The-Legend-of-Delta/Repetier Firmware/Repetier/Printer.cpp
2019-08-07 14:27:54 +02:00

1877 lines
74 KiB
C++

/*
This file is part of Repetier-Firmware.
Repetier-Firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Repetier-Firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Repetier-Firmware. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Repetier.h"
#if USE_ADVANCE
uint8_t Printer::minExtruderSpeed; ///< Timer delay for start extruder speed
uint8_t Printer::maxExtruderSpeed; ///< Timer delay for end extruder speed
volatile int Printer::extruderStepsNeeded; ///< This many extruder steps are still needed, <0 = reverse steps needed.
//uint8_t Printer::extruderAccelerateDelay; ///< delay between 2 speec increases
#endif
uint8_t Printer::unitIsInches = 0; ///< 0 = Units are mm, 1 = units are inches.
//Stepper Movement Variables
float Printer::axisStepsPerMM[E_AXIS_ARRAY] = {XAXIS_STEPS_PER_MM,YAXIS_STEPS_PER_MM,ZAXIS_STEPS_PER_MM,1}; ///< Number of steps per mm needed.
float Printer::invAxisStepsPerMM[E_AXIS_ARRAY]; ///< Inverse of axisStepsPerMM for faster conversion
float Printer::maxFeedrate[E_AXIS_ARRAY] = {MAX_FEEDRATE_X, MAX_FEEDRATE_Y, MAX_FEEDRATE_Z}; ///< Maximum allowed feedrate.
float Printer::homingFeedrate[Z_AXIS_ARRAY] = {HOMING_FEEDRATE_X, HOMING_FEEDRATE_Y, HOMING_FEEDRATE_Z};
#if RAMP_ACCELERATION
// float max_start_speed_units_per_second[E_AXIS_ARRAY] = MAX_START_SPEED_UNITS_PER_SECOND; ///< Speed we can use, without acceleration.
float Printer::maxAccelerationMMPerSquareSecond[E_AXIS_ARRAY] = {MAX_ACCELERATION_UNITS_PER_SQ_SECOND_X,MAX_ACCELERATION_UNITS_PER_SQ_SECOND_Y,MAX_ACCELERATION_UNITS_PER_SQ_SECOND_Z}; ///< X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
float Printer::maxTravelAccelerationMMPerSquareSecond[E_AXIS_ARRAY] = {MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND_X,MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND_Y,MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND_Z}; ///< X, Y, Z max acceleration in mm/s^2 for travel moves
/** Acceleration in steps/s^3 in printing mode.*/
unsigned long Printer::maxPrintAccelerationStepsPerSquareSecond[E_AXIS_ARRAY];
/** Acceleration in steps/s^2 in movement mode.*/
unsigned long Printer::maxTravelAccelerationStepsPerSquareSecond[E_AXIS_ARRAY];
#endif
#if NONLINEAR_SYSTEM
long Printer::currentDeltaPositionSteps[E_TOWER_ARRAY];
uint8_t lastMoveID = 0; // Last move ID
#endif
signed char Printer::zBabystepsMissing = 0;
uint8_t Printer::relativeCoordinateMode = false; ///< Determines absolute (false) or relative Coordinates (true).
uint8_t Printer::relativeExtruderCoordinateMode = false; ///< Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
long Printer::currentPositionSteps[E_AXIS_ARRAY];
float Printer::currentPosition[Z_AXIS_ARRAY];
float Printer::lastCmdPos[Z_AXIS_ARRAY];
long Printer::destinationSteps[E_AXIS_ARRAY];
float Printer::coordinateOffset[Z_AXIS_ARRAY] = {0,0,0};
uint8_t Printer::flag0 = 0;
uint8_t Printer::flag1 = 0;
uint8_t Printer::flag2 = 0;
uint8_t Printer::debugLevel = 6; ///< Bitfield defining debug output. 1 = echo, 2 = info, 4 = error, 8 = dry run., 16 = Only communication, 32 = No moves
uint8_t Printer::stepsPerTimerCall = 1;
uint8_t Printer::menuMode = 0;
float Printer::extrudeMultiplyError = 0;
float Printer::extrusionFactor = 1.0;
#if FEATURE_AUTOLEVEL
float Printer::autolevelTransformation[9]; ///< Transformation matrix
#endif
uint32_t Printer::interval; ///< Last step duration in ticks.
uint32_t Printer::timer; ///< used for acceleration/deceleration timing
uint32_t Printer::stepNumber; ///< Step number in current move.
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
int32_t Printer::advanceExecuted; ///< Executed advance steps
#endif
int Printer::advanceStepsSet;
#endif
#if NONLINEAR_SYSTEM
int32_t Printer::maxDeltaPositionSteps;
floatLong Printer::deltaDiagonalStepsSquaredA;
floatLong Printer::deltaDiagonalStepsSquaredB;
floatLong Printer::deltaDiagonalStepsSquaredC;
float Printer::deltaMaxRadiusSquared;
float Printer::radius0;
int32_t Printer::deltaFloorSafetyMarginSteps = 0;
int32_t Printer::deltaAPosXSteps;
int32_t Printer::deltaAPosYSteps;
int32_t Printer::deltaBPosXSteps;
int32_t Printer::deltaBPosYSteps;
int32_t Printer::deltaCPosXSteps;
int32_t Printer::deltaCPosYSteps;
int32_t Printer::realDeltaPositionSteps[TOWER_ARRAY];
int16_t Printer::travelMovesPerSecond;
int16_t Printer::printMovesPerSecond;
#endif
#if FEATURE_Z_PROBE || MAX_HARDWARE_ENDSTOP_Z || NONLINEAR_SYSTEM
int32_t Printer::stepsRemainingAtZHit;
#endif
#if DRIVE_SYSTEM == DELTA
int32_t Printer::stepsRemainingAtXHit;
int32_t Printer::stepsRemainingAtYHit;
#endif
#if SOFTWARE_LEVELING
int32_t Printer::levelingP1[3];
int32_t Printer::levelingP2[3];
int32_t Printer::levelingP3[3];
#endif
float Printer::minimumSpeed; ///< lowest allowed speed to keep integration error small
float Printer::minimumZSpeed;
int32_t Printer::xMaxSteps; ///< For software endstops, limit of move in positive direction.
int32_t Printer::yMaxSteps; ///< For software endstops, limit of move in positive direction.
int32_t Printer::zMaxSteps; ///< For software endstops, limit of move in positive direction.
int32_t Printer::xMinSteps; ///< For software endstops, limit of move in negative direction.
int32_t Printer::yMinSteps; ///< For software endstops, limit of move in negative direction.
int32_t Printer::zMinSteps; ///< For software endstops, limit of move in negative direction.
float Printer::xLength;
float Printer::xMin;
float Printer::yLength;
float Printer::yMin;
float Printer::zLength;
float Printer::zMin;
float Printer::feedrate; ///< Last requested feedrate.
int Printer::feedrateMultiply; ///< Multiplier for feedrate in percent (factor 1 = 100)
unsigned int Printer::extrudeMultiply; ///< Flow multiplier in percdent (factor 1 = 100)
float Printer::maxJerk; ///< Maximum allowed jerk in mm/s
#if DRIVE_SYSTEM!=DELTA
float Printer::maxZJerk; ///< Maximum allowed jerk in z direction in mm/s
#endif
float Printer::offsetX; ///< X-offset for different extruder positions.
float Printer::offsetY; ///< Y-offset for different extruder positions.
speed_t Printer::vMaxReached; ///< Maximumu reached speed
uint32_t Printer::msecondsPrinting; ///< Milliseconds of printing time (means time with heated extruder)
float Printer::filamentPrinted; ///< mm of filament printed since counting started
uint8_t Printer::wasLastHalfstepping; ///< Indicates if last move had halfstepping enabled
#if ENABLE_BACKLASH_COMPENSATION
float Printer::backlashX;
float Printer::backlashY;
float Printer::backlashZ;
uint8_t Printer::backlashDir;
#endif
#ifdef DEBUG_STEPCOUNT
int32_t Printer::totalStepsRemaining;
#endif
float Printer::memoryX;
float Printer::memoryY;
float Printer::memoryZ;
float Printer::memoryE;
float Printer::memoryF = -1;
#if GANTRY
int8_t Printer::motorX;
int8_t Printer::motorYorZ;
#endif
#ifdef DEBUG_SEGMENT_LENGTH
float Printer::maxRealSegmentLength = 0;
#endif
#ifdef DEBUG_REAL_JERK
float Printer::maxRealJerk = 0;
#endif
#ifdef DEBUG_PRINT
int debugWaitLoop = 0;
#endif
fast8_t Printer::wizardStackPos;
wizardVar Printer::wizardStack[WIZARD_STACK_SIZE];
#if !NONLINEAR_SYSTEM
void Printer::constrainDestinationCoords()
{
if(isNoDestinationCheck()) return;
#if min_software_endstop_x
if (destinationSteps[X_AXIS] < xMinSteps) Printer::destinationSteps[X_AXIS] = Printer::xMinSteps;
#endif
#if min_software_endstop_y
if (destinationSteps[Y_AXIS] < yMinSteps) Printer::destinationSteps[Y_AXIS] = Printer::yMinSteps;
#endif
#if min_software_endstop_z
if (destinationSteps[Z_AXIS] < zMinSteps && !isZProbingActive()) Printer::destinationSteps[Z_AXIS] = Printer::zMinSteps;
#endif
#if max_software_endstop_x
if (destinationSteps[X_AXIS] > Printer::xMaxSteps) Printer::destinationSteps[X_AXIS] = Printer::xMaxSteps;
#endif
#if max_software_endstop_y
if (destinationSteps[Y_AXIS] > Printer::yMaxSteps) Printer::destinationSteps[Y_AXIS] = Printer::yMaxSteps;
#endif
#if max_software_endstop_z
if (destinationSteps[Z_AXIS] > Printer::zMaxSteps && !isZProbingActive()) Printer::destinationSteps[Z_AXIS] = Printer::zMaxSteps;
#endif
}
#endif
bool Printer::isPositionAllowed(float x,float y,float z)
{
if(isNoDestinationCheck()) return true;
bool allowed = true;
#if DRIVE_SYSTEM == DELTA
allowed &= (z >= -100) && (z <= zLength + 0.05 + ENDSTOP_Z_BACK_ON_HOME);
allowed &= (x * x + y * y <= deltaMaxRadiusSquared);
#endif // DRIVE_SYSTEM
if(!allowed)
{
Printer::updateCurrentPosition(true);
Commands::printCurrentPosition(PSTR("isPositionAllowed "));
}
return allowed;
}
void Printer::updateDerivedParameter()
{
#if DRIVE_SYSTEM == DELTA
travelMovesPerSecond = EEPROM::deltaSegmentsPerSecondMove();
printMovesPerSecond = EEPROM::deltaSegmentsPerSecondPrint();
axisStepsPerMM[X_AXIS] = axisStepsPerMM[Y_AXIS] = axisStepsPerMM[Z_AXIS];
maxAccelerationMMPerSquareSecond[X_AXIS] = maxAccelerationMMPerSquareSecond[Y_AXIS] = maxAccelerationMMPerSquareSecond[Z_AXIS];
homingFeedrate[X_AXIS] = homingFeedrate[Y_AXIS] = homingFeedrate[Z_AXIS];
maxFeedrate[X_AXIS] = maxFeedrate[Y_AXIS] = maxFeedrate[Z_AXIS];
maxTravelAccelerationMMPerSquareSecond[X_AXIS] = maxTravelAccelerationMMPerSquareSecond[Y_AXIS] = maxTravelAccelerationMMPerSquareSecond[Z_AXIS];
zMaxSteps = axisStepsPerMM[Z_AXIS] * (zLength);
towerAMinSteps = axisStepsPerMM[A_TOWER] * xMin;
towerBMinSteps = axisStepsPerMM[B_TOWER] * yMin;
towerCMinSteps = axisStepsPerMM[C_TOWER] * zMin;
//radius0 = EEPROM::deltaHorizontalRadius();
float radiusA = radius0 + EEPROM::deltaRadiusCorrectionA();
float radiusB = radius0 + EEPROM::deltaRadiusCorrectionB();
float radiusC = radius0 + EEPROM::deltaRadiusCorrectionC();
deltaAPosXSteps = floor(radiusA * cos(EEPROM::deltaAlphaA() * M_PI / 180.0f) * axisStepsPerMM[Z_AXIS] + 0.5f);
