT5_MAX_START_FEEDRATE,0,EXT5_WATCHPERIOD
|
|
,EXT5_WAIT_RETRACT_TEMP,EXT5_WAIT_RETRACT_UNITS
|
|
#if USE_ADVANCE
|
|
#if ENABLE_QUADRATIC_ADVANCE
|
|
,EXT5_ADVANCE_K
|
|
#endif
|
|
,EXT5_ADVANCE_L,EXT5_ADVANCE_BACKLASH_STEPS
|
|
#endif
|
|
#if MIXING_EXTRUDER > 0
|
|
,10,10,{10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10}
|
|
#endif
|
|
,{
|
|
5,EXT5_TEMPSENSOR_TYPE,EXT5_SENSOR_INDEX,0,0,0,0,0,EXT5_HEAT_MANAGER
|
|
#if TEMP_PID
|
|
,0,EXT5_PID_INTEGRAL_DRIVE_MAX,EXT5_PID_INTEGRAL_DRIVE_MIN,EXT5_PID_PGAIN_OR_DEAD_TIME,EXT5_PID_I,EXT5_PID_D,EXT5_PID_MAX,0,0,0,{0,0,0,0}
|
|
#endif
|
|
,0,0,0,EXT5_DECOUPLE_TEST_PERIOD
|
|
}
|
|
,ext5_select_cmd,ext5_deselect_cmd,EXT5_EXTRUDER_COOLER_SPEED,0,0,0
|
|
}
|
|
#endif
|
|
};
|
|
|
|
#if HAVE_HEATED_BED
|
|
#define NUM_TEMPERATURE_LOOPS NUM_EXTRUDER+1
|
|
TemperatureController heatedBedController = {NUM_EXTRUDER,HEATED_BED_SENSOR_TYPE,BED_SENSOR_INDEX,0,0,0,0,0,HEATED_BED_HEAT_MANAGER
|
|
#if TEMP_PID
|
|
,0,HEATED_BED_PID_INTEGRAL_DRIVE_MAX,HEATED_BED_PID_INTEGRAL_DRIVE_MIN,HEATED_BED_PID_PGAIN_OR_DEAD_TIME,HEATED_BED_PID_IGAIN,HEATED_BED_PID_DGAIN,HEATED_BED_PID_MAX,0,0,0,{0,0,0,0}
|
|
#endif
|
|
,0,0,0,HEATED_BED_DECOUPLE_TEST_PERIOD
|
|
};
|
|
#else
|
|
#define NUM_TEMPERATURE_LOOPS NUM_EXTRUDER
|
|
#endif
|
|
|
|
TemperatureController *tempController[NUM_TEMPERATURE_LOOPS] =
|
|
{
|
|
#if NUM_EXTRUDER>0
|
|
&extruder[0].tempControl
|
|
#endif
|
|
#if NUM_EXTRUDER>1
|
|
,&extruder[1].tempControl
|
|
#endif
|
|
#if NUM_EXTRUDER>2
|
|
,&extruder[2].tempControl
|
|
#endif
|
|
#if NUM_EXTRUDER>3
|
|
,&extruder[3].tempControl
|
|
#endif
|
|
#if NUM_EXTRUDER>4
|
|
,&extruder[4].tempControl
|
|
#endif
|
|
#if NUM_EXTRUDER>5
|
|
,&extruder[5].tempControl
|
|
#endif
|
|
#if HAVE_HEATED_BED
|
|
#if NUM_EXTRUDER==0
|
|
&heatedBedController
|
|
#else
|
|
,&heatedBedController
|
|
#endif
|
|
#endif
|
|
};
|
|
|