The-Legend-of-Delta/Repetier Firmware/Repetier/Eeprom.cpp

1072 lines
43 KiB
C++

/*
This file is part of Repetier-Firmware.
Repetier-Firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Repetier-Firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Repetier-Firmware. If not, see <http://www.gnu.org/licenses/>.
This firmware is a nearly complete rewrite of the sprinter firmware
by kliment (https://github.com/kliment/Sprinter)
which based on Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
Functions in this file are used to communicate using ascii or repetier protocol.
*/
#include "Repetier.h"
void EEPROM::update(GCode *com)
{
#if EEPROM_MODE != 0
if(com->hasT() && com->hasP()) switch(com->T)
{
case 0:
if(com->hasS()) HAL::eprSetByte(com->P,(uint8_t)com->S);
break;
case 1:
if(com->hasS()) HAL::eprSetInt16(com->P,(int)com->S);
break;
case 2:
if(com->hasS()) HAL::eprSetInt32(com->P,(int32_t)com->S);
break;
case 3:
if(com->hasX()) HAL::eprSetFloat(com->P,com->X);
break;
}
uint8_t newcheck = computeChecksum();
if(newcheck != HAL::eprGetByte(EPR_INTEGRITY_BYTE))
HAL::eprSetByte(EPR_INTEGRITY_BYTE,newcheck);
readDataFromEEPROM();
Extruder::selectExtruderById(Extruder::current->id);
#else
Com::printErrorF(Com::tNoEEPROMSupport);
#endif
}
void EEPROM::restoreEEPROMSettingsFromConfiguration()
{
#if EEPROM_MODE != 0
baudrate = BAUDRATE;
maxInactiveTime = MAX_INACTIVE_TIME*1000L;
stepperInactiveTime = STEPPER_INACTIVE_TIME*1000L;
Printer::axisStepsPerMM[X_AXIS] = XAXIS_STEPS_PER_MM;
Printer::axisStepsPerMM[Y_AXIS] = YAXIS_STEPS_PER_MM;
Printer::axisStepsPerMM[Z_AXIS] = ZAXIS_STEPS_PER_MM;
Printer::axisStepsPerMM[E_AXIS] = 1;
Printer::maxFeedrate[X_AXIS] = MAX_FEEDRATE_X;
Printer::maxFeedrate[Y_AXIS] = MAX_FEEDRATE_Y;
Printer::maxFeedrate[Z_AXIS] = MAX_FEEDRATE_Z;
Printer::homingFeedrate[X_AXIS] = HOMING_FEEDRATE_X;
Printer::homingFeedrate[Y_AXIS] = HOMING_FEEDRATE_Y;
Printer::homingFeedrate[Z_AXIS] = HOMING_FEEDRATE_Z;
Printer::maxJerk = MAX_JERK;
#if DRIVE_SYSTEM != DELTA
Printer::maxZJerk = MAX_ZJERK;
#endif
#if RAMP_ACCELERATION
Printer::maxAccelerationMMPerSquareSecond[X_AXIS] = MAX_ACCELERATION_UNITS_PER_SQ_SECOND_X;
Printer::maxAccelerationMMPerSquareSecond[Y_AXIS] = MAX_ACCELERATION_UNITS_PER_SQ_SECOND_Y;
Printer::maxAccelerationMMPerSquareSecond[Z_AXIS] = MAX_ACCELERATION_UNITS_PER_SQ_SECOND_Z;
Printer::maxTravelAccelerationMMPerSquareSecond[X_AXIS] = MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND_X;
Printer::maxTravelAccelerationMMPerSquareSecond[Y_AXIS] = MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND_Y;
Printer::maxTravelAccelerationMMPerSquareSecond[Z_AXIS] = MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND_Z;
#endif
#if HAVE_HEATED_BED
heatedBedController.heatManager= HEATED_BED_HEAT_MANAGER;
#if TEMP_PID
heatedBedController.pidDriveMax = HEATED_BED_PID_INTEGRAL_DRIVE_MAX;
heatedBedController.pidDriveMin = HEATED_BED_PID_INTEGRAL_DRIVE_MIN;
heatedBedController.pidPGain = HEATED_BED_PID_PGAIN_OR_DEAD_TIME;
heatedBedController.pidIGain = HEATED_BED_PID_IGAIN;
heatedBedController.pidDGain = HEATED_BED_PID_DGAIN;
heatedBedController.pidMax = HEATED_BED_PID_MAX;
#endif
#endif
Printer::xLength = X_MAX_LENGTH;
Printer::yLength = Y_MAX_LENGTH;
Printer::zLength = Z_MAX_LENGTH;
Printer::xMin = X_MIN_POS;
Printer::yMin = Y_MIN_POS;
Printer::zMin = Z_MIN_POS;
#if ENABLE_BACKLASH_COMPENSATION
Printer::backlashX = X_BACKLASH;
Printer::backlashY = Y_BACKLASH;
Printer::backlashZ = Z_BACKLASH;
#endif
Extruder *e;
#if NUM_EXTRUDER>0
e = &extruder[0];
e->stepsPerMM = EXT0_STEPS_PER_MM;
e->maxFeedrate = EXT0_MAX_FEEDRATE;
e->maxStartFeedrate = EXT0_MAX_START_FEEDRATE;
e->maxAcceleration = EXT0_MAX_ACCELERATION;
e->tempControl.heatManager = EXT0_HEAT_MANAGER;
#if TEMP_PID
e->tempControl.pidDriveMax = EXT0_PID_INTEGRAL_DRIVE_MAX;
e->tempControl.pidDriveMin = EXT0_PID_INTEGRAL_DRIVE_MIN;
e->tempControl.pidPGain = EXT0_PID_PGAIN_OR_DEAD_TIME;
e->tempControl.pidIGain = EXT0_PID_I;
e->tempControl.pidDGain = EXT0_PID_D;
e->tempControl.pidMax = EXT0_PID_MAX;
#endif
e->yOffset = EXT0_Y_OFFSET;
e->xOffset = EXT0_X_OFFSET;
e->watchPeriod = EXT0_WATCHPERIOD;
#if RETRACT_DURING_HEATUP
e->waitRetractTemperature = EXT0_WAIT_RETRACT_TEMP;
e->waitRetractUnits = EXT0_WAIT_RETRACT_UNITS;
#endif
e->coolerSpeed = EXT0_EXTRUDER_COOLER_SPEED;
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
e->advanceK = EXT0_ADVANCE_K;
#endif
e->advanceL = EXT0_ADVANCE_L;
#endif
#endif // NUM_EXTRUDER>0
#if NUM_EXTRUDER>1
e = &extruder[1];
e->stepsPerMM = EXT1_STEPS_PER_MM;
e->maxFeedrate = EXT1_MAX_FEEDRATE;
e->maxStartFeedrate = EXT1_MAX_START_FEEDRATE;
e->maxAcceleration = EXT1_MAX_ACCELERATION;