deltaAPosYSteps = floor(radiusA * sin(EEPROM::deltaAlphaA() * M_PI / 180.0f) * axisStepsPerMM[Z_AXIS] + 0.5f);
deltaBPosXSteps = floor(radiusB * cos(EEPROM::deltaAlphaB() * M_PI / 180.0f) * axisStepsPerMM[Z_AXIS] + 0.5f);
deltaBPosYSteps = floor(radiusB * sin(EEPROM::deltaAlphaB() * M_PI / 180.0f) * axisStepsPerMM[Z_AXIS] + 0.5f);
deltaCPosXSteps = floor(radiusC * cos(EEPROM::deltaAlphaC() * M_PI / 180.0f) * axisStepsPerMM[Z_AXIS] + 0.5f);
deltaCPosYSteps = floor(radiusC * sin(EEPROM::deltaAlphaC() * M_PI / 180.0f) * axisStepsPerMM[Z_AXIS] + 0.5f);
deltaDiagonalStepsSquaredA.l = static_cast<uint32_t>((EEPROM::deltaDiagonalCorrectionA() + EEPROM::deltaDiagonalRodLength())*axisStepsPerMM[Z_AXIS]);
deltaDiagonalStepsSquaredB.l = static_cast<uint32_t>((EEPROM::deltaDiagonalCorrectionB() + EEPROM::deltaDiagonalRodLength())*axisStepsPerMM[Z_AXIS]);
deltaDiagonalStepsSquaredC.l = static_cast<uint32_t>((EEPROM::deltaDiagonalCorrectionC() + EEPROM::deltaDiagonalRodLength())*axisStepsPerMM[Z_AXIS]);
if(deltaDiagonalStepsSquaredA.l > 65534 || 2 * radius0*axisStepsPerMM[Z_AXIS] > 65534)
{
setLargeMachine(true);
#ifdef SUPPORT_64_BIT_MATH
deltaDiagonalStepsSquaredA.L = RMath::sqr(static_cast<uint64_t>(deltaDiagonalStepsSquaredA.l));
deltaDiagonalStepsSquaredB.L = RMath::sqr(static_cast<uint64_t>(deltaDiagonalStepsSquaredB.l));
deltaDiagonalStepsSquaredC.L = RMath::sqr(static_cast<uint64_t>(deltaDiagonalStepsSquaredC.l));
#else
deltaDiagonalStepsSquaredA.f = RMath::sqr(static_cast<float>(deltaDiagonalStepsSquaredA.l));
deltaDiagonalStepsSquaredB.f = RMath::sqr(static_cast<float>(deltaDiagonalStepsSquaredB.l));
deltaDiagonalStepsSquaredC.f = RMath::sqr(static_cast<float>(deltaDiagonalStepsSquaredC.l));
#endif
}
else
{
setLargeMachine(false);
deltaDiagonalStepsSquaredA.l = RMath::sqr(deltaDiagonalStepsSquaredA.l);
deltaDiagonalStepsSquaredB.l = RMath::sqr(deltaDiagonalStepsSquaredB.l);
deltaDiagonalStepsSquaredC.l = RMath::sqr(deltaDiagonalStepsSquaredC.l);
}
deltaMaxRadiusSquared = RMath::sqr(EEPROM::deltaMaxRadius());
long cart[Z_AXIS_ARRAY], delta[TOWER_ARRAY];
cart[X_AXIS] = cart[Y_AXIS] = 0;
cart[Z_AXIS] = zMaxSteps;
transformCartesianStepsToDeltaSteps(cart, delta);
maxDeltaPositionSteps = delta[0];
xMaxSteps = yMaxSteps = zMaxSteps;
xMinSteps = yMinSteps = zMinSteps = 0;
deltaFloorSafetyMarginSteps = DELTA_FLOOR_SAFETY_MARGIN_MM * axisStepsPerMM[Z_AXIS];
#elif DRIVE_SYSTEM == TUGA
deltaDiagonalStepsSquared.l = uint32_t(EEPROM::deltaDiagonalRodLength() * axisStepsPerMM[X_AXIS]);
if(deltaDiagonalStepsSquared.l > 65534)
{
setLargeMachine(true);
deltaDiagonalStepsSquared.f = float(deltaDiagonalStepsSquared.l) * float(deltaDiagonalStepsSquared.l);
}
else
deltaDiagonalStepsSquared.l = deltaDiagonalStepsSquared.l * deltaDiagonalStepsSquared.l;
deltaBPosXSteps = static_cast<int32_t>(EEPROM::deltaDiagonalRodLength() * axisStepsPerMM[X_AXIS]);
xMaxSteps = static_cast<int32_t>(axisStepsPerMM[X_AXIS] * (xMin + xLength));
yMaxSteps = static_cast<int32_t>(axisStepsPerMM[Y_AXIS] * yLength);
zMaxSteps = static_cast<int32_t>(axisStepsPerMM[Z_AXIS] * (zMin + zLength));
xMinSteps = static_cast<int32_t>(axisStepsPerMM[X_AXIS] * xMin);
yMinSteps = 0;
zMinSteps = static_cast<int32_t>(axisStepsPerMM[Z_AXIS] * zMin);
#else
xMaxSteps = static_cast<int32_t>(axisStepsPerMM[X_AXIS] * (xMin + xLength));
yMaxSteps = static_cast<int32_t>(axisStepsPerMM[Y_AXIS] * (yMin + yLength));
zMaxSteps = static_cast<int32_t>(axisStepsPerMM[Z_AXIS] * (zMin + zLength));
xMinSteps = static_cast<int32_t>(axisStepsPerMM[X_AXIS] * xMin);
yMinSteps = static_cast<int32_t>(axisStepsPerMM[Y_AXIS] * yMin);
zMinSteps = static_cast<int32_t>(axisStepsPerMM[Z_AXIS] * zMin);
// For which directions do we need backlash compensation
#if ENABLE_BACKLASH_COMPENSATION
backlashDir &= XYZ_DIRPOS;
if(backlashX != 0) backlashDir |= 8;
if(backlashY != 0) backlashDir |= 16;
if(backlashZ != 0) backlashDir |= 32;
#endif
#endif
for(uint8_t i = 0; i < E_AXIS_ARRAY; i++)
{
invAxisStepsPerMM[i] = 1.0f/axisStepsPerMM[i];
#ifdef RAMP_ACCELERATION
/** Acceleration in steps/s^3 in printing mode.*/
maxPrintAccelerationStepsPerSquareSecond[i] = maxAccelerationMMPerSquareSecond[i] * axisStepsPerMM[i];
/** Acceleration in steps/s^2 in movement mode.*/
maxTravelAccelerationStepsPerSquareSecond[i] = maxTravelAccelerationMMPerSquareSecond[i] * axisStepsPerMM[i];
#endif
}
float accel = RMath::max(maxAccelerationMMPerSquareSecond[X_AXIS], maxTravelAccelerationMMPerSquareSecond[X_AXIS]);
minimumSpeed = accel * sqrt(2.0f / (axisStepsPerMM[X_AXIS]*accel));
accel = RMath::max(maxAccelerationMMPerSquareSecond[Z_AXIS], maxTravelAccelerationMMPerSquareSecond[Z_AXIS]);
minimumZSpeed = accel * sqrt(2.0f / (axisStepsPerMM[Z_AXIS] * accel));
#if DISTORTION_CORRECTION
distortion.updateDerived();
#endif // DISTORTION_CORRECTION
Printer::updateAdvanceFlags();
}
/**
\brief Stop heater and stepper motors. Disable power,if possible.
*/
void Printer::kill(uint8_t only_steppers)
{
if(areAllSteppersDisabled() && only_steppers) return;
if(Printer::isAllKilled()) return;
setAllSteppersDiabled();
disableXStepper();
disableYStepper();
disableZStepper();
Extruder::disableAllExtruderMotors();
#if FAN_BOARD_PIN>-1
pwm_pos[NUM_EXTRUDER + 1] = 0;
#endif // FAN_BOARD_PIN
if(!only_steppers)
{
for(uint8_t i = 0; i < NUM_TEMPERATURE_LOOPS; i++)
Extruder::setTemperatureForExtruder(0, i);
Extruder::setHeatedBedTemperature(0);
UI_STATUS_UPD(UI_TEXT_KILLED);
#if defined(PS_ON_PIN) && PS_ON_PIN>-1
//pinMode(PS_ON_PIN,INPUT);
SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, (POWER_INVERTING ? LOW : HIGH));
Printer::setPowerOn(false);
#endif
Printer::setAllKilled(true);
}
else UI_STATUS_UPD(UI_TEXT_STEPPER_DISABLED);
}
void Printer::updateAdvanceFlags()
{
Printer::setAdvanceActivated(false);
#if USE_ADVANCE
for(uint8_t i = 0; i < NUM_EXTRUDER; i++)
{
if(extruder[i].advanceL != 0)
{
Printer::setAdvanceActivated(true);
}
#if ENABLE_QUADRATIC_ADVANCE
if(extruder[i].advanceK != 0) Printer::setAdvanceActivated(true);
#endif
}
#endif
}
// This is for untransformed move to coordinates in printers absolute cartesian space
uint8_t Printer::moveTo(float x,float y,float z,float e,float f)
{
if(x != IGNORE_COORDINATE)
destinationSteps[X_AXIS] = (x + Printer::offsetX) * axisStepsPerMM[X_AXIS];
if(y != IGNORE_COORDINATE)
destinationSteps[Y_AXIS] = (y + Printer::offsetY) * axisStepsPerMM[Y_AXIS];
if(z != IGNORE_COORDINATE)
destinationSteps[Z_AXIS] = z * axisStepsPerMM[Z_AXIS];
if(e != IGNORE_COORDINATE)
destinationSteps[E_AXIS] = e * axisStepsPerMM[E_AXIS];
if(f != IGNORE_COORDINATE)
feedrate = f;
#if NONLINEAR_SYSTEM
// Disable software endstop or we get wrong distances when length < real length
if (!PrintLine::queueDeltaMove(ALWAYS_CHECK_ENDSTOPS, true, false))
{
Com::printWarningFLN(PSTR("moveTo / queueDeltaMove returns error"));
return 0;
}
#else
PrintLine::queueCartesianMove(ALWAYS_CHECK_ENDSTOPS, true);
#endif
updateCurrentPosition(false);
return 1;
}
// Move to transformed cartesian coordinates, mapping real (model) space to printer space
uint8_t Printer::moveToReal(float x, float y, float z, float e, float f)
{
if(x == IGNORE_COORDINATE)
x = currentPosition[X_AXIS];
else
currentPosition[X_AXIS] = x;
if(y == IGNORE_COORDINATE)
y = currentPosition[Y_AXIS];
else
currentPosition[Y_AXIS] = y;
if(z == IGNORE_COORDINATE)
z = currentPosition[Z_AXIS];
else
currentPosition[Z_AXIS] = z;
#if FEATURE_AUTOLEVEL
if(isAutolevelActive())
transformToPrinter(x + Printer::offsetX, y + Printer::offsetY, z, x, y, z);
else
#endif // FEATURE_AUTOLEVEL
{
x += Printer::offsetX;
y += Printer::offsetY;
}
// There was conflicting use of IGNOR_COORDINATE
destinationSteps[X_AXIS] = static_cast<int32_t>(floor(x * axisStepsPerMM[X_AXIS] + 0.5f));
destinationSteps[Y_AXIS] = static_cast<int32_t>(floor(y * axisStepsPerMM[Y_AXIS] + 0.5f));
destinationSteps[Z_AXIS] = static_cast<int32_t>(floor(z * axisStepsPerMM[Z_AXIS] + 0.5f));
if(e != IGNORE_COORDINATE && !Printer::debugDryrun()
#if MIN_EXTRUDER_TEMP > 30
&& (Extruder::current->tempControl.currentTemperatureC > MIN_EXTRUDER_TEMP || Printer::isColdExtrusionAllowed())
#endif
)
destinationSteps[E_AXIS] = e * axisStepsPerMM[E_AXIS];
if(f != IGNORE_COORDINATE)
feedrate = f;
#if NONLINEAR_SYSTEM
if (!PrintLine::queueDeltaMove(ALWAYS_CHECK_ENDSTOPS, true, true))
{
Com::printWarningFLN(PSTR("moveToReal / queueDeltaMove returns error"));
SHOWM(x);
SHOWM(y);
SHOWM(z);
return 0;
}
#else
PrintLine::queueCartesianMove(ALWAYS_CHECK_ENDSTOPS, true);
#endif
return 1;
}
void Printer::setOrigin(float xOff, float yOff, float zOff)
{
coordinateOffset[X_AXIS] = xOff;
coordinateOffset[Y_AXIS] = yOff;
coordinateOffset[Z_AXIS] = zOff;
}
/** Computes currentPosition from currentPositionSteps including correction for offset. */
void Printer::updateCurrentPosition(bool copyLastCmd)
{
currentPosition[X_AXIS] = static_cast<float>(currentPositionSteps[X_AXIS]) * invAxisStepsPerMM[X_AXIS];
currentPosition[Y_AXIS] = static_cast<float>(currentPositionSteps[Y_AXIS]) * invAxisStepsPerMM[Y_AXIS];
currentPosition[Z_AXIS] = static_cast<float>(currentPositionSteps[Z_AXIS]) * invAxisStepsPerMM[Z_AXIS];
#if FEATURE_AUTOLEVEL
if(isAutolevelActive())
transformFromPrinter(currentPosition[X_AXIS], currentPosition[Y_AXIS], currentPosition[Z_AXIS],
currentPosition[X_AXIS], currentPosition[Y_AXIS], currentPosition[Z_AXIS]);
#endif // FEATURE_AUTOLEVEL
currentPosition[X_AXIS] -= Printer::offsetX;
currentPosition[Y_AXIS] -= Printer::offsetY;
if(copyLastCmd)
{
lastCmdPos[X_AXIS] = currentPosition[X_AXIS];
lastCmdPos[Y_AXIS] = currentPosition[Y_AXIS];
lastCmdPos[Z_AXIS] = currentPosition[Z_AXIS];
}
}
/**
\brief Sets the destination coordinates to values stored in com.
For the computation of the destination, the following facts are considered:
- Are units inches or mm.
- Reltive or absolute positioning with special case only extruder relative.
- Offset in x and y direction for multiple extruder support.
*/
uint8_t Printer::setDestinationStepsFromGCode(GCode *com)
{
register int32_t p;
float x, y, z;
#if FEATURE_RETRACTION
if(com->hasNoXYZ() && com->hasE() && isAutoretract()) { // convert into autoretract
if(relativeCoordinateMode || relativeExtruderCoordinateMode) {
Extruder::current->retract(com->E < 0,false);
} else {
p = convertToMM(com->E * axisStepsPerMM[E_AXIS]); // current position
Extruder::current->retract(com->E < p,false);
}
return 0; // Fake no move so nothing gets added
}
#endif
if(!relativeCoordinateMode)
{
if(com->hasX()) lastCmdPos[X_AXIS] = currentPosition[X_AXIS] = convertToMM(com->X) - coordinateOffset[X_AXIS];
if(com->hasY()) lastCmdPos[Y_AXIS] = currentPosition[Y_AXIS] = convertToMM(com->Y) - coordinateOffset[Y_AXIS];
if(com->hasZ()) lastCmdPos[Z_AXIS] = currentPosition[Z_AXIS] = convertToMM(com->Z) - coordinateOffset[Z_AXIS];
}
else
{
if(com->hasX()) currentPosition[X_AXIS] = (lastCmdPos[X_AXIS] += convertToMM(com->X));
if(com->hasY()) currentPosition[Y_AXIS] = (lastCmdPos[Y_AXIS] += convertToMM(com->Y));
if(com->hasZ()) currentPosition[Z_AXIS] = (lastCmdPos[Z_AXIS] += convertToMM(com->Z));
}
#if FEATURE_AUTOLEVEL
if(isAutolevelActive())
{
transformToPrinter(lastCmdPos[X_AXIS] + Printer::offsetX, lastCmdPos[Y_AXIS] + Printer::offsetY, lastCmdPos[Z_AXIS], x, y, z);
}
else
#endif // FEATURE_AUTOLEVEL
{
x = lastCmdPos[X_AXIS] + Printer::offsetX;
y = lastCmdPos[Y_AXIS] + Printer::offsetY;
z = lastCmdPos[Z_AXIS];
}
destinationSteps[X_AXIS] = static_cast<int32_t>(floor(x * axisStepsPerMM[X_AXIS] + 0.5f));
destinationSteps[Y_AXIS] = static_cast<int32_t>(floor(y * axisStepsPerMM[Y_AXIS] + 0.5f));
destinationSteps[Z_AXIS] = static_cast<int32_t>(floor(z * axisStepsPerMM[Z_AXIS] + 0.5f));
if(com->hasE() && !Printer::debugDryrun())
{
p = convertToMM(com->E * axisStepsPerMM[E_AXIS]);
if(relativeCoordinateMode || relativeExtruderCoordinateMode)
{
if(
#if MIN_EXTRUDER_TEMP > 20
(Extruder::current->tempControl.currentTemperatureC < MIN_EXTRUDER_TEMP && !Printer::isColdExtrusionAllowed()) ||
#endif
fabs(com->E) * extrusionFactor > EXTRUDE_MAXLENGTH)
p = 0;
destinationSteps[E_AXIS] = currentPositionSteps[E_AXIS] + p;
}
else
{
if(
#if MIN_EXTRUDER_TEMP > 20
(Extruder::current->tempControl.currentTemperatureC < MIN_EXTRUDER_TEMP && !Printer::isColdExtrusionAllowed()) ||
#endif
fabs(p - currentPositionSteps[E_AXIS]) * extrusionFactor > EXTRUDE_MAXLENGTH * axisStepsPerMM[E_AXIS])
currentPositionSteps[E_AXIS] = p;
destinationSteps[E_AXIS] = p;
}
}
else Printer::destinationSteps[E_AXIS] = Printer::currentPositionSteps[E_AXIS];
if(com->hasF())
{
if(unitIsInches)
feedrate = com->F * 0.0042333f * (float)feedrateMultiply; // Factor is 25.5/60/100
else
feedrate = com->F * (float)feedrateMultiply * 0.00016666666f;
}
if(!Printer::isPositionAllowed(lastCmdPos[X_AXIS], lastCmdPos[Y_AXIS], lastCmdPos[Z_AXIS]))
{
currentPositionSteps[E_AXIS] = destinationSteps[E_AXIS];
return false; // ignore move
}
return !com->hasNoXYZ() || (com->hasE() && destinationSteps[E_AXIS] != currentPositionSteps[E_AXIS]); // ignore unproductive moves
}
void Printer::setup()
{
HAL::stopWatchdog();
#if FEATURE_CONTROLLER == CONTROLLER_VIKI
HAL::delayMilliseconds(100);
#endif // FEATURE_CONTROLLER
//HAL::delayMilliseconds(500); // add a delay at startup to give hardware time for initalization
HAL::hwSetup();
#ifdef ANALYZER
// Channel->pin assignments
#if ANALYZER_CH0>=0
SET_OUTPUT(ANALYZER_CH0);
#endif
#if ANALYZER_CH1>=0
SET_OUTPUT(ANALYZER_CH1);
#endif
#if ANALYZER_CH2>=0
SET_OUTPUT(ANALYZER_CH2);
#endif
#if ANALYZER_CH3>=0
SET_OUTPUT(ANALYZER_CH3);
#endif
#if ANALYZER_CH4>=0
SET_OUTPUT(ANALYZER_CH4);
#endif
#if ANALYZER_CH5>=0
SET_OUTPUT(ANALYZER_CH5);
#endif
#if ANALYZER_CH6>=0
SET_OUTPUT(ANALYZER_CH6);
#endif
#if ANALYZER_CH7>=0
SET_OUTPUT(ANALYZER_CH7);
#endif
#endif
#if defined(ENABLE_POWER_ON_STARTUP) && ENABLE_POWER_ON_STARTUP && (PS_ON_PIN>-1)
SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, (POWER_INVERTING ? HIGH : LOW));
Printer::setPowerOn(true);
#else
#if PS_ON_PIN>-1
Printer::setPowerOn(false);
#else
Printer::setPowerOn(true);
#endif
#endif
#if SDSUPPORT
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif
#if defined(SDCARDDETECT) && SDCARDDETECT>-1
SET_INPUT(SDCARDDETECT);
PULLUP(SDCARDDETECT,HIGH);
#endif
#endif
//Initialize Step Pins
SET_OUTPUT(X_STEP_PIN);
SET_OUTPUT(Y_STEP_PIN);
SET_OUTPUT(Z_STEP_PIN);
//Initialize Dir Pins
#if X_DIR_PIN>-1
SET_OUTPUT(X_DIR_PIN);
#endif
#if Y_DIR_PIN>-1
SET_OUTPUT(Y_DIR_PIN);
#endif
#if Z_DIR_PIN>-1
SET_OUTPUT(Z_DIR_PIN);
#endif
//Steppers default to disabled.