e->tempControl.heatManager = EXT1_HEAT_MANAGER;
#if TEMP_PID
e->tempControl.pidDriveMax = EXT1_PID_INTEGRAL_DRIVE_MAX;
e->tempControl.pidDriveMin = EXT1_PID_INTEGRAL_DRIVE_MIN;
e->tempControl.pidPGain = EXT1_PID_PGAIN_OR_DEAD_TIME;
e->tempControl.pidIGain = EXT1_PID_I;
e->tempControl.pidDGain = EXT1_PID_D;
e->tempControl.pidMax = EXT1_PID_MAX;
#endif
e->yOffset = EXT1_Y_OFFSET;
e->xOffset = EXT1_X_OFFSET;
e->watchPeriod = EXT1_WATCHPERIOD;
#if RETRACT_DURING_HEATUP
e->waitRetractTemperature = EXT1_WAIT_RETRACT_TEMP;
e->waitRetractUnits = EXT1_WAIT_RETRACT_UNITS;
#endif
e->coolerSpeed = EXT1_EXTRUDER_COOLER_SPEED;
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
e->advanceK = EXT1_ADVANCE_K;
#endif
e->advanceL = EXT1_ADVANCE_L;
#endif
#endif // NUM_EXTRUDER > 1
#if NUM_EXTRUDER>2
e = &extruder[2];
e->stepsPerMM = EXT2_STEPS_PER_MM;
e->maxFeedrate = EXT2_MAX_FEEDRATE;
e->maxStartFeedrate = EXT2_MAX_START_FEEDRATE;
e->maxAcceleration = EXT2_MAX_ACCELERATION;
e->tempControl.heatManager = EXT2_HEAT_MANAGER;
#if TEMP_PID
e->tempControl.pidDriveMax = EXT2_PID_INTEGRAL_DRIVE_MAX;
e->tempControl.pidDriveMin = EXT2_PID_INTEGRAL_DRIVE_MIN;
e->tempControl.pidPGain = EXT2_PID_PGAIN_OR_DEAD_TIME;
e->tempControl.pidIGain = EXT2_PID_I;
e->tempControl.pidDGain = EXT2_PID_D;
e->tempControl.pidMax = EXT2_PID_MAX;
#endif
e->yOffset = EXT2_Y_OFFSET;
e->xOffset = EXT2_X_OFFSET;
e->watchPeriod = EXT2_WATCHPERIOD;
#if RETRACT_DURING_HEATUP
e->waitRetractTemperature = EXT2_WAIT_RETRACT_TEMP;
e->waitRetractUnits = EXT2_WAIT_RETRACT_UNITS;
#endif
e->coolerSpeed = EXT2_EXTRUDER_COOLER_SPEED;
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
e->advanceK = EXT2_ADVANCE_K;
#endif
e->advanceL = EXT2_ADVANCE_L;
#endif
#endif // NUM_EXTRUDER > 2
#if NUM_EXTRUDER>3
e = &extruder[3];
e->stepsPerMM = EXT3_STEPS_PER_MM;
e->maxFeedrate = EXT3_MAX_FEEDRATE;
e->maxStartFeedrate = EXT3_MAX_START_FEEDRATE;
e->maxAcceleration = EXT3_MAX_ACCELERATION;
e->tempControl.heatManager = EXT3_HEAT_MANAGER;
#if TEMP_PID
e->tempControl.pidDriveMax = EXT3_PID_INTEGRAL_DRIVE_MAX;
e->tempControl.pidDriveMin = EXT3_PID_INTEGRAL_DRIVE_MIN;
e->tempControl.pidPGain = EXT3_PID_PGAIN_OR_DEAD_TIME;
e->tempControl.pidIGain = EXT3_PID_I;
e->tempControl.pidDGain = EXT3_PID_D;
e->tempControl.pidMax = EXT3_PID_MAX;
#endif
e->yOffset = EXT3_Y_OFFSET;
e->xOffset = EXT3_X_OFFSET;
e->watchPeriod = EXT3_WATCHPERIOD;
#if RETRACT_DURING_HEATUP
e->waitRetractTemperature = EXT3_WAIT_RETRACT_TEMP;
e->waitRetractUnits = EXT3_WAIT_RETRACT_UNITS;
#endif
e->coolerSpeed = EXT3_EXTRUDER_COOLER_SPEED;
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
e->advanceK = EXT3_ADVANCE_K;
#endif
e->advanceL = EXT3_ADVANCE_L;
#endif
#endif // NUM_EXTRUDER > 3
#if NUM_EXTRUDER>4
e = &extruder[4];
e->stepsPerMM = EXT4_STEPS_PER_MM;
e->maxFeedrate = EXT4_MAX_FEEDRATE;
e->maxStartFeedrate = EXT4_MAX_START_FEEDRATE;
e->maxAcceleration = EXT4_MAX_ACCELERATION;
e->tempControl.heatManager = EXT4_HEAT_MANAGER;
#if TEMP_PID
e->tempControl.pidDriveMax = EXT4_PID_INTEGRAL_DRIVE_MAX;
e->tempControl.pidDriveMin = EXT4_PID_INTEGRAL_DRIVE_MIN;
e->tempControl.pidPGain = EXT4_PID_PGAIN_OR_DEAD_TIME;
e->tempControl.pidIGain = EXT4_PID_I;
e->tempControl.pidDGain = EXT4_PID_D;
e->tempControl.pidMax = EXT4_PID_MAX;
#endif
e->yOffset = EXT4_Y_OFFSET;
e->xOffset = EXT4_X_OFFSET;
e->watchPeriod = EXT4_WATCHPERIOD;
#if RETRACT_DURING_HEATUP
e->waitRetractTemperature = EXT4_WAIT_RETRACT_TEMP;
e->waitRetractUnits = EXT4_WAIT_RETRACT_UNITS;
#endif
e->coolerSpeed = EXT4_EXTRUDER_COOLER_SPEED;
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
e->advanceK = EXT4_ADVANCE_K;
#endif
e->advanceL = EXT4_ADVANCE_L;
#endif
#endif // NUM_EXTRUDER > 4
#if NUM_EXTRUDER>5
e = &extruder[5];
e->stepsPerMM = EXT5_STEPS_PER_MM;
e->maxFeedrate = EXT5_MAX_FEEDRATE;
e->maxStartFeedrate = EXT5_MAX_START_FEEDRATE;
e->maxAcceleration = EXT5_MAX_ACCELERATION;
e->tempControl.heatManager = EXT5_HEAT_MANAGER;
#if TEMP_PID
e->tempControl.pidDriveMax = EXT5_PID_INTEGRAL_DRIVE_MAX;
e->tempControl.pidDriveMin = EXT5_PID_INTEGRAL_DRIVE_MIN;
e->tempControl.pidPGain = EXT5_PID_PGAIN_OR_DEAD_TIME;
e->tempControl.pidIGain = EXT5_PID_I;
e->tempControl.pidDGain = EXT5_PID_D;
e->tempControl.pidMax = EXT5_PID_MAX;
#endif
e->yOffset = EXT5_Y_OFFSET;
e->xOffset = EXT5_X_OFFSET;
e->watchPeriod = EXT5_WATCHPERIOD;
#if RETRACT_DURING_HEATUP
e->waitRetractTemperature = EXT5_WAIT_RETRACT_TEMP;
e->waitRetractUnits = EXT5_WAIT_RETRACT_UNITS;
#endif
e->coolerSpeed = EXT5_EXTRUDER_COOLER_SPEED;
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
e->advanceK = EXT5_ADVANCE_K;
#endif
e->advanceL = EXT5_ADVANCE_L;
#endif
#endif // NUM_EXTRUDER > 5
#if FEATURE_AUTOLEVEL
Printer::setAutolevelActive(false);
Printer::resetTransformationMatrix(true);
#endif
#if MIXING_EXTRUDER
restoreMixingRatios();
#endif
initalizeUncached();
Printer::updateDerivedParameter();
Extruder::selectExtruderById(Extruder::current->id);
Extruder::initHeatedBed();
Com::printInfoFLN(Com::tEPRConfigResetDefaults);
#else
Com::printErrorFLN(Com::tNoEEPROMSupport);
#endif
}
void EEPROM::storeDataIntoEEPROM(uint8_t corrupted)
{
#if EEPROM_MODE != 0
HAL::eprSetInt32(EPR_BAUDRATE,baudrate);
HAL::eprSetInt32(EPR_MAX_INACTIVE_TIME,maxInactiveTime);
HAL::eprSetInt32(EPR_STEPPER_INACTIVE_TIME,stepperInactiveTime);
//#define EPR_ACCELERATION_TYPE 1
HAL::eprSetFloat(EPR_XAXIS_STEPS_PER_MM,Printer::axisStepsPerMM[X_AXIS]);
HAL::eprSetFloat(EPR_YAXIS_STEPS_PER_MM,Printer::axisStepsPerMM[Y_AXIS]);
HAL::eprSetFloat(EPR_ZAXIS_STEPS_PER_MM,Printer::axisStepsPerMM[Z_AXIS]);
HAL::eprSetFloat(EPR_X_MAX_FEEDRATE,Printer::maxFeedrate[X_AXIS]);
HAL::eprSetFloat(EPR_Y_MAX_FEEDRATE,Printer::maxFeedrate[Y_AXIS]);
HAL::eprSetFloat(EPR_Z_MAX_FEEDRATE,Printer::maxFeedrate[Z_AXIS]);
HAL::eprSetFloat(EPR_X_HOMING_FEEDRATE,Printer::homingFeedrate[X_AXIS]);
HAL::eprSetFloat(EPR_Y_HOMING_FEEDRATE,Printer::homingFeedrate[Y_AXIS]);
HAL::eprSetFloat(EPR_Z_HOMING_FEEDRATE,Printer::homingFeedrate[Z_AXIS]);
HAL::eprSetFloat(EPR_MAX_JERK,Printer::maxJerk);
#if DRIVE_SYSTEM != DELTA
HAL::eprSetFloat(EPR_MAX_ZJERK,Printer::maxZJerk);
#endif
#if RAMP_ACCELERATION
HAL::eprSetFloat(EPR_X_MAX_ACCEL,Printer::maxAccelerationMMPerSquareSecond[X_AXIS]);
HAL::eprSetFloat(EPR_Y_MAX_ACCEL,Printer::maxAccelerationMMPerSquareSecond[Y_AXIS]);
HAL::eprSetFloat(EPR_Z_MAX_ACCEL,Printer::maxAccelerationMMPerSquareSecond[Z_AXIS]);
HAL::eprSetFloat(EPR_X_MAX_TRAVEL_ACCEL,Printer::maxTravelAccelerationMMPerSquareSecond[X_AXIS]);
HAL::eprSetFloat(EPR_Y_MAX_TRAVEL_ACCEL,Printer::maxTravelAccelerationMMPerSquareSecond[Y_AXIS]);
HAL::eprSetFloat(EPR_Z_MAX_TRAVEL_ACCEL,Printer::maxTravelAccelerationMMPerSquareSecond[Z_AXIS]);
#endif
#if HAVE_HEATED_BED
HAL::eprSetByte(EPR_BED_HEAT_MANAGER,heatedBedController.heatManager);
#else
HAL::eprSetByte(EPR_BED_HEAT_MANAGER,HEATED_BED_HEAT_MANAGER);
#endif
#if defined(TEMP_PID) && HAVE_HEATED_BED
HAL::eprSetByte(EPR_BED_DRIVE_MAX,heatedBedController.pidDriveMax);
HAL::eprSetByte(EPR_BED_DRIVE_MIN,heatedBedController.pidDriveMin);
HAL::eprSetFloat(EPR_BED_PID_PGAIN,heatedBedController.pidPGain);
HAL::eprSetFloat(EPR_BED_PID_IGAIN,heatedBedController.pidIGain);
HAL::eprSetFloat(EPR_BED_PID_DGAIN,heatedBedController.pidDGain);
HAL::eprSetByte(EPR_BED_PID_MAX,heatedBedController.pidMax);
#else
HAL::eprSetByte(EPR_BED_DRIVE_MAX,HEATED_BED_PID_INTEGRAL_DRIVE_MAX);
HAL::eprSetByte(EPR_BED_DRIVE_MIN,HEATED_BED_PID_INTEGRAL_DRIVE_MIN);
HAL::eprSetFloat(EPR_BED_PID_PGAIN,HEATED_BED_PID_PGAIN_OR_DEAD_TIME);
HAL::eprSetFloat(EPR_BED_PID_IGAIN,HEATED_BED_PID_IGAIN);
HAL::eprSetFloat(EPR_BED_PID_DGAIN,HEATED_BED_PID_DGAIN);
HAL::eprSetByte(EPR_BED_PID_MAX,HEATED_BED_PID_MAX);
#endif
//SHOT("storeDataIntoEEPROM"); SHOWM(Printer::xMin);SHOWM(Printer::yMin);SHOWM(Printer::zMin);
HAL::eprSetFloat(EPR_X_HOME_OFFSET,Printer::xMin);
HAL::eprSetFloat(EPR_Y_HOME_OFFSET,Printer::yMin);
HAL::eprSetFloat(EPR_Z_HOME_OFFSET,Printer::zMin);
HAL::eprSetFloat(EPR_X_LENGTH,Printer::xLength);
HAL::eprSetFloat(EPR_Y_LENGTH,Printer::yLength);
HAL::eprSetFloat(EPR_Z_LENGTH,Printer::zLength);
#if NONLINEAR_SYSTEM
HAL::eprSetFloat(EPR_DELTA_HORIZONTAL_RADIUS, Printer::radius0);
#endif
#if ENABLE_BACKLASH_COMPENSATION
HAL::eprSetFloat(EPR_BACKLASH_X,Printer::backlashX);
HAL::eprSetFloat(EPR_BACKLASH_Y,Printer::backlashY);
HAL::eprSetFloat(EPR_BACKLASH_Z,Printer::backlashZ);
#else
HAL::eprSetFloat(EPR_BACKLASH_X,0);
HAL::eprSetFloat(EPR_BACKLASH_Y,0);
HAL::eprSetFloat(EPR_BACKLASH_Z,0);
#endif
#if FEATURE_AUTOLEVEL
HAL::eprSetByte(EPR_AUTOLEVEL_ACTIVE,Printer::isAutolevelActive());
for(uint8_t i = 0; i < 9; i++)
HAL::eprSetFloat(EPR_AUTOLEVEL_MATRIX + (((int)i) << 2),Printer::autolevelTransformation[i]);
#endif
// now the extruder
for(uint8_t i = 0; i < NUM_EXTRUDER; i++)
{
#if FEATURE_WATCHDOG
HAL::pingWatchdog();
#endif // FEATURE_WATCHDOG
int o=i*EEPROM_EXTRUDER_LENGTH+EEPROM_EXTRUDER_OFFSET;
Extruder *e = &extruder[i];
HAL::eprSetFloat(o+EPR_EXTRUDER_STEPS_PER_MM,e->stepsPerMM);
HAL::eprSetFloat(o+EPR_EXTRUDER_MAX_FEEDRATE,e->maxFeedrate);
HAL::eprSetFloat(o+EPR_EXTRUDER_MAX_START_FEEDRATE,e->maxStartFeedrate);
HAL::eprSetFloat(o+EPR_EXTRUDER_MAX_ACCELERATION,e->maxAcceleration);
HAL::eprSetByte(o+EPR_EXTRUDER_HEAT_MANAGER,e->tempControl.heatManager);
#if TEMP_PID