#if X_ENABLE_PIN > -1
SET_OUTPUT(X_ENABLE_PIN);
WRITE(X_ENABLE_PIN,!X_ENABLE_ON);
#endif
#if Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN);
WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON);
#endif
#if Z_ENABLE_PIN > -1
SET_OUTPUT(Z_ENABLE_PIN);
WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON);
#endif
#if FEATURE_TWO_XSTEPPER
SET_OUTPUT(X2_STEP_PIN);
SET_OUTPUT(X2_DIR_PIN);
#if X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
WRITE(X2_ENABLE_PIN,!X_ENABLE_ON);
#endif
#endif
#if FEATURE_TWO_YSTEPPER
SET_OUTPUT(Y2_STEP_PIN);
SET_OUTPUT(Y2_DIR_PIN);
#if Y2_ENABLE_PIN > -1
SET_OUTPUT(Y2_ENABLE_PIN);
WRITE(Y2_ENABLE_PIN,!Y_ENABLE_ON);
#endif
#endif
#if FEATURE_TWO_ZSTEPPER
SET_OUTPUT(Z2_STEP_PIN);
SET_OUTPUT(Z2_DIR_PIN);
#if X2_ENABLE_PIN > -1
SET_OUTPUT(Z2_ENABLE_PIN);
WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON);
#endif
#endif
//endstop pullups
#if MIN_HARDWARE_ENDSTOP_X
#if X_MIN_PIN>-1
SET_INPUT(X_MIN_PIN);
#if ENDSTOP_PULLUP_X_MIN
PULLUP(X_MIN_PIN,HIGH);
#endif
#else
#error You have defined hardware x min endstop without pin assignment. Set pin number for X_MIN_PIN
#endif
#endif
#if MIN_HARDWARE_ENDSTOP_Y
#if Y_MIN_PIN>-1
SET_INPUT(Y_MIN_PIN);
#if ENDSTOP_PULLUP_Y_MIN
PULLUP(Y_MIN_PIN,HIGH);
#endif
#else
#error You have defined hardware y min endstop without pin assignment. Set pin number for Y_MIN_PIN
#endif
#endif
#if MIN_HARDWARE_ENDSTOP_Z
#if Z_MIN_PIN>-1
SET_INPUT(Z_MIN_PIN);
#if ENDSTOP_PULLUP_Z_MIN
PULLUP(Z_MIN_PIN,HIGH);
#endif
#else
#error You have defined hardware z min endstop without pin assignment. Set pin number for Z_MIN_PIN
#endif
#endif
#if MAX_HARDWARE_ENDSTOP_X
#if X_MAX_PIN>-1
SET_INPUT(X_MAX_PIN);
#if ENDSTOP_PULLUP_X_MAX
PULLUP(X_MAX_PIN,HIGH);
#endif
#else
#error You have defined hardware x max endstop without pin assignment. Set pin number for X_MAX_PIN
#endif
#endif
#if MAX_HARDWARE_ENDSTOP_Y
#if Y_MAX_PIN>-1
SET_INPUT(Y_MAX_PIN);
#if ENDSTOP_PULLUP_Y_MAX
PULLUP(Y_MAX_PIN,HIGH);
#endif
#else
#error You have defined hardware y max endstop without pin assignment. Set pin number for Y_MAX_PIN
#endif
#endif
#if MAX_HARDWARE_ENDSTOP_Z
#if Z_MAX_PIN>-1
SET_INPUT(Z_MAX_PIN);
#if ENDSTOP_PULLUP_Z_MAX
PULLUP(Z_MAX_PIN,HIGH);
#endif
#else
#error You have defined hardware z max endstop without pin assignment. Set pin number for Z_MAX_PIN
#endif
#endif
#if FEATURE_Z_PROBE && Z_PROBE_PIN>-1
SET_INPUT(Z_PROBE_PIN);
#if Z_PROBE_PULLUP
PULLUP(Z_PROBE_PIN,HIGH);
#endif
#endif // FEATURE_FEATURE_Z_PROBE
#if FAN_PIN>-1 && FEATURE_FAN_CONTROL
SET_OUTPUT(FAN_PIN);
WRITE(FAN_PIN,LOW);
#endif
#if FAN_BOARD_PIN>-1
SET_OUTPUT(FAN_BOARD_PIN);
WRITE(FAN_BOARD_PIN,LOW);
#endif
#if defined(EXT0_HEATER_PIN) && EXT0_HEATER_PIN>-1
SET_OUTPUT(EXT0_HEATER_PIN);
WRITE(EXT0_HEATER_PIN,HEATER_PINS_INVERTED);
#endif
#if defined(EXT1_HEATER_PIN) && EXT1_HEATER_PIN>-1 && NUM_EXTRUDER>1
SET_OUTPUT(EXT1_HEATER_PIN);
WRITE(EXT1_HEATER_PIN,HEATER_PINS_INVERTED);
#endif
#if defined(EXT2_HEATER_PIN) && EXT2_HEATER_PIN>-1 && NUM_EXTRUDER>2
SET_OUTPUT(EXT2_HEATER_PIN);
WRITE(EXT2_HEATER_PIN,HEATER_PINS_INVERTED);
#endif
#if defined(EXT3_HEATER_PIN) && EXT3_HEATER_PIN>-1 && NUM_EXTRUDER>3
SET_OUTPUT(EXT3_HEATER_PIN);
WRITE(EXT3_HEATER_PIN,HEATER_PINS_INVERTED);
#endif
#if defined(EXT4_HEATER_PIN) && EXT4_HEATER_PIN>-1 && NUM_EXTRUDER>4
SET_OUTPUT(EXT4_HEATER_PIN);
WRITE(EXT4_HEATER_PIN,HEATER_PINS_INVERTED);
#endif
#if defined(EXT5_HEATER_PIN) && EXT5_HEATER_PIN>-1 && NUM_EXTRUDER>5
SET_OUTPUT(EXT5_HEATER_PIN);
WRITE(EXT5_HEATER_PIN,HEATER_PINS_INVERTED);
#endif
#if defined(EXT0_EXTRUDER_COOLER_PIN) && EXT0_EXTRUDER_COOLER_PIN>-1
SET_OUTPUT(EXT0_EXTRUDER_COOLER_PIN);
WRITE(EXT0_EXTRUDER_COOLER_PIN,LOW);
#endif
#if defined(EXT1_EXTRUDER_COOLER_PIN) && EXT1_EXTRUDER_COOLER_PIN>-1 && NUM_EXTRUDER>1
SET_OUTPUT(EXT1_EXTRUDER_COOLER_PIN);
WRITE(EXT1_EXTRUDER_COOLER_PIN,LOW);
#endif
#if defined(EXT2_EXTRUDER_COOLER_PIN) && EXT2_EXTRUDER_COOLER_PIN>-1 && NUM_EXTRUDER>2
SET_OUTPUT(EXT2_EXTRUDER_COOLER_PIN);
WRITE(EXT2_EXTRUDER_COOLER_PIN,LOW);
#endif
#if defined(EXT3_EXTRUDER_COOLER_PIN) && EXT3_EXTRUDER_COOLER_PIN>-1 && NUM_EXTRUDER>3
SET_OUTPUT(EXT3_EXTRUDER_COOLER_PIN);
WRITE(EXT3_EXTRUDER_COOLER_PIN,LOW);
#endif
#if defined(EXT4_EXTRUDER_COOLER_PIN) && EXT4_EXTRUDER_COOLER_PIN>-1 && NUM_EXTRUDER>4
SET_OUTPUT(EXT4_EXTRUDER_COOLER_PIN);
WRITE(EXT4_EXTRUDER_COOLER_PIN,LOW);
#endif
#if defined(EXT5_EXTRUDER_COOLER_PIN) && EXT5_EXTRUDER_COOLER_PIN>-1 && NUM_EXTRUDER>5
SET_OUTPUT(EXT5_EXTRUDER_COOLER_PIN);
WRITE(EXT5_EXTRUDER_COOLER_PIN,LOW);
#endif
#if CASE_LIGHTS_PIN >= 0
SET_OUTPUT(CASE_LIGHTS_PIN);
WRITE(CASE_LIGHTS_PIN, CASE_LIGHT_DEFAULT_ON);
#endif // CASE_LIGHTS_PIN
#if GANTRY
Printer::motorX = 0;
Printer::motorYorZ = 0;
#endif
#if STEPPER_CURRENT_CONTROL != CURRENT_CONTROL_MANUAL
motorCurrentControlInit(); // Set current if it is firmware controlled
#endif
microstepInit();
#if FEATURE_AUTOLEVEL
resetTransformationMatrix(true);
#endif // FEATURE_AUTOLEVEL
feedrate = 50; ///< Current feedrate in mm/s.
feedrateMultiply = 100;
extrudeMultiply = 100;
lastCmdPos[X_AXIS] = lastCmdPos[Y_AXIS] = lastCmdPos[Z_AXIS] = 0;
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
advanceExecuted = 0;
#endif
advanceStepsSet = 0;
#endif
for(uint8_t i = 0; i < NUM_EXTRUDER + 3; i++) pwm_pos[i] = 0;
maxJerk = MAX_JERK;
#if DRIVE_SYSTEM != DELTA
maxZJerk = MAX_ZJERK;
#endif
offsetX = offsetY = 0;
interval = 5000;
stepsPerTimerCall = 1;
msecondsPrinting = 0;
filamentPrinted = 0;
flag0 = PRINTER_FLAG0_STEPPER_DISABLED;
xLength = X_MAX_LENGTH;
yLength = Y_MAX_LENGTH;
zLength = Z_MAX_LENGTH;
xMin = X_MIN_POS;
yMin = Y_MIN_POS;
zMin = Z_MIN_POS;
#if NONLINEAR_SYSTEM
radius0 = ROD_RADIUS;
#endif
wasLastHalfstepping = 0;
#if ENABLE_BACKLASH_COMPENSATION
backlashX = X_BACKLASH;
backlashY = Y_BACKLASH;
backlashZ = Z_BACKLASH;
backlashDir = 0;
#endif
#if USE_ADVANCE
extruderStepsNeeded = 0;
#endif
EEPROM::initBaudrate();
HAL::serialSetBaudrate(baudrate);
Com::printFLN(Com::tStart);
UI_INITIALIZE;
HAL::showStartReason();
Extruder::initExtruder();
// sets autoleveling in eeprom init
EEPROM::init(); // Read settings from eeprom if wanted
for(uint8_t i = 0; i < E_AXIS_ARRAY; i++)
{
currentPositionSteps[i] = 0;
currentPosition[i] = 0.0;
}
//setAutolevelActive(false); // fixme delete me
//Commands::printCurrentPosition(PSTR("Printer::setup 0 "));
#if DISTORTION_CORRECTION
distortion.init();
#endif // DISTORTION_CORRECTION
updateDerivedParameter();
Commands::checkFreeMemory();
Commands::writeLowestFreeRAM();
HAL::setupTimer();
#if NONLINEAR_SYSTEM
transformCartesianStepsToDeltaSteps(Printer::currentPositionSteps, Printer::currentDeltaPositionSteps);
#if DELTA_HOME_ON_POWER
homeAxis(true,true,true);
#endif
setAutoretract(EEPROM_BYTE(AUTORETRACT_ENABLED));
Commands::printCurrentPosition(PSTR("Printer::setup "));
#endif // DRIVE_SYSTEM
Extruder::selectExtruderById(0);
#if SDSUPPORT
sd.initsd();
#endif
#if FEATURE_WATCHDOG
HAL::startWatchdog();
#endif // FEATURE_WATCHDOG
}
void Printer::defaultLoopActions()
{
Commands::checkForPeriodicalActions(true); //check heater every n milliseconds
UI_MEDIUM; // do check encoder
millis_t curtime = HAL::timeInMilliseconds();
if(PrintLine::hasLines() || isMenuMode(MENU_MODE_SD_PAUSED))
previousMillisCmd = curtime;
else
{
curtime -= previousMillisCmd;
if(maxInactiveTime != 0 && curtime > maxInactiveTime )
Printer::kill(false);
else
Printer::setAllKilled(false); // prevent repeated kills
if(stepperInactiveTime != 0 && curtime > stepperInactiveTime )
Printer::kill(true);
}
#if SDCARDDETECT>-1 && SDSUPPORT
sd.automount();
#endif
DEBUG_MEMORY;
}
void Printer::MemoryPosition()
{
Commands::waitUntilEndOfAllMoves();
updateCurrentPosition(false);
realPosition(memoryX, memoryY, memoryZ);
memoryE = currentPositionSteps[E_AXIS] * invAxisStepsPerMM[E_AXIS];
memoryF = feedrate;
}
void Printer::GoToMemoryPosition(bool x, bool y, bool z, bool e, float feed)
{
if(memoryF < 0) return; // Not stored before call, so we ignor eit
bool all = !(x || y || z);
moveToReal((all || x ? (lastCmdPos[X_AXIS] = memoryX) : IGNORE_COORDINATE)
,(all || y ?(lastCmdPos[Y_AXIS] = memoryY) : IGNORE_COORDINATE)
,(all || z ? (lastCmdPos[Z_AXIS] = memoryZ) : IGNORE_COORDINATE)
,(e ? memoryE : IGNORE_COORDINATE),
feed);
feedrate = memoryF;
updateCurrentPosition(false);
}
#if DRIVE_SYSTEM == DELTA
void Printer::deltaMoveToTopEndstops(float feedrate)
{
for (uint8_t i=0; i<3; i++)
Printer::currentPositionSteps[i] = 0;
transformCartesianStepsToDeltaSteps(currentPositionSteps, currentDeltaPositionSteps);
PrintLine::moveRelativeDistanceInSteps(0,0,zMaxSteps*1.5,0,feedrate, true, true);
offsetX = 0;
offsetY = 0;
}
void Printer::homeXAxis()
{
destinationSteps[X_AXIS] = 0;
if (!PrintLine::queueDeltaMove(true,false,false))
{
Com::printWarningFLN(PSTR("homeXAxis / queueDeltaMove returns error"));
}
}
void Printer::homeYAxis()
{
Printer::destinationSteps[Y_AXIS] = 0;
if (!PrintLine::queueDeltaMove(true,false,false))
{
Com::printWarningFLN(PSTR("homeYAxis / queueDeltaMove returns error"));
}
}
void Printer::homeZAxis() // Delta z homing
{
SHOT("homeZAxis ");
deltaMoveToTopEndstops(Printer::homingFeedrate[Z_AXIS]);
PrintLine::moveRelativeDistanceInSteps(0, 0, 2 * axisStepsPerMM[Z_AXIS] * -ENDSTOP_Z_BACK_MOVE, 0, Printer::homingFeedrate[Z_AXIS]/ENDSTOP_X_RETEST_REDUCTION_FACTOR, true, false);
deltaMoveToTopEndstops(Printer::homingFeedrate[Z_AXIS] / ENDSTOP_Z_RETEST_REDUCTION_FACTOR);
#if defined(ENDSTOP_Z_BACK_ON_HOME)
if(ENDSTOP_Z_BACK_ON_HOME > 0)
PrintLine::moveRelativeDistanceInSteps(0, 0, axisStepsPerMM[Z_AXIS] * -ENDSTOP_Z_BACK_ON_HOME * Z_HOME_DIR,0,homingFeedrate[Z_AXIS], true, false);
#endif
// Correct different endstop heights
// These can be adjusted by two methods. You can use offsets stored by determining the center
// or you can use the xyzMinSteps from G100 calibration. Both have the same effect but only one
// should be measuredas both have the same effect.
long dx = -xMinSteps - EEPROM::deltaTowerXOffsetSteps();
long dy = -yMinSteps - EEPROM::deltaTowerYOffsetSteps();
long dz = -zMinSteps - EEPROM::deltaTowerZOffsetSteps();
long dm = RMath::min(dx, dy, dz);
//Com::printFLN(Com::tTower1,dx);
//Com::printFLN(Com::tTower2,dy);
//Com::printFLN(Com::tTower3,dz);
dx -= dm; // now all dxyz are positive
dy -= dm;
dz -= dm;
currentPositionSteps[X_AXIS] = 0;
currentPositionSteps[Y_AXIS] = 0;
currentPositionSteps[Z_AXIS] = zMaxSteps;
transformCartesianStepsToDeltaSteps(currentPositionSteps,currentDeltaPositionSteps);
currentDeltaPositionSteps[A_TOWER] -= dx;
currentDeltaPositionSteps[B_TOWER] -= dy;
currentDeltaPositionSteps[C_TOWER] -= dz;
PrintLine::moveRelativeDistanceInSteps(0,0,dm,0,homingFeedrate[Z_AXIS],true,false);
currentPositionSteps[X_AXIS] = 0;
currentPositionSteps[Y_AXIS] = 0;
currentPositionSteps[Z_AXIS] = zMaxSteps; // Extruder is now exactly in the delta center
coordinateOffset[X_AXIS] = 0;
coordinateOffset[Y_AXIS] = 0;
coordinateOffset[Z_AXIS] = 0;
transformCartesianStepsToDeltaSteps(currentPositionSteps, currentDeltaPositionSteps);
realDeltaPositionSteps[A_TOWER] = currentDeltaPositionSteps[A_TOWER];
realDeltaPositionSteps[B_TOWER] = currentDeltaPositionSteps[B_TOWER];
realDeltaPositionSteps[C_TOWER] = currentDeltaPositionSteps[C_TOWER];
//maxDeltaPositionSteps = currentDeltaPositionSteps[X_AXIS];
#if defined(ENDSTOP_Z_BACK_ON_HOME)
if(ENDSTOP_Z_BACK_ON_HOME > 0)
maxDeltaPositionSteps += axisStepsPerMM[Z_AXIS]*ENDSTOP_Z_BACK_ON_HOME;
#endif
Extruder::selectExtruderById(Extruder::current->id);
}
// This home axis is for delta
void Printer::homeAxis(bool xaxis,bool yaxis,bool zaxis) // Delta homing code
{
SHOT("homeAxis ");
bool autoLevel = isAutolevelActive();
setAutolevelActive(false);
long steps;
setHomed(true);
bool homeallaxis = (xaxis && yaxis && zaxis) || (!xaxis && !yaxis && !zaxis);
if (!(X_MAX_PIN > -1 && Y_MAX_PIN > -1 && Z_MAX_PIN > -1
&& MAX_HARDWARE_ENDSTOP_X && MAX_HARDWARE_ENDSTOP_Y && MAX_HARDWARE_ENDSTOP_Z))
{
Com::printErrorFLN(PSTR("Hardware setup inconsistent. Delta cannot home wihtout max endstops."));
}
// The delta has to have home capability to zero and set position,
// so the redundant check is only an opportunity to
// gratuitously fail due to incorrect settings.
// The following movements would be meaningless unless it was zeroed for example.
UI_STATUS_UPD(UI_TEXT_HOME_DELTA);
// Homing Z axis means that you must home X and Y
if (homeallaxis || zaxis)
{
homeZAxis();
}
else
{
if (xaxis) Printer::destinationSteps[X_AXIS] = 0;
if (yaxis) Printer::destinationSteps[Y_AXIS] = 0;
if (!PrintLine::queueDeltaMove(true,false,false))
{
Com::printWarningFLN(PSTR("homeAxis / queueDeltaMove returns error"));
}
}
moveToReal(0,0,Printer::zLength,IGNORE_COORDINATE,homingFeedrate[Z_AXIS]); // Move to designed coordinates including translation
updateCurrentPosition(true);
UI_CLEAR_STATUS
Commands::printCurrentPosition(PSTR("homeAxis "));
setAutolevelActive(autoLevel);
}
#else
#if DRIVE_SYSTEM==TUGA // Tuga printer homing
void Printer::homeXAxis()
{
long steps;
if ((MIN_HARDWARE_ENDSTOP_X && X_MIN_PIN > -1 && X_HOME_DIR==-1 && MIN_HARDWARE_ENDSTOP_Y && Y_MIN_PIN > -1 && Y_HOME_DIR==-1) ||
(MAX_HARDWARE_ENDSTOP_X && X_MAX_PIN > -1 && X_HOME_DIR==1 && MAX_HARDWARE_ENDSTOP_Y && Y_MAX_PIN > -1 && Y_HOME_DIR==1))
{
long offX = 0,offY = 0;
#if NUM_EXTRUDER>1
for(uint8_t i=0; i<NUM_EXTRUDER; i++)
{
#if X_HOME_DIR < 0
offX = RMath::max(offX,extruder[i].xOffset);
offY = RMath::max(offY,extruder[i].yOffset);
#else
offX = RMath::min(offX,extruder[i].xOffset);
offY = RMath::min(offY,extruder[i].yOffset);
#endif
}
// Reposition extruder that way, that all extruders can be selected at home pos.
#endif
UI_STATUS_UPD(UI_TEXT_HOME_X);
steps = (Printer::xMaxSteps-Printer::xMinSteps) * X_HOME_DIR;
currentPositionSteps[X_AXIS] = -steps;
currentPositionSteps[Y_AXIS] = 0;
transformCartesianStepsToDeltaSteps(currentPositionSteps, currentDeltaPositionSteps);
PrintLine::moveRelativeDistanceInSteps(2*steps,0,0,0,homingFeedrate[X_AXIS],true,true);
currentPositionSteps[X_AXIS] = (X_HOME_DIR == -1) ? xMinSteps-offX : xMaxSteps+offX;
currentPositionSteps[Y_AXIS] = 0; //(Y_HOME_DIR == -1) ? yMinSteps-offY : yMaxSteps+offY;
//PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS]*-ENDSTOP_X_BACK_MOVE * X_HOME_DIR,axisStepsPerMM[Y_AXIS]*-ENDSTOP_X_BACK_MOVE * Y_HOME_DIR,0,0,homingFeedrate[X_AXIS]/ENDSTOP_X_RETEST_REDUCTION_FACTOR,true,false);
// PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS]*2*ENDSTOP_X_BACK_MOVE * X_HOME_DIR,axisStepsPerMM[Y_AXIS]*2*ENDSTOP_X_BACK_MOVE * Y_HOME_DIR,0,0,homingFeedrate[X_AXIS]/ENDSTOP_X_RETEST_REDUCTION_FACTOR,true,true);
PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS]*-ENDSTOP_X_BACK_MOVE * X_HOME_DIR,0,0,0,homingFeedrate[X_AXIS]/ENDSTOP_X_RETEST_REDUCTION_FACTOR,true,false);
PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS]*2*ENDSTOP_X_BACK_MOVE * X_HOME_DIR,0,0,0,homingFeedrate[X_AXIS]/ENDSTOP_X_RETEST_REDUCTION_FACTOR,true,true);
#if defined(ENDSTOP_X_BACK_ON_HOME)
if(ENDSTOP_X_BACK_ON_HOME > 0)
PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS]*-ENDSTOP_X_BACK_ON_HOME * X_HOME_DIR,0,0,0,homingFeedrate[X_AXIS],true,false);
// PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS]*-ENDSTOP_X_BACK_ON_HOME * X_HOME_DIR,axisStepsPerMM[Y_AXIS]*-ENDSTOP_Y_BACK_ON_HOME * Y_HOME_DIR,0,0,homingFeedrate[X_AXIS],true,false);
#endif
currentPositionSteps[X_AXIS] = (X_HOME_DIR == -1) ? xMinSteps-offX : xMaxSteps+offX;
currentPositionSteps[Y_AXIS] = 0; //(Y_HOME_DIR == -1) ? yMinSteps-offY : yMaxSteps+offY;
coordinateOffset[X_AXIS] = 0;
coordinateOffset[Y_AXIS] = 0;
transformCartesianStepsToDeltaSteps(currentPositionSteps, currentDeltaPositionSteps);
#if NUM_EXTRUDER>1
PrintLine::moveRelativeDistanceInSteps((Extruder::current->xOffset-offX) * X_HOME_DIR,(Extruder::current->yOffset-offY) * Y_HOME_DIR,0,0,homingFeedrate[X_AXIS],true,false);
#endif
}
}
void Printer::homeYAxis()
{
// Dummy function x and y homing must occur together
}
#else // cartesian printer
void Printer::homeXAxis()
{
long steps;
if ((MIN_HARDWARE_ENDSTOP_X && X_MIN_PIN > -1 && X_HOME_DIR==-1) || (MAX_HARDWARE_ENDSTOP_X && X_MAX_PIN > -1 && X_HOME_DIR==1))
{
long offX = 0;
#if NUM_EXTRUDER>1
for(uint8_t i=0; i<NUM_EXTRUDER; i++)
#if X_HOME_DIR < 0
offX = RMath::max(offX,extruder[i].xOffset);
#else
offX = RMath::min(offX,extruder[i].xOffset);
#endif
// Reposition extruder that way, that all extruders can be selected at home pos.
#endif
UI_STATUS_UPD(UI_TEXT_HOME_X);
steps = (Printer::xMaxSteps-Printer::xMinSteps) * X_HOME_DIR;
currentPositionSteps[X_AXIS] = -steps;
PrintLine::moveRelativeDistanceInSteps(2*steps,0,0,0,homingFeedrate[X_AXIS],true,true);
currentPositionSteps[X_AXIS] = (X_HOME_DIR == -1) ? xMinSteps-offX : xMaxSteps + offX;
PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS] * -ENDSTOP_X_BACK_MOVE * X_HOME_DIR,0,0,0,homingFeedrate[X_AXIS] / ENDSTOP_X_RETEST_REDUCTION_FACTOR,true,false);
PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS] * 2 * ENDSTOP_X_BACK_MOVE * X_HOME_DIR,0,0,0,homingFeedrate[X_AXIS] / ENDSTOP_X_RETEST_REDUCTION_FACTOR,true,true);
#if defined(ENDSTOP_X_BACK_ON_HOME)
if(ENDSTOP_X_BACK_ON_HOME > 0)
PrintLine::moveRelativeDistanceInSteps(axisStepsPerMM[X_AXIS] * -ENDSTOP_X_BACK_ON_HOME * X_HOME_DIR,0,0,0,homingFeedrate[X_AXIS],true,false);
#endif
currentPositionSteps[X_AXIS] = (X_HOME_DIR == -1) ? xMinSteps-offX : xMaxSteps+offX;
#if NUM_EXTRUDER>1
PrintLine::moveRelativeDistanceInSteps((Extruder::current->xOffset-offX) * X_HOME_DIR,0,0,0,homingFeedrate[X_AXIS],true,false);
#endif
}
}
void Printer::homeYAxis()
{
long steps;
if ((MIN_HARDWARE_ENDSTOP_Y && Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (MAX_HARDWARE_ENDSTOP_Y && Y_MAX_PIN > -1 && Y_HOME_DIR==1))
{
long offY = 0;
#if NUM_EXTRUDER>1
for(uint8_t i=0; i<NUM_EXTRUDER; i++)
#if Y_HOME_DIR<0
offY = RMath::max(offY,extruder[i].yOffset);
#else
offY = RMath::min(offY,extruder[i].yOffset);
#endif
// Reposition extruder that way, that all extruders can be selected at home pos.
#endif
UI_STATUS_UPD(UI_TEXT_HOME_Y);
steps = (yMaxSteps-Printer::yMinSteps) * Y_HOME_DIR;
currentPositionSteps[Y_AXIS] = -steps;
PrintLine::moveRelativeDistanceInSteps(0,2*steps,0,0,homingFeedrate[Y_AXIS],true,true);
currentPositionSteps[Y_AXIS] = (Y_HOME_DIR == -1) ? yMinSteps-offY : yMaxSteps+offY;
PrintLine::moveRelativeDistanceInSteps(0,axisStepsPerMM[Y_AXIS]*-ENDSTOP_Y_BACK_MOVE * Y_HOME_DIR,0,0,homingFeedrate[Y_AXIS]/ENDSTOP_X_RETEST_REDUCTION_FACTOR,true,false);
PrintLine::moveRelativeDistanceInSteps(0,axisStepsPerMM[Y_AXIS]*2*ENDSTOP_Y_BACK_MOVE * Y_HOME_DIR,0,0,homingFeedrate[Y_AXIS]/ENDSTOP_X_RETEST_REDUCTION_FACTOR,true,true);
#if defined(ENDSTOP_Y_BACK_ON_HOME)
if(ENDSTOP_Y_BACK_ON_HOME > 0)
PrintLine::moveRelativeDistanceInSteps(0,axisStepsPerMM[Y_AXIS]*-ENDSTOP_Y_BACK_ON_HOME * Y_HOME_DIR,0,0,homingFeedrate[Y_AXIS],true,false);
#endif
currentPositionSteps[Y_AXIS] = (Y_HOME_DIR == -1) ? yMinSteps-offY : yMaxSteps+offY;
#if NUM_EXTRUDER>1
PrintLine::moveRelativeDistanceInSteps(0,(Extruder::current->yOffset-offY) * Y_HOME_DIR,0,0,homingFeedrate[Y_AXIS],true,false);
#endif
}
}
#endif
void Printer::homeZAxis() // cartesian homing
{
long steps;
if ((MIN_HARDWARE_ENDSTOP_Z && Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (MAX_HARDWARE_ENDSTOP_Z && Z_MAX_PIN > -1 && Z_HOME_DIR==1))
{
UI_STATUS_UPD(UI_TEXT_HOME_Z);
steps = (zMaxSteps - zMinSteps) * Z_HOME_DIR;
currentPositionSteps[Z_AXIS] = -steps;
PrintLine::moveRelativeDistanceInSteps(0,0,2*steps,0,homingFeedrate[Z_AXIS],true,true);
currentPositionSteps[Z_AXIS] = (Z_HOME_DIR == -1) ? zMinSteps : zMaxSteps;
PrintLine::moveRelativeDistanceInSteps(0,0,axisStepsPerMM[Z_AXIS]*-ENDSTOP_Z_BACK_MOVE * Z_HOME_DIR,0,homingFeedrate[Z_AXIS]/ENDSTOP_Z_RETEST_REDUCTION_FACTOR,true,false);
PrintLine::moveRelativeDistanceInSteps(0,0,axisStepsPerMM[Z_AXIS]*2*ENDSTOP_Z_BACK_MOVE * Z_HOME_DIR,0,homingFeedrate[Z_AXIS]/ENDSTOP_Z_RETEST_REDUCTION_FACTOR,true,true);
#if defined(ENDSTOP_Z_BACK_ON_HOME)
if(ENDSTOP_Z_BACK_ON_HOME > 0)
PrintLine::moveRelativeDistanceInSteps(0,0,axisStepsPerMM[Z_AXIS]*-ENDSTOP_Z_BACK_ON_HOME * Z_HOME_DIR,0,homingFeedrate[Z_AXIS],true,false);
#endif
currentPositionSteps[Z_AXIS] = (Z_HOME_DIR == -1) ? zMinSteps : zMaxSteps;
#if DRIVE_SYSTEM==TUGA
currentDeltaPositionSteps[C_TOWER] = currentPositionSteps[Z_AXIS];
#endif
}
}
void Printer::homeAxis(bool xaxis,bool yaxis,bool zaxis) // home non-delta printer
{
float startX,startY,startZ;
realPosition(startX,startY,startZ);
setHomed(true);
#if !defined(HOMING_ORDER)
#define HOMING_ORDER HOME_ORDER_XYZ
#endif
#if HOMING_ORDER==HOME_ORDER_XYZ
if(xaxis) homeXAxis();
if(yaxis) homeYAxis();
if(zaxis) homeZAxis();
#elif HOMING_ORDER==HOME_ORDER_XZY
if(xaxis) homeXAxis();
if(zaxis) homeZAxis();
if(yaxis) homeYAxis();
#elif HOMING_ORDER==HOME_ORDER_YXZ
if(yaxis) homeYAxis();
if(xaxis) homeXAxis();
if(zaxis) homeZAxis();
#elif HOMING_ORDER==HOME_ORDER_YZX
if(yaxis) homeYAxis();
if(zaxis) homeZAxis();
if(xaxis) homeXAxis();
#elif HOMING_ORDER==HOME_ORDER_ZXY
if(zaxis) homeZAxis();
if(xaxis) homeXAxis();
if(yaxis) homeYAxis();
#elif HOMING_ORDER==HOME_ORDER_ZYX
if(zaxis) homeZAxis();
if(yaxis) homeYAxis();
if(xaxis) homeXAxis();
#endif
if(xaxis)
{
if(X_HOME_DIR < 0) startX = Printer::xMin;
else startX = Printer::xMin+Printer::xLength;
}
if(yaxis)
{
if(Y_HOME_DIR < 0) startY = Printer::yMin;
else startY = Printer::yMin+Printer::yLength;
}
if(zaxis)
{
if(Z_HOME_DIR < 0) startZ = Printer::zMin;
else startZ = Printer::zMin+Printer::zLength;
}
updateCurrentPosition(true);
moveToReal(startX, startY, startZ, IGNORE_COORDINATE, homingFeedrate[X_AXIS]);
UI_CLEAR_STATUS
Commands::printCurrentPosition(PSTR("homeAxis "));
}
#endif // Not delta printer
void Printer::zBabystep()
{
bool dir = zBabystepsMissing > 0;
if(dir) zBabystepsMissing--;
else zBabystepsMissing++;
#if DRIVE_SYSTEM == 3
Printer::enableXStepper();
Printer::enableYStepper();
#endif
Printer::enableZStepper();
Printer::unsetAllSteppersDisabled();
#if DRIVE_SYSTEM == 3
bool xDir = Printer::getXDirection();
bool yDir = Printer::getYDirection();
#endif
bool zDir = Printer::getZDirection();
#if DRIVE_SYSTEM == 3
Printer::setXDirection(dir);
Printer::setYDirection(dir);
#endif
Printer::setZDirection(dir);
#if defined(DIRECTION_DELAY) && DIRECTION_DELAY > 0
HAL::delayMicroseconds(DIRECTION_DELAY);
#else
HAL::delayMicroseconds(1);
#endif
#if DRIVE_SYSTEM == 3
WRITE(X_STEP_PIN,HIGH);
#if FEATURE_TWO_XSTEPPER
WRITE(X2_STEP_PIN,HIGH);
#endif
WRITE(Y_STEP_PIN,HIGH);
#if FEATURE_TWO_YSTEPPER
WRITE(Y2_STEP_PIN,HIGH);
#endif
#endif
WRITE(Z_STEP_PIN,HIGH);
#if FEATURE_TWO_ZSTEPPER
WRITE(Z2_STEP_PIN,HIGH);
#endif
HAL::delayMicroseconds(STEPPER_HIGH_DELAY + 2);
Printer::endXYZSteps();
#if DRIVE_SYSTEM == 3
Printer::setXDirection(xDir);
Printer::setYDirection(yDir);
#endif
Printer::setZDirection(zDir);
#if defined(DIRECTION_DELAY) && DIRECTION_DELAY > 0
HAL::delayMicroseconds(DIRECTION_DELAY);
#endif
//HAL::delayMicroseconds(STEPPER_HIGH_DELAY + 1);
}
void Printer::setAutolevelActive(bool on)
{
#if FEATURE_AUTOLEVEL
if(on == isAutolevelActive()) return;
flag0 = (on ? flag0 | PRINTER_FLAG0_AUTOLEVEL_ACTIVE : flag0 & ~PRINTER_FLAG0_AUTOLEVEL_ACTIVE);
if(on)
Com::printInfoFLN(Com::tAutolevelEnabled);
else
Com::printInfoFLN(Com::tAutolevelDisabled);
updateCurrentPosition(false);
#endif // FEATURE_AUTOLEVEL if(isAutolevelActive()==on) return;
}
#if MAX_HARDWARE_ENDSTOP_Z
float Printer::runZMaxProbe()
{
#if NONLINEAR_SYSTEM
long startZ = realDeltaPositionSteps[Z_AXIS] = currentDeltaPositionSteps[Z_AXIS]; // update real
#endif
Commands::waitUntilEndOfAllMoves();
long probeDepth = 2*(Printer::zMaxSteps-Printer::zMinSteps);
stepsRemainingAtZHit = -1;
setZProbingActive(true);
PrintLine::moveRelativeDistanceInSteps(0,0,probeDepth,0,EEPROM::zProbeSpeed(),true,true);
if(stepsRemainingAtZHit < 0)
{
Com::printErrorFLN(Com::tZProbeFailed);
return -1;
}
setZProbingActive(false);
currentPositionSteps[Z_AXIS] -= stepsRemainingAtZHit;
#if NONLINEAR_SYSTEM
probeDepth -= (realDeltaPositionSteps[Z_AXIS] - startZ);
#else
probeDepth -= stepsRemainingAtZHit;
#endif
float distance = (float)probeDepth * invAxisStepsPerMM[Z_AXIS];
Com::printF(Com::tZProbeMax,distance);
Com::printF(Com::tSpaceXColon,realXPosition());
Com::printFLN(Com::tSpaceYColon,realYPosition());
PrintLine::moveRelativeDistanceInSteps(0,0,-probeDepth,0,EEPROM::zProbeSpeed(),true,true);
return distance;
}
#endif
void accelerometer_status();
#if FEATURE_Z_PROBE
float Printer::runZProbe(bool first,bool last,uint8_t repeat,bool runStartScript)
{
float oldOffX = Printer::offsetX;
float oldOffY = Printer::offsetY;
if(first)
{
if(runStartScript)
GCode::executeFString(Com::tZProbeStartScript);
if(currentPosition[Z_AXIS] > EEPROM::zProbeBedDistance()) {
moveTo(IGNORE_COORDINATE,IGNORE_COORDINATE,EEPROM::zProbeBedDistance(),IGNORE_COORDINATE,homingFeedrate[Z_AXIS]);
}
Printer::offsetX = -EEPROM::zProbeXOffset();
Printer::offsetY = -EEPROM::zProbeYOffset();
PrintLine::moveRelativeDistanceInSteps((Printer::offsetX - oldOffX) * Printer::axisStepsPerMM[X_AXIS],
(Printer::offsetY - oldOffY) * Printer::axisStepsPerMM[Y_AXIS],
0, 0, EEPROM::zProbeXYSpeed(), true, ALWAYS_CHECK_ENDSTOPS);
}
Commands::waitUntilEndOfAllMoves();
int32_t sum = 0, probeDepth;
int32_t shortMove = static_cast<int32_t>((float)Z_PROBE_SWITCHING_DISTANCE * axisStepsPerMM[Z_AXIS]); // distance to go up for repeated moves
int32_t lastCorrection = currentPositionSteps[Z_AXIS]; // starting position
#if NONLINEAR_SYSTEM
realDeltaPositionSteps[Z_AXIS] = currentDeltaPositionSteps[Z_AXIS]; // update real
#endif
int32_t updateZ = 0;
for(int8_t r = 0; r < repeat; r++)
{
probeDepth = 2 * (Printer::zMaxSteps - Printer::zMinSteps); // probe should always hit within this distance
stepsRemainingAtZHit = -1; // Marker that we did not hit z probe
int32_t offx = axisStepsPerMM[X_AXIS] * EEPROM::zProbeXOffset();
int32_t offy = axisStepsPerMM[Y_AXIS] * EEPROM::zProbeYOffset();
//PrintLine::moveRelativeDistanceInSteps(-offx,-offy,0,0,EEPROM::zProbeXYSpeed(),true,true);
waitForZProbeStart();
setZProbingActive(true);
accelerometer_status(); //Clear Interrupt.
accelerometer_status(); //Clear Interrupt.
//Com::printF(Com::tZProbeState); Com::print(Printer::isZProbeHit() ? 'H' : 'L'); Com::println();
for(int i=0;i<10;i++)
{
if( ! Printer::isZProbeHit() ) break;
Com::printFLN(PSTR("delay 100ms."));
delay(100);
}
//Com::printFLN(PSTR("zprobing..."));
PrintLine::moveRelativeDistanceInSteps(0, 0, -probeDepth, 0, EEPROM::zProbeSpeed(), true, true);
//Com::printF(Com::tZProbeState); Com::print(Printer::isZProbeHit() ? 'H' : 'L'); Com::println();
if(stepsRemainingAtZHit < 0)
{
Com::printErrorFLN(Com::tZProbeFailed);
return -1;
}
setZProbingActive(false);
#if NONLINEAR_SYSTEM
stepsRemainingAtZHit = realDeltaPositionSteps[C_TOWER] - currentDeltaPositionSteps[C_TOWER]; // nonlinear moves may split z so stepsRemainingAtZHit is only what is left from last segment not total move. This corrects the problem.
#endif
#if DRIVE_SYSTEM == DELTA
currentDeltaPositionSteps[A_TOWER] += stepsRemainingAtZHit; // Update difference
currentDeltaPositionSteps[B_TOWER] += stepsRemainingAtZHit;
currentDeltaPositionSteps[C_TOWER] += stepsRemainingAtZHit;
#endif
currentPositionSteps[Z_AXIS] += stepsRemainingAtZHit; // now current position is correct
/* if(r == 0 && first) // Modify start z position on first probe hit to speed the ZProbe process
{
int32_t newLastCorrection = currentPositionSteps[Z_AXIS] + (int32_t)((float)EEPROM::zProbeBedDistance() * axisStepsPerMM[Z_AXIS]);
if(newLastCorrection < lastCorrection) // don't want to go all the way up again, fix discrepancy and retest
{
updateZ = lastCorrection - newLastCorrection;
lastCorrection = newLastCorrection;
first = false;
PrintLine::moveRelativeDistanceInSteps(0, 0, lastCorrection - currentPositionSteps[Z_AXIS], 0, EEPROM::zProbeSpeed(), true, false);
r--;
}
}*/
sum += lastCorrection - currentPositionSteps[Z_AXIS];
if(r + 1 < repeat) // go only shortes possible move up for repetitions
PrintLine::moveRelativeDistanceInSteps(0, 0, shortMove, 0, EEPROM::zProbeSpeed(), true, false);
}
float distance = static_cast<float>(sum) * invAxisStepsPerMM[Z_AXIS] / static_cast<float>(repeat) + EEPROM::zProbeHeight();
#if DISTORTION_CORRECTION
float zCorr = distortion.correct(currentPositionSteps[X_AXIS] + EEPROM::zProbeXOffset() * axisStepsPerMM[X_AXIS],currentPositionSteps[Y_AXIS]
+ EEPROM::zProbeYOffset() * axisStepsPerMM[Y_AXIS],0) * invAxisStepsPerMM[Z_AXIS];
distance += zCorr;
#endif
Com::printF(Com::tZProbe, distance);
Com::printF(Com::tZProbeSteps,(distance * 80) - (Z_PROBE_BED_DISTANCE * 80));
Com::printF(Com::tSpaceXColon, realXPosition());
#if DISTORTION_CORRECTION
Com::printF(Com::tSpaceYColon, realYPosition());
Com::printFLN(PSTR(" zCorr:"), zCorr);
#else
Com::printFLN(Com::tSpaceYColon, realYPosition());
#endif
updateCurrentPosition(false);
Commands::printCurrentPosition(PSTR("M114 "));
// Go back to start position
PrintLine::moveRelativeDistanceInSteps(0, 0, lastCorrection - currentPositionSteps[Z_AXIS], 0, EEPROM::zProbeSpeed(), true, false);
//PrintLine::moveRelativeDistanceInSteps(offx,offy,0,0,EEPROM::zProbeXYSpeed(),true,true);
if(last)
{
oldOffX = Printer::offsetX;
oldOffY = Printer::offsetY;
GCode::executeFString(Com::tZProbeEndScript);
if(Extruder::current)
{
Printer::offsetX = -Extruder::current->xOffset * Printer::invAxisStepsPerMM[X_AXIS];
Printer::offsetY = -Extruder::current->yOffset * Printer::invAxisStepsPerMM[Y_AXIS];
}
PrintLine::moveRelativeDistanceInSteps((Printer::offsetX - oldOffX) * Printer::axisStepsPerMM[X_AXIS],
(Printer::offsetY - oldOffY) * Printer::axisStepsPerMM[Y_AXIS], 0, 0, EEPROM::zProbeXYSpeed(), true, ALWAYS_CHECK_ENDSTOPS);
}
return distance;
}
void Printer::waitForZProbeStart()
{
#if Z_PROBE_WAIT_BEFORE_TEST
if(isZProbeHit()) return;
#if UI_DISPLAY_TYPE != NO_DISPLAY
uid.setStatusP(Com::tHitZProbe);
uid.refreshPage();
#endif
#ifdef DEBUG_PRINT
debugWaitLoop = 3;
#endif
while(!isZProbeHit())
{
defaultLoopActions();
}
#ifdef DEBUG_PRINT
debugWaitLoop = 4;
#endif
HAL::delayMilliseconds(30);
while(isZProbeHit())
{
defaultLoopActions();
}
HAL::delayMilliseconds(30);
UI_CLEAR_STATUS;
#endif
}
#endif
#if FEATURE_AUTOLEVEL
void Printer::transformToPrinter(float x,float y,float z,float &transX,float &transY,float &transZ)
{
#if FEATURE_AXISCOMP
// Axis compensation:
x = x + y * EEPROM::axisCompTanXY() + z * EEPROM::axisCompTanXZ();
y = y + z * EEPROM::axisCompTanYZ();
#endif
transX = x * autolevelTransformation[0] + y * autolevelTransformation[3] + z * autolevelTransformation[6];
transY = x * autolevelTransformation[1] + y * autolevelTransformation[4] + z * autolevelTransformation[7];
transZ = x * autolevelTransformation[2] + y * autolevelTransformation[5] + z * autolevelTransformation[8];
}
void Printer::transformFromPrinter(float x,float y,float z,float &transX,float &transY,float &transZ)
{
transX = x * autolevelTransformation[0] + y * autolevelTransformation[1] + z * autolevelTransformation[2];
transY = x * autolevelTransformation[3] + y * autolevelTransformation[4] + z * autolevelTransformation[5];
transZ = x * autolevelTransformation[6] + y * autolevelTransformation[7] + z * autolevelTransformation[8];
#if FEATURE_AXISCOMP
// Axis compensation:
transY = transY - transZ * EEPROM::axisCompTanYZ();
transX = transX - transY * EEPROM::axisCompTanXY() - transZ * EEPROM::axisCompTanXZ();
#endif
}
void Printer::resetTransformationMatrix(bool silent)
{
autolevelTransformation[0] = autolevelTransformation[4] = autolevelTransformation[8] = 1;
autolevelTransformation[1] = autolevelTransformation[2] = autolevelTransformation[3] =
autolevelTransformation[5] = autolevelTransformation[6] = autolevelTransformation[7] = 0;
if(!silent)
Com::printInfoFLN(Com::tAutolevelReset);
}
void Printer::buildTransformationMatrix(float h1,float h2,float h3)
{
float ax = EEPROM::zProbeX2()-EEPROM::zProbeX1();
float ay = EEPROM::zProbeY2()-EEPROM::zProbeY1();
float az = h1-h2;
float bx = EEPROM::zProbeX3()-EEPROM::zProbeX1();
float by = EEPROM::zProbeY3()-EEPROM::zProbeY1();
float bz = h1-h3;
// First z direction
autolevelTransformation[6] = ay * bz - az * by;
autolevelTransformation[7] = az * bx - ax * bz;
autolevelTransformation[8] = ax * by - ay * bx;
float len = sqrt(autolevelTransformation[6] * autolevelTransformation[6] + autolevelTransformation[7] * autolevelTransformation[7] + autolevelTransformation[8] * autolevelTransformation[8]);
if(autolevelTransformation[8] < 0) len = -len;
autolevelTransformation[6] /= len;
autolevelTransformation[7] /= len;
autolevelTransformation[8] /= len;
autolevelTransformation[3] = 0;
autolevelTransformation[4] = autolevelTransformation[8];
autolevelTransformation[5] = -autolevelTransformation[7];
// cross(y,z)
autolevelTransformation[0] = autolevelTransformation[4] * autolevelTransformation[8] - autolevelTransformation[5] * autolevelTransformation[7];
autolevelTransformation[1] = autolevelTransformation[5] * autolevelTransformation[6] - autolevelTransformation[3] * autolevelTransformation[8];
autolevelTransformation[2] = autolevelTransformation[3] * autolevelTransformation[7] - autolevelTransformation[4] * autolevelTransformation[6];
len = sqrt(autolevelTransformation[0] * autolevelTransformation[0] + autolevelTransformation[2] * autolevelTransformation[2]);
autolevelTransformation[0] /= len;
autolevelTransformation[2] /= len;
len = sqrt(autolevelTransformation[4] * autolevelTransformation[4] + autolevelTransformation[5] * autolevelTransformation[5]);
autolevelTransformation[4] /= len;
autolevelTransformation[5] /= len;
Com::printArrayFLN(Com::tTransformationMatrix,autolevelTransformation, 9, 6);
}
#endif
void Printer::setCaseLight(bool on) {
#if CASE_LIGHTS_PIN > -1
WRITE(CASE_LIGHTS_PIN,on);
reportCaseLightStatus();
#endif
}
void Printer::reportCaseLightStatus() {
#if CASE_LIGHTS_PIN > -1
if(READ(CASE_LIGHTS_PIN))
Com::printInfoFLN(PSTR("Case lights on"));
else
Com::printInfoFLN(PSTR("Case lights off"));
#else
Com::printInfoFLN(PSTR("No case lights"));
#endif
}
#define START_EXTRUDER_CONFIG(i) Com::printF(Com::tConfig);Com::printF(Com::tExtrDot,i+1);Com::print(':');
void Printer::showConfiguration() {
Com::config(PSTR("Baudrate:"),baudrate);
Com::config(PSTR("InputBuffer:"),SERIAL_BUFFER_SIZE - 1);
Com::config(PSTR("NumExtruder:"),NUM_EXTRUDER);
Com::config(PSTR("MixingExtruder:"),MIXING_EXTRUDER);
Com::config(PSTR("HeatedBed:"),HAVE_HEATED_BED);
Com::config(PSTR("SDCard:"),SDSUPPORT);
Com::config(PSTR("Fan:"),FAN_PIN > -1 && FEATURE_FAN_CONTROL);
Com::config(PSTR("LCD:"),FEATURE_CONTROLLER != NO_CONTROLLER);
Com::config(PSTR("SoftwarePowerSwitch:"),PS_ON_PIN > -1);
Com::config(PSTR("XHomeDir:"),X_HOME_DIR);
Com::config(PSTR("YHomeDir:"),Y_HOME_DIR);
Com::config(PSTR("ZHomeDir:"),Z_HOME_DIR);
Com::config(PSTR("SupportG10G11:"),FEATURE_RETRACTION);
Com::config(PSTR("SupportLocalFilamentchange:"),FEATURE_RETRACTION);
Com::config(PSTR("CaseLights:"),CASE_LIGHTS_PIN > -1);
Com::config(PSTR("ZProbe:"),FEATURE_Z_PROBE);
Com::config(PSTR("Autolevel:"),FEATURE_AUTOLEVEL);
Com::config(PSTR("EEPROM:"),EEPROM_MODE != 0);
Com::config(PSTR("PrintlineCache:"), PRINTLINE_CACHE_SIZE);
Com::config(PSTR("JerkXY:"),maxJerk);
#if DRIVE_SYSTEM != DELTA
Com::config(PSTR("JerkZ:"),maxZJerk);
#endif
#if FEATURE_RETRACTION
Com::config(PSTR("RetractionLength:"),EEPROM_FLOAT(RETRACTION_LENGTH));
Com::config(PSTR("RetractionLongLength:"),EEPROM_FLOAT(RETRACTION_LONG_LENGTH));
Com::config(PSTR("RetractionSpeed:"),EEPROM_FLOAT(RETRACTION_SPEED));
Com::config(PSTR("RetractionZLift:"),EEPROM_FLOAT(RETRACTION_Z_LIFT));
Com::config(PSTR("RetractionUndoExtraLength:"),EEPROM_FLOAT(RETRACTION_UNDO_EXTRA_LENGTH));
Com::config(PSTR("RetractionUndoExtraLongLength:"),EEPROM_FLOAT(RETRACTION_UNDO_EXTRA_LONG_LENGTH));
Com::config(PSTR("RetractionUndoSpeed:"),EEPROM_FLOAT(RETRACTION_UNDO_SPEED));
#endif // FEATURE_RETRACTION
Com::config(PSTR("XMin:"),xMin);
Com::config(PSTR("YMin:"),yMin);
Com::config(PSTR("ZMin:"),zMin);
Com::config(PSTR("XMax:"),xMin + xLength);
Com::config(PSTR("YMax:"),yMin + yLength);
Com::config(PSTR("ZMax:"),zMin + zLength);
Com::config(PSTR("XSize:"), xLength);
Com::config(PSTR("YSize:"), yLength);
Com::config(PSTR("ZSize:"), zLength);
Com::config(PSTR("XPrintAccel:"), maxAccelerationMMPerSquareSecond[X_AXIS]);
Com::config(PSTR("YPrintAccel:"), maxAccelerationMMPerSquareSecond[Y_AXIS]);
Com::config(PSTR("ZPrintAccel:"), maxAccelerationMMPerSquareSecond[Z_AXIS]);
Com::config(PSTR("XTravelAccel:"), maxTravelAccelerationMMPerSquareSecond[X_AXIS]);
Com::config(PSTR("YTravelAccel:"), maxTravelAccelerationMMPerSquareSecond[Y_AXIS]);
Com::config(PSTR("ZTravelAccel:"), maxTravelAccelerationMMPerSquareSecond[Z_AXIS]);
#if DRIVE_SYSTEM == DELTA
Com::config(PSTR("PrinterType:Delta"));
#else
Com::config(PSTR("PrinterType:Cartesian"));
#endif // DRIVE_SYSTEM
Com::config(PSTR("MaxBedTemp:"), HEATED_BED_MAX_TEMP);
for(fast8_t i = 0; i < NUM_EXTRUDER; i++) {
START_EXTRUDER_CONFIG(i)
Com::printFLN(PSTR("Jerk:"),extruder[i].maxStartFeedrate);
START_EXTRUDER_CONFIG(i)
Com::printFLN(PSTR("MaxSpeed:"),extruder[i].maxFeedrate);
START_EXTRUDER_CONFIG(i)
Com::printFLN(PSTR("Acceleration:"),extruder[i].maxAcceleration);
START_EXTRUDER_CONFIG(i)
Com::printFLN(PSTR("Diameter:"),extruder[i].diameter);
START_EXTRUDER_CONFIG(i)
Com::printFLN(PSTR("MaxTemp:"),MAXTEMP);
}
}
#if DISTORTION_CORRECTION
Distortion Printer::distortion;
void Printer::measureDistortion(void)
{
distortion.measure();
}
Distortion::Distortion()
{
}
void Distortion::init() {
updateDerived();
#if !DISTORTION_PERMANENT
resetCorrection();
#endif
#if EEPROM_MODE != 0
enabled = EEPROM::isZCorrectionEnabled();
Com::printFLN(PSTR("zDistortionCorrection:"),(int)enabled);
#else
enabled = false;
#endif
}
void Distortion::updateDerived()
{
step = (2 * Printer::axisStepsPerMM[Z_AXIS] * DISTORTION_CORRECTION_R) / (DISTORTION_CORRECTION_POINTS - 1.0f);
radiusCorrectionSteps = DISTORTION_CORRECTION_R * Printer::axisStepsPerMM[Z_AXIS];
zStart = DISTORTION_START_DEGRADE * Printer::axisStepsPerMM[Z_AXIS];
zEnd = DISTORTION_END_HEIGHT * Printer::axisStepsPerMM[Z_AXIS];
}
void Distortion::enable(bool permanent)
{
enabled = true;
#if DISTORTION_PERMANENT
if(permanent)
EEPROM::setZCorrectionEnabled(enabled);
#endif
Com::printFLN(Com::tZCorrectionEnabled);
}
void Distortion::disable(bool permanent)
{
enabled = false;
#if DISTORTION_PERMANENT
if(permanent)
EEPROM::setZCorrectionEnabled(enabled);
#endif
Com::printFLN(Com::tZCorrectionDisabled);
}
void Distortion::reportStatus() {
Com::printFLN(enabled ? Com::tZCorrectionEnabled : Com::tZCorrectionDisabled);
}
void Distortion::resetCorrection(void)
{
for(int i = 0; i < DISTORTION_CORRECTION_POINTS * DISTORTION_CORRECTION_POINTS; i++)
setMatrix(0, i);
}
int Distortion::matrixIndex(fast8_t x, fast8_t y) const
{
return static_cast<int>(y) * DISTORTION_CORRECTION_POINTS + x;
}
int32_t Distortion::getMatrix(int index) const
{
#if DISTORTION_PERMANENT
return EEPROM::getZCorrection(index);
#else
return matrix[index];
#endif
}
void Distortion::setMatrix(int32_t val, int index)
{
#if DISTORTION_PERMANENT
EEPROM::setZCorrection(val, index);
#else
matrix[index] = val;
#endif
}
bool Distortion::isCorner(fast8_t i, fast8_t j) const
{
return (i == 0 || i == DISTORTION_CORRECTION_POINTS - 1)
&& (j == 0 || j == DISTORTION_CORRECTION_POINTS - 1);
}
/**
Extrapolates the changes from p1 to p2 to p3 whcih has the same distance as p1-p2.
*/
inline int32_t Distortion::extrapolatePoint(fast8_t x1, fast8_t y1, fast8_t x2, fast8_t y2) const
{
return 2 * getMatrix(matrixIndex(x2,y2)) - getMatrix(matrixIndex(x1,y1));
}
void Distortion::extrapolateCorner(fast8_t x, fast8_t y, fast8_t dx, fast8_t dy)
{
setMatrix((extrapolatePoint(x + 2 * dx, y, x + dx, y) + extrapolatePoint(x, y + 2 * dy, x, y + dy)) / 2.0,
matrixIndex(x,y));
}
void Distortion::extrapolateCorners()
{
const fast8_t m = DISTORTION_CORRECTION_POINTS - 1;
extrapolateCorner(0, 0, 1, 1);
extrapolateCorner(0, m, 1,-1);
extrapolateCorner(m, 0,-1, 1);
extrapolateCorner(m, m,-1,-1);
}
void Distortion::measure(void)
{
fast8_t ix, iy;
float z = EEPROM::zProbeBedDistance() + EEPROM::zProbeHeight();
disable(false);
//Com::printFLN(PSTR("radiusCorr:"), radiusCorrectionSteps);
//Com::printFLN(PSTR("steps:"), step);
for (iy = DISTORTION_CORRECTION_POINTS - 1; iy >= 0; iy--)
for (ix = 0; ix < DISTORTION_CORRECTION_POINTS; ix++)
{
#if (DRIVE_SYSTEM == DELTA) && DISTORTION_EXTRAPOLATE_CORNERS
if (isCorner(ix, iy)) continue;
#endif
float mtx = Printer::invAxisStepsPerMM[X_AXIS] * (ix * step - radiusCorrectionSteps);
float mty = Printer::invAxisStepsPerMM[Y_AXIS] * (iy * step - radiusCorrectionSteps);
//Com::printF(PSTR("mx "),mtx);
//Com::printF(PSTR("my "),mty);
//Com::printF(PSTR("ix "),(int)ix);
//Com::printFLN(PSTR("iy "),(int)iy);
Printer::moveToReal(mtx, mty, z, IGNORE_COORDINATE, EEPROM::zProbeXYSpeed());
setMatrix(floor(0.5f + Printer::axisStepsPerMM[Z_AXIS] * (z -
Printer::runZProbe(ix == 0 && iy == DISTORTION_CORRECTION_POINTS - 1, ix == DISTORTION_CORRECTION_POINTS - 1 && iy == 0, Z_PROBE_REPETITIONS))),
matrixIndex(ix,iy));
}
#if (DRIVE_SYSTEM == DELTA) && DISTORTION_EXTRAPOLATE_CORNERS
extrapolateCorners();
#endif
// make average center
float sum = 0;
for(int k = 0;k < DISTORTION_CORRECTION_POINTS * DISTORTION_CORRECTION_POINTS; k++)
sum += getMatrix(k);
sum /= static_cast<float>(DISTORTION_CORRECTION_POINTS * DISTORTION_CORRECTION_POINTS);
for(int k = 0;k < DISTORTION_CORRECTION_POINTS * DISTORTION_CORRECTION_POINTS; k++)
setMatrix(getMatrix(k) - sum, k);
Printer::zLength -= sum * Printer::invAxisStepsPerMM[Z_AXIS];
#if EEPROM_MODE
EEPROM::storeDataIntoEEPROM();
#endif
// print matrix
Com::printInfoFLN(PSTR("Distortion correction matrix:"));
for (iy = DISTORTION_CORRECTION_POINTS - 1; iy >=0 ; iy--)
{
for(ix = 0; ix < DISTORTION_CORRECTION_POINTS; ix++)
Com::printF(ix ? PSTR(", ") : PSTR(""), getMatrix(matrixIndex(ix,iy)));
Com::println();
}
enable(true);
Printer::homeAxis(false, false, true);
}
int32_t Distortion::correct(int32_t x, int32_t y, int32_t z) const
{
if (!enabled || z > zEnd || Printer::isZProbingActive()) return 0.0f;
if(false && z == 0) {
Com::printF(PSTR("correcting ("), x); Com::printF(PSTR(","), y);
}
x += radiusCorrectionSteps;
y += radiusCorrectionSteps;
int32_t fxFloor = (x - (x < 0 ? step - 1 : 0)) / step; // special case floor for negative integers!
int32_t fyFloor = (y - (y < 0 ? step -1 : 0)) / step;
// indexes to the matrix
if (fxFloor < 0)
fxFloor = 0;
else if (fxFloor > DISTORTION_CORRECTION_POINTS - 2)
fxFloor = DISTORTION_CORRECTION_POINTS - 2;
if (fyFloor < 0)
fyFloor = 0;
else if (fyFloor > DISTORTION_CORRECTION_POINTS - 2)
fyFloor = DISTORTION_CORRECTION_POINTS - 2;
// position between cells of matrix, range=0 to 1 - outside of the matrix the value will be outside this range and the value will be extrapolated
int32_t fx = x - fxFloor * step; // Grid normalized coordinates
int32_t fy = y - fyFloor * step;
int32_t idx11 = matrixIndex(fxFloor, fyFloor);
int32_t m11 = getMatrix(idx11), m12 = getMatrix(idx11 + 1);
int32_t m21 = getMatrix(idx11 + DISTORTION_CORRECTION_POINTS);
int32_t m22 = getMatrix(idx11 + DISTORTION_CORRECTION_POINTS + 1);
int32_t zx1 = m11 + ((m21 - m11) * fx) / step;
int32_t zx2 = m21 + ((m22 - m21) * fx) / step;
int32_t correction_z = zx1 + ((zx2 - zx1) * fy) / step;
if(false && z == 0) {
Com::printF(PSTR(") by "), correction_z);
Com::printF(PSTR(" ix= "), fxFloor); Com::printF(PSTR(" fx= "), fx);
Com::printF(PSTR(" iy= "), fyFloor); Com::printFLN(PSTR(" fy= "), fy);
}
if (z > zStart && z > 0)
correction_z *= (zEnd - z) / (zEnd - zStart);
/* if(correction_z > 20 || correction_z < -20) {
Com::printFLN(PSTR("Corr. error too big:"),correction_z);
Com::printF(PSTR("fxf"),(int)fxFloor);
Com::printF(PSTR(" fyf"),(int)fyFloor);
Com::printF(PSTR(" fx"),fx);
Com::printF(PSTR(" fy"),fy);
Com::printF(PSTR(" x"),x);
Com::printFLN(PSTR(" y"),y);
Com::printF(PSTR(" m11:"),m11);
Com::printF(PSTR(" m12:"),m12);
Com::printF(PSTR(" m21:"),m21);
Com::printF(PSTR(" m22:"),m22);
Com::printFLN(PSTR(" step:"),step);
correction_z = 0;
}*/
return correction_z;
}
#endif // DISTORTION_CORRECTION