HAL::eprSetByte(o+EPR_EXTRUDER_DRIVE_MAX,e->tempControl.pidDriveMax);
HAL::eprSetByte(o+EPR_EXTRUDER_DRIVE_MIN,e->tempControl.pidDriveMin);
HAL::eprSetFloat(o+EPR_EXTRUDER_PID_PGAIN,e->tempControl.pidPGain);
HAL::eprSetFloat(o+EPR_EXTRUDER_PID_IGAIN,e->tempControl.pidIGain);
HAL::eprSetFloat(o+EPR_EXTRUDER_PID_DGAIN,e->tempControl.pidDGain);
HAL::eprSetByte(o+EPR_EXTRUDER_PID_MAX,e->tempControl.pidMax);
#endif
HAL::eprSetInt32(o+EPR_EXTRUDER_X_OFFSET,e->xOffset);
HAL::eprSetInt32(o+EPR_EXTRUDER_Y_OFFSET,e->yOffset);
HAL::eprSetInt16(o+EPR_EXTRUDER_WATCH_PERIOD,e->watchPeriod);
#if RETRACT_DURING_HEATUP
HAL::eprSetInt16(o+EPR_EXTRUDER_WAIT_RETRACT_TEMP,e->waitRetractTemperature);
HAL::eprSetInt16(o+EPR_EXTRUDER_WAIT_RETRACT_UNITS,e->waitRetractUnits);
#else
HAL::eprSetInt16(o+EPR_EXTRUDER_WAIT_RETRACT_TEMP,EXT0_WAIT_RETRACT_TEMP);
HAL::eprSetInt16(o+EPR_EXTRUDER_WAIT_RETRACT_UNITS,EXT0_WAIT_RETRACT_UNITS);
#endif
HAL::eprSetByte(o+EPR_EXTRUDER_COOLER_SPEED,e->coolerSpeed);
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
HAL::eprSetFloat(o+EPR_EXTRUDER_ADVANCE_K,e->advanceK);
#else
HAL::eprSetFloat(o+EPR_EXTRUDER_ADVANCE_K,0);
#endif
HAL::eprSetFloat(o+EPR_EXTRUDER_ADVANCE_L,e->advanceL);
#else
HAL::eprSetFloat(o+EPR_EXTRUDER_ADVANCE_K,0);
HAL::eprSetFloat(o+EPR_EXTRUDER_ADVANCE_L,0);
#endif
}
#if MIXING_EXTRUDER
storeMixingRatios(false);
#endif
if(corrupted)
{
HAL::eprSetInt32(EPR_PRINTING_TIME,0);
HAL::eprSetFloat(EPR_PRINTING_DISTANCE,0);
initalizeUncached();
}
// Save version and build checksum
HAL::eprSetByte(EPR_VERSION,EEPROM_PROTOCOL_VERSION);
HAL::eprSetByte(EPR_INTEGRITY_BYTE,computeChecksum());
#endif
}
void EEPROM::initalizeUncached()
{
HAL::eprSetFloat(EPR_Z_PROBE_HEIGHT,Z_PROBE_HEIGHT);
HAL::eprSetFloat(EPR_Z_PROBE_SPEED,Z_PROBE_SPEED);
HAL::eprSetFloat(EPR_Z_PROBE_XY_SPEED,Z_PROBE_XY_SPEED);
HAL::eprSetFloat(EPR_Z_PROBE_X_OFFSET,Z_PROBE_X_OFFSET);
HAL::eprSetFloat(EPR_Z_PROBE_Y_OFFSET,Z_PROBE_Y_OFFSET);
HAL::eprSetFloat(EPR_Z_PROBE_X1,Z_PROBE_X1);
HAL::eprSetFloat(EPR_Z_PROBE_Y1,Z_PROBE_Y1);
HAL::eprSetFloat(EPR_Z_PROBE_X2,Z_PROBE_X2);
HAL::eprSetFloat(EPR_Z_PROBE_Y2,Z_PROBE_Y2);
HAL::eprSetFloat(EPR_Z_PROBE_X3,Z_PROBE_X3);
HAL::eprSetFloat(EPR_Z_PROBE_Y3,Z_PROBE_Y3);
HAL::eprSetFloat(EPR_AXISCOMP_TANXY,AXISCOMP_TANXY);
HAL::eprSetFloat(EPR_AXISCOMP_TANYZ,AXISCOMP_TANYZ);
HAL::eprSetFloat(EPR_AXISCOMP_TANXZ,AXISCOMP_TANXZ);
HAL::eprSetFloat(EPR_Z_PROBE_BED_DISTANCE,Z_PROBE_BED_DISTANCE);
#if DRIVE_SYSTEM == DELTA
HAL::eprSetFloat(EPR_DELTA_DIAGONAL_ROD_LENGTH,DELTA_DIAGONAL_ROD);
HAL::eprSetFloat(EPR_DELTA_HORIZONTAL_RADIUS,ROD_RADIUS);
HAL::eprSetInt16(EPR_DELTA_SEGMENTS_PER_SECOND_PRINT,DELTA_SEGMENTS_PER_SECOND_PRINT);
HAL::eprSetInt16(EPR_DELTA_SEGMENTS_PER_SECOND_MOVE,DELTA_SEGMENTS_PER_SECOND_MOVE);
HAL::eprSetInt16(EPR_ADVANCED_USER,ADVANCED_USER);
HAL::eprSetInt16(EPR_DELTA_TOWERX_OFFSET_STEPS,DELTA_X_ENDSTOP_OFFSET_STEPS);
HAL::eprSetInt16(EPR_DELTA_TOWERY_OFFSET_STEPS,DELTA_Y_ENDSTOP_OFFSET_STEPS);
HAL::eprSetInt16(EPR_DELTA_TOWERZ_OFFSET_STEPS,DELTA_Z_ENDSTOP_OFFSET_STEPS);
HAL::eprSetFloat(EPR_DELTA_ALPHA_A,DELTA_ALPHA_A);
HAL::eprSetFloat(EPR_DELTA_ALPHA_B,DELTA_ALPHA_B);
HAL::eprSetFloat(EPR_DELTA_ALPHA_C,DELTA_ALPHA_C);
HAL::eprSetFloat(EPR_DELTA_RADIUS_CORR_A,DELTA_RADIUS_CORRECTION_A);
HAL::eprSetFloat(EPR_DELTA_RADIUS_CORR_B,DELTA_RADIUS_CORRECTION_B);
HAL::eprSetFloat(EPR_DELTA_RADIUS_CORR_C,DELTA_RADIUS_CORRECTION_C);
HAL::eprSetFloat(EPR_DELTA_MAX_RADIUS,DELTA_MAX_RADIUS);
HAL::eprSetFloat(EPR_DELTA_DIAGONAL_CORRECTION_A,DELTA_DIAGONAL_CORRECTION_A);
HAL::eprSetFloat(EPR_DELTA_DIAGONAL_CORRECTION_B,DELTA_DIAGONAL_CORRECTION_B);
HAL::eprSetFloat(EPR_DELTA_DIAGONAL_CORRECTION_C,DELTA_DIAGONAL_CORRECTION_C);
#endif
HAL::eprSetFloat(EPR_AXISCOMP_TANXY,AXISCOMP_TANXY);
HAL::eprSetFloat(EPR_AXISCOMP_TANYZ,AXISCOMP_TANYZ);
HAL::eprSetFloat(EPR_AXISCOMP_TANXZ,AXISCOMP_TANXZ);
HAL::eprSetByte(EPR_DISTORTION_CORRECTION_ENABLED,0);
HAL::eprSetFloat(EPR_RETRACTION_LENGTH,RETRACTION_LENGTH);
HAL::eprSetFloat(EPR_RETRACTION_LONG_LENGTH,RETRACTION_LONG_LENGTH);
HAL::eprSetFloat(EPR_RETRACTION_SPEED,RETRACTION_SPEED);
HAL::eprSetFloat(EPR_RETRACTION_Z_LIFT,RETRACTION_Z_LIFT);
HAL::eprSetFloat(EPR_RETRACTION_UNDO_EXTRA_LENGTH,RETRACTION_UNDO_EXTRA_LENGTH);
HAL::eprSetFloat(EPR_RETRACTION_UNDO_EXTRA_LONG_LENGTH,RETRACTION_UNDO_EXTRA_LONG_LENGTH);
HAL::eprSetFloat(EPR_RETRACTION_UNDO_SPEED,RETRACTION_UNDO_SPEED);
HAL::eprSetByte(EPR_AUTORETRACT_ENABLED,AUTORETRACT_ENABLED);
}
void EEPROM::readDataFromEEPROM()
{
#if EEPROM_MODE != 0
uint8_t version = HAL::eprGetByte(EPR_VERSION); // This is the saved version. Don't copy data not set in older versions!
baudrate = HAL::eprGetInt32(EPR_BAUDRATE);
maxInactiveTime = HAL::eprGetInt32(EPR_MAX_INACTIVE_TIME);
stepperInactiveTime = HAL::eprGetInt32(EPR_STEPPER_INACTIVE_TIME);
//#define EPR_ACCELERATION_TYPE 1
Printer::axisStepsPerMM[X_AXIS] = HAL::eprGetFloat(EPR_XAXIS_STEPS_PER_MM);
Printer::axisStepsPerMM[Y_AXIS] = HAL::eprGetFloat(EPR_YAXIS_STEPS_PER_MM);
Printer::axisStepsPerMM[Z_AXIS] = HAL::eprGetFloat(EPR_ZAXIS_STEPS_PER_MM);
Printer::maxFeedrate[X_AXIS] = HAL::eprGetFloat(EPR_X_MAX_FEEDRATE);
Printer::maxFeedrate[Y_AXIS] = HAL::eprGetFloat(EPR_Y_MAX_FEEDRATE);
Printer::maxFeedrate[Z_AXIS] = HAL::eprGetFloat(EPR_Z_MAX_FEEDRATE);
Printer::homingFeedrate[X_AXIS] = HAL::eprGetFloat(EPR_X_HOMING_FEEDRATE);
Printer::homingFeedrate[Y_AXIS] = HAL::eprGetFloat(EPR_Y_HOMING_FEEDRATE);
Printer::homingFeedrate[Z_AXIS] = HAL::eprGetFloat(EPR_Z_HOMING_FEEDRATE);
Printer::maxJerk = HAL::eprGetFloat(EPR_MAX_JERK);
#if DRIVE_SYSTEM!=DELTA
Printer::maxZJerk = HAL::eprGetFloat(EPR_MAX_ZJERK);
#endif
#if RAMP_ACCELERATION
Printer::maxAccelerationMMPerSquareSecond[X_AXIS] = HAL::eprGetFloat(EPR_X_MAX_ACCEL);
Printer::maxAccelerationMMPerSquareSecond[Y_AXIS] = HAL::eprGetFloat(EPR_Y_MAX_ACCEL);
Printer::maxAccelerationMMPerSquareSecond[Z_AXIS] = HAL::eprGetFloat(EPR_Z_MAX_ACCEL);
Printer::maxTravelAccelerationMMPerSquareSecond[X_AXIS] = HAL::eprGetFloat(EPR_X_MAX_TRAVEL_ACCEL);
Printer::maxTravelAccelerationMMPerSquareSecond[Y_AXIS] = HAL::eprGetFloat(EPR_Y_MAX_TRAVEL_ACCEL);
Printer::maxTravelAccelerationMMPerSquareSecond[Z_AXIS] = HAL::eprGetFloat(EPR_Z_MAX_TRAVEL_ACCEL);
#endif
#if HAVE_HEATED_BED
heatedBedController.heatManager= HAL::eprGetByte(EPR_BED_HEAT_MANAGER);
#if TEMP_PID
heatedBedController.pidDriveMax = HAL::eprGetByte(EPR_BED_DRIVE_MAX);
heatedBedController.pidDriveMin = HAL::eprGetByte(EPR_BED_DRIVE_MIN);
heatedBedController.pidPGain = HAL::eprGetFloat(EPR_BED_PID_PGAIN);
heatedBedController.pidIGain = HAL::eprGetFloat(EPR_BED_PID_IGAIN);
heatedBedController.pidDGain = HAL::eprGetFloat(EPR_BED_PID_DGAIN);
heatedBedController.pidMax = HAL::eprGetByte(EPR_BED_PID_MAX);
#endif
#endif
Printer::xMin = HAL::eprGetFloat(EPR_X_HOME_OFFSET);
Printer::yMin = HAL::eprGetFloat(EPR_Y_HOME_OFFSET);
Printer::zMin = HAL::eprGetFloat(EPR_Z_HOME_OFFSET);
Printer::xLength = HAL::eprGetFloat(EPR_X_LENGTH);
Printer::yLength = HAL::eprGetFloat(EPR_Y_LENGTH);
Printer::zLength = HAL::eprGetFloat(EPR_Z_LENGTH);
#if NONLINEAR_SYSTEM
Printer::radius0 = HAL::eprGetFloat(EPR_DELTA_HORIZONTAL_RADIUS);
#endif
#if ENABLE_BACKLASH_COMPENSATION
Printer::backlashX = HAL::eprGetFloat(EPR_BACKLASH_X);
Printer::backlashY = HAL::eprGetFloat(EPR_BACKLASH_Y);
Printer::backlashZ = HAL::eprGetFloat(EPR_BACKLASH_Z);
#endif
#if FEATURE_AUTOLEVEL
if(version>2)
{
float sum = 0;
for(uint8_t i=0; i<9; i++)
Printer::autolevelTransformation[i] = HAL::eprGetFloat(EPR_AUTOLEVEL_MATRIX + (((int)i) << 2));
if(isnan(Printer::autolevelTransformation[0])) // a bug caused storage of matrix at the wrong place. Read from old position instead.
{
for(uint8_t i=0; i<9; i++)
Printer::autolevelTransformation[i] = HAL::eprGetFloat((EPR_AUTOLEVEL_MATRIX + (int)i) << 2);
}
for(uint8_t i=0; i<9; i++)
{
if(isnan(Printer::autolevelTransformation[i]))
sum += 10;
else
sum += RMath::sqr(Printer::autolevelTransformation[i]);
}
if(sum < 2.7 || sum > 3.3)
Printer::resetTransformationMatrix(false);
Printer::setAutolevelActive(HAL::eprGetByte(EPR_AUTOLEVEL_ACTIVE));
Com::printArrayFLN(Com::tTransformationMatrix,Printer::autolevelTransformation,9,6);
}
#endif
#if MIXING_EXTRUDER
readMixingRatios();
#endif
// now the extruder
for(uint8_t i=0; i<NUM_EXTRUDER; i++)
{
#if FEATURE_WATCHDOG
HAL::pingWatchdog();
#endif // FEATURE_WATCHDOG
int o=i*EEPROM_EXTRUDER_LENGTH+EEPROM_EXTRUDER_OFFSET;
Extruder *e = &extruder[i];
e->stepsPerMM = HAL::eprGetFloat(o+EPR_EXTRUDER_STEPS_PER_MM);
e->maxFeedrate = HAL::eprGetFloat(o+EPR_EXTRUDER_MAX_FEEDRATE);
e->maxStartFeedrate = HAL::eprGetFloat(o+EPR_EXTRUDER_MAX_START_FEEDRATE);
e->maxAcceleration = HAL::eprGetFloat(o+EPR_EXTRUDER_MAX_ACCELERATION);
e->tempControl.heatManager = HAL::eprGetByte(o+EPR_EXTRUDER_HEAT_MANAGER);
#if TEMP_PID
e->tempControl.pidDriveMax = HAL::eprGetByte(o+EPR_EXTRUDER_DRIVE_MAX);
e->tempControl.pidDriveMin = HAL::eprGetByte(o+EPR_EXTRUDER_DRIVE_MIN);
e->tempControl.pidPGain = HAL::eprGetFloat(o+EPR_EXTRUDER_PID_PGAIN);
e->tempControl.pidIGain = HAL::eprGetFloat(o+EPR_EXTRUDER_PID_IGAIN);
e->tempControl.pidDGain = HAL::eprGetFloat(o+EPR_EXTRUDER_PID_DGAIN);
e->tempControl.pidMax = HAL::eprGetByte(o+EPR_EXTRUDER_PID_MAX);
#endif
e->xOffset = HAL::eprGetInt32(o+EPR_EXTRUDER_X_OFFSET);
e->yOffset = HAL::eprGetInt32(o+EPR_EXTRUDER_Y_OFFSET);
e->watchPeriod = HAL::eprGetInt16(o+EPR_EXTRUDER_WATCH_PERIOD);
#if RETRACT_DURING_HEATUP
e->waitRetractTemperature = HAL::eprGetInt16(o+EPR_EXTRUDER_WAIT_RETRACT_TEMP);
e->waitRetractUnits = HAL::eprGetInt16(o+EPR_EXTRUDER_WAIT_RETRACT_UNITS);
#endif
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
e->advanceK = HAL::eprGetFloat(o+EPR_EXTRUDER_ADVANCE_K);
#endif
e->advanceL = HAL::eprGetFloat(o+EPR_EXTRUDER_ADVANCE_L);
#endif
if(version > 1)
e->coolerSpeed = HAL::eprGetByte(o+EPR_EXTRUDER_COOLER_SPEED);
}
if(version != EEPROM_PROTOCOL_VERSION)
{
Com::printInfoFLN(Com::tEPRProtocolChanged);
if(version < 3)
{
HAL::eprSetFloat(EPR_Z_PROBE_HEIGHT,Z_PROBE_HEIGHT);
HAL::eprSetFloat(EPR_Z_PROBE_SPEED,Z_PROBE_SPEED);
HAL::eprSetFloat(EPR_Z_PROBE_XY_SPEED,Z_PROBE_XY_SPEED);
HAL::eprSetFloat(EPR_Z_PROBE_X_OFFSET,Z_PROBE_X_OFFSET);
HAL::eprSetFloat(EPR_Z_PROBE_Y_OFFSET,Z_PROBE_Y_OFFSET);
HAL::eprSetFloat(EPR_Z_PROBE_X1,Z_PROBE_X1);
HAL::eprSetFloat(EPR_Z_PROBE_Y1,Z_PROBE_Y1);
HAL::eprSetFloat(EPR_Z_PROBE_X2,Z_PROBE_X2);
HAL::eprSetFloat(EPR_Z_PROBE_Y2,Z_PROBE_Y2);
HAL::eprSetFloat(EPR_Z_PROBE_X3,Z_PROBE_X3);
HAL::eprSetFloat(EPR_Z_PROBE_Y3,Z_PROBE_Y3);
}
if(version < 4)
{
#if DRIVE_SYSTEM == DELTA
HAL::eprSetFloat(EPR_DELTA_DIAGONAL_ROD_LENGTH,DELTA_DIAGONAL_ROD);
HAL::eprSetFloat(EPR_DELTA_HORIZONTAL_RADIUS,ROD_RADIUS);
HAL::eprSetInt16(EPR_ADVANCED_USER,ADVANCED_USER);
HAL::eprSetInt16(EPR_DELTA_SEGMENTS_PER_SECOND_PRINT,DELTA_SEGMENTS_PER_SECOND_PRINT);
HAL::eprSetInt16(EPR_DELTA_SEGMENTS_PER_SECOND_MOVE,DELTA_SEGMENTS_PER_SECOND_MOVE);
HAL::eprSetInt16(EPR_DELTA_TOWERX_OFFSET_STEPS,DELTA_X_ENDSTOP_OFFSET_STEPS);
HAL::eprSetInt16(EPR_DELTA_TOWERY_OFFSET_STEPS,DELTA_Y_ENDSTOP_OFFSET_STEPS);
HAL::eprSetInt16(EPR_DELTA_TOWERZ_OFFSET_STEPS,DELTA_Z_ENDSTOP_OFFSET_STEPS);
#endif
}
#if DRIVE_SYSTEM == DELTA
if(version < 5)
{
HAL::eprSetFloat(EPR_DELTA_ALPHA_A,DELTA_ALPHA_A);
HAL::eprSetFloat(EPR_DELTA_ALPHA_B,DELTA_ALPHA_B);
HAL::eprSetFloat(EPR_DELTA_ALPHA_C,DELTA_ALPHA_C);
}
if(version < 6)
{
HAL::eprSetFloat(EPR_DELTA_RADIUS_CORR_A,DELTA_RADIUS_CORRECTION_A);
HAL::eprSetFloat(EPR_DELTA_RADIUS_CORR_B,DELTA_RADIUS_CORRECTION_B);
HAL::eprSetFloat(EPR_DELTA_RADIUS_CORR_C,DELTA_RADIUS_CORRECTION_C);
}
if(version < 7)
{
HAL::eprSetFloat(EPR_DELTA_MAX_RADIUS,DELTA_MAX_RADIUS);
HAL::eprSetFloat(EPR_DELTA_DIAGONAL_CORRECTION_A,DELTA_DIAGONAL_CORRECTION_A);
HAL::eprSetFloat(EPR_DELTA_DIAGONAL_CORRECTION_B,DELTA_DIAGONAL_CORRECTION_B);
HAL::eprSetFloat(EPR_DELTA_DIAGONAL_CORRECTION_C,DELTA_DIAGONAL_CORRECTION_C);
}
#endif
if(version < 8)
{
HAL::eprSetFloat(EPR_Z_PROBE_BED_DISTANCE,Z_PROBE_BED_DISTANCE);
}
if(version < 9)
{
#if MIXING_EXTRUDER
storeMixingRatios(false);
#endif
}
if(version < 10) {
HAL::eprSetFloat(EPR_AXISCOMP_TANXY,AXISCOMP_TANXY);
HAL::eprSetFloat(EPR_AXISCOMP_TANYZ,AXISCOMP_TANYZ);
HAL::eprSetFloat(EPR_AXISCOMP_TANXZ,AXISCOMP_TANXZ);
}
if(version < 11) {
HAL::eprSetByte(EPR_DISTORTION_CORRECTION_ENABLED, 0);
}
if(version < 12) {
HAL::eprSetFloat(EPR_RETRACTION_LENGTH,RETRACTION_LENGTH);
HAL::eprSetFloat(EPR_RETRACTION_LONG_LENGTH,RETRACTION_LONG_LENGTH);
HAL::eprSetFloat(EPR_RETRACTION_SPEED,RETRACTION_SPEED);
HAL::eprSetFloat(EPR_RETRACTION_Z_LIFT,RETRACTION_Z_LIFT);
HAL::eprSetFloat(EPR_RETRACTION_UNDO_EXTRA_LENGTH,RETRACTION_UNDO_EXTRA_LENGTH);
HAL::eprSetFloat(EPR_RETRACTION_UNDO_EXTRA_LONG_LENGTH,RETRACTION_UNDO_EXTRA_LONG_LENGTH);
HAL::eprSetFloat(EPR_RETRACTION_UNDO_SPEED,RETRACTION_UNDO_SPEED);
HAL::eprSetByte(EPR_AUTORETRACT_ENABLED,AUTORETRACT_ENABLED);
}
/* if (version<8) {
#if DRIVE_SYSTEM==DELTA
// Prior to verion 8, the cartesian max was stored in the zmax
// Now, x,y and z max are used for tower a, b anc c
// Of tower min are all set at 0, tower max is larger than cartesian max
// by the height of any tower for coordinate 0,0,0
long cart[Z_AXIS_ARRAY], delta[TOWER_ARRAY];
cart[X_AXIS] = cart[Y_AXIS] = cart[Z_AXIS] = 0;
transformCartesianStepsToDeltaSteps(cart, delta);
// We can only count on ZLENGTH being set correctly, as it was used for all towers
Printer::xLength = Printer::zLength + delta[X_AXIS];
Printer::yLength = Printer::zLength + delta[Y_AXIS];
Printer::zLength += delta[Z_AXIS];
#endif
}*/
storeDataIntoEEPROM(false); // Store new fields for changed version
}
Printer::updateDerivedParameter();
Extruder::initHeatedBed();
#endif
}
void EEPROM::initBaudrate()
{
// Invariant - baudrate is intitalized with or without eeprom!
baudrate = BAUDRATE;
#if EEPROM_MODE != 0
if(HAL::eprGetByte(EPR_MAGIC_BYTE)==EEPROM_MODE)
{
baudrate = HAL::eprGetInt32(EPR_BAUDRATE);
}
#endif
}
#ifndef USE_CONFIGURATION_BAUD_RATE
#define USE_CONFIGURATION_BAUD_RATE 0
#endif // USE_CONFIGURATION_BAUD_RATE
void EEPROM::init()
{
#if EEPROM_MODE != 0
uint8_t check = computeChecksum();
uint8_t storedcheck = HAL::eprGetByte(EPR_INTEGRITY_BYTE);
if(HAL::eprGetByte(EPR_MAGIC_BYTE) == EEPROM_MODE && storedcheck == check)
{
readDataFromEEPROM();
if (USE_CONFIGURATION_BAUD_RATE)
{
// Used if eeprom gets unusable baud rate set and communication wont work at all.
if(HAL::eprGetInt32(EPR_BAUDRATE) != BAUDRATE)
{
HAL::eprSetInt32(EPR_BAUDRATE,BAUDRATE);
baudrate = BAUDRATE;
uint8_t newcheck = computeChecksum();
if(newcheck != HAL::eprGetByte(EPR_INTEGRITY_BYTE))
HAL::eprSetByte(EPR_INTEGRITY_BYTE,newcheck);
}
Com::printFLN(PSTR("EEprom baud rate restored from configuration."));
Com::printFLN(PSTR("RECOMPILE WITH USE_CONFIGURATION_BAUD_RATE == 0 to alter baud rate via EEPROM"));
}
}
else
{
HAL::eprSetByte(EPR_MAGIC_BYTE,EEPROM_MODE); // Make datachange permanent
initalizeUncached();
storeDataIntoEEPROM(storedcheck != check);
}
#endif
}
void EEPROM::updatePrinterUsage()
{
#if EEPROM_MODE != 0
if(Printer::filamentPrinted == 0) return; // No miles only enabled
uint32_t seconds = (HAL::timeInMilliseconds() - Printer::msecondsPrinting) / 1000;
seconds += HAL::eprGetInt32(EPR_PRINTING_TIME);
HAL::eprSetInt32(EPR_PRINTING_TIME,seconds);
HAL::eprSetFloat(EPR_PRINTING_DISTANCE,HAL::eprGetFloat(EPR_PRINTING_DISTANCE) + Printer::filamentPrinted * 0.001);
Printer::filamentPrinted = 0;
Printer::msecondsPrinting = HAL::timeInMilliseconds();
updateChecksum();
Commands::reportPrinterUsage();
#endif
}
/** \brief Writes all eeprom settings to serial console.
For each value stored, this function generates one line with syntax
EPR: pos type value description
With
- pos = Position in EEPROM, the data starts.
- type = Value type: 0 = byte, 1 = int, 2 = long, 3 = float
- value = The value currently stored
- description = Definition of the value
*/
void EEPROM::writeSettings()
{
#if EEPROM_MODE != 0
writeLong(EPR_BAUDRATE, Com::tEPRBaudrate);
writeInt(EPR_ADVANCED_USER, Com::tEPRAdvancedUser);
writeFloat(EPR_PRINTING_DISTANCE, Com::tEPRFilamentPrinted);
writeLong(EPR_PRINTING_TIME, Com::tEPRPrinterActive);
writeLong(EPR_MAX_INACTIVE_TIME, Com::tEPRMaxInactiveTime);
writeLong(EPR_STEPPER_INACTIVE_TIME, Com::tEPRStopAfterInactivty);
//#define EPR_ACCELERATION_TYPE 1
#if DRIVE_SYSTEM != DELTA
writeFloat(EPR_XAXIS_STEPS_PER_MM, Com::tEPRXStepsPerMM, 4);
writeFloat(EPR_YAXIS_STEPS_PER_MM, Com::tEPRYStepsPerMM, 4);
#endif
writeFloat(EPR_ZAXIS_STEPS_PER_MM, Com::tEPRZStepsPerMM, 4);
#if DRIVE_SYSTEM != DELTA
writeFloat(EPR_X_MAX_FEEDRATE, Com::tEPRXMaxFeedrate);
writeFloat(EPR_Y_MAX_FEEDRATE, Com::tEPRYMaxFeedrate);
#endif
writeFloat(EPR_Z_MAX_FEEDRATE, Com::tEPRZMaxFeedrate);
#if DRIVE_SYSTEM != DELTA
writeFloat(EPR_X_HOMING_FEEDRATE, Com::tEPRXHomingFeedrate);
writeFloat(EPR_Y_HOMING_FEEDRATE, Com::tEPRYHomingFeedrate);
#endif
writeFloat(EPR_Z_HOMING_FEEDRATE, Com::tEPRZHomingFeedrate);
writeFloat(EPR_MAX_JERK, Com::tEPRMaxJerk);
#if DRIVE_SYSTEM != DELTA
writeFloat(EPR_MAX_ZJERK, Com::tEPRMaxZJerk);
#endif
writeFloat(EPR_X_HOME_OFFSET, Com::tEPRXHomePos);
writeFloat(EPR_Y_HOME_OFFSET, Com::tEPRYHomePos);
writeFloat(EPR_Z_HOME_OFFSET, Com::tEPRZHomePos);
writeFloat(EPR_X_LENGTH, Com::tEPRXMaxLength);
writeFloat(EPR_Y_LENGTH, Com::tEPRYMaxLength);
writeFloat(EPR_Z_LENGTH, Com::tEPRZMaxLength);
#if ENABLE_BACKLASH_COMPENSATION
writeFloat(EPR_BACKLASH_X, Com::tEPRXBacklash);
writeFloat(EPR_BACKLASH_Y, Com::tEPRYBacklash);
writeFloat(EPR_BACKLASH_Z, Com::tEPRZBacklash);
#endif
#if RAMP_ACCELERATION
//epr_out_float(EPR_X_MAX_START_SPEED,PSTR("X-axis start speed [mm/s]"));
//epr_out_float(EPR_Y_MAX_START_SPEED,PSTR("Y-axis start speed [mm/s]"));
//epr_out_float(EPR_Z_MAX_START_SPEED,PSTR("Z-axis start speed [mm/s]"));
#if DRIVE_SYSTEM == TUGA
writeFloat(EPR_DELTA_DIAGONAL_ROD_LENGTH, Com::tEPRDiagonalRodLength);
#endif
#if DRIVE_SYSTEM == DELTA
writeFloat(EPR_Z_MAX_ACCEL, Com::tEPRZAcceleration);
writeFloat(EPR_Z_MAX_TRAVEL_ACCEL, Com::tEPRZTravelAcceleration);
writeFloat(EPR_DELTA_DIAGONAL_ROD_LENGTH, Com::tEPRDiagonalRodLength);
writeFloat(EPR_DELTA_HORIZONTAL_RADIUS, Com::tEPRHorizontalRadius);
writeFloat(EPR_DELTA_MAX_RADIUS, Com::tEPRDeltaMaxRadius);
writeInt(EPR_DELTA_SEGMENTS_PER_SECOND_MOVE, Com::tEPRSegmentsPerSecondTravel);
writeInt(EPR_DELTA_SEGMENTS_PER_SECOND_PRINT, Com::tEPRSegmentsPerSecondPrint);
writeInt(EPR_DELTA_TOWERX_OFFSET_STEPS, Com::tEPRTowerXOffset);
writeInt(EPR_DELTA_TOWERY_OFFSET_STEPS, Com::tEPRTowerYOffset);
writeInt(EPR_DELTA_TOWERZ_OFFSET_STEPS, Com::tEPRTowerZOffset);
writeFloat(EPR_DELTA_ALPHA_A, Com::tDeltaAlphaA);
writeFloat(EPR_DELTA_ALPHA_B, Com::tDeltaAlphaB);
writeFloat(EPR_DELTA_ALPHA_C, Com::tDeltaAlphaC);
writeFloat(EPR_DELTA_RADIUS_CORR_A, Com::tDeltaRadiusCorrectionA);
writeFloat(EPR_DELTA_RADIUS_CORR_B, Com::tDeltaRadiusCorrectionB);
writeFloat(EPR_DELTA_RADIUS_CORR_C, Com::tDeltaRadiusCorrectionC);
writeFloat(EPR_DELTA_DIAGONAL_CORRECTION_A, Com::tDeltaDiagonalCorrectionA);
writeFloat(EPR_DELTA_DIAGONAL_CORRECTION_B, Com::tDeltaDiagonalCorrectionB);
writeFloat(EPR_DELTA_DIAGONAL_CORRECTION_C, Com::tDeltaDiagonalCorrectionC);
#else
writeFloat(EPR_X_MAX_ACCEL, Com::tEPRXAcceleration);
writeFloat(EPR_Y_MAX_ACCEL, Com::tEPRYAcceleration);
writeFloat(EPR_Z_MAX_ACCEL, Com::tEPRZAcceleration);
writeFloat(EPR_X_MAX_TRAVEL_ACCEL, Com::tEPRXTravelAcceleration);
writeFloat(EPR_Y_MAX_TRAVEL_ACCEL, Com::tEPRYTravelAcceleration);
writeFloat(EPR_Z_MAX_TRAVEL_ACCEL, Com::tEPRZTravelAcceleration);
#endif
#endif
#if FEATURE_Z_PROBE
writeFloat(EPR_Z_PROBE_HEIGHT, Com::tZProbeHeight);
writeFloat(EPR_Z_PROBE_BED_DISTANCE, Com::tZProbeBedDitance);
writeFloat(EPR_Z_PROBE_SPEED, Com::tZProbeSpeed);
writeFloat(EPR_Z_PROBE_XY_SPEED, Com::tZProbeSpeedXY);
writeFloat(EPR_Z_PROBE_X_OFFSET, Com::tZProbeOffsetX);
writeFloat(EPR_Z_PROBE_Y_OFFSET, Com::tZProbeOffsetY);
writeFloat(EPR_Z_PROBE_X1, Com::tZProbeX1);
writeFloat(EPR_Z_PROBE_Y1, Com::tZProbeY1);
writeFloat(EPR_Z_PROBE_X2, Com::tZProbeX2);
writeFloat(EPR_Z_PROBE_Y2, Com::tZProbeY2);
writeFloat(EPR_Z_PROBE_X3, Com::tZProbeX3);
writeFloat(EPR_Z_PROBE_Y3, Com::tZProbeY3);
#endif
#if FEATURE_AUTOLEVEL
writeByte(EPR_AUTOLEVEL_ACTIVE, Com::tAutolevelActive);
#endif
#if FEATURE_AXISCOMP
writeFloat(EPR_AXISCOMP_TANXY, Com::tAxisCompTanXY);
writeFloat(EPR_AXISCOMP_TANYZ, Com::tAxisCompTanYZ);
writeFloat(EPR_AXISCOMP_TANXZ, Com::tAxisCompTanXZ);
#endif
#if HAVE_HEATED_BED
writeByte(EPR_BED_HEAT_MANAGER, Com::tEPRBedHeatManager);
#if TEMP_PID
writeByte(EPR_BED_DRIVE_MAX, Com::tEPRBedPIDDriveMax);
writeByte(EPR_BED_DRIVE_MIN, Com::tEPRBedPIDDriveMin);
writeFloat(EPR_BED_PID_PGAIN, Com::tEPRBedPGain);
writeFloat(EPR_BED_PID_IGAIN, Com::tEPRBedIGain);
writeFloat(EPR_BED_PID_DGAIN, Com::tEPRBedDGain);
writeByte(EPR_BED_PID_MAX, Com::tEPRBedPISMaxValue);
#endif
#endif
#if FEATURE_RETRACTION
writeByte(EPR_AUTORETRACT_ENABLED,Com::tEPRAutoretractEnabled);
writeFloat(EPR_RETRACTION_LENGTH,Com::tEPRRetractionLength);
#if NUM_EXTRUDER > 1
writeFloat(EPR_RETRACTION_LONG_LENGTH,Com::tEPRRetractionLongLength);
#endif
writeFloat(EPR_RETRACTION_SPEED,Com::tEPRRetractionSpeed);
writeFloat(EPR_RETRACTION_Z_LIFT,Com::tEPRRetractionZLift);
writeFloat(EPR_RETRACTION_UNDO_EXTRA_LENGTH,Com::tEPRRetractionUndoExtraLength);
#if NUM_EXTRUDER > 1
writeFloat(EPR_RETRACTION_UNDO_EXTRA_LONG_LENGTH,Com::tEPRRetractionUndoExtraLongLength);
#endif
writeFloat(EPR_RETRACTION_UNDO_SPEED,Com::tEPRRetractionUndoSpeed);
#endif
// now the extruder
for(uint8_t i = 0; i < NUM_EXTRUDER; i++)
{
int o = i * EEPROM_EXTRUDER_LENGTH + EEPROM_EXTRUDER_OFFSET;
writeFloat(o + EPR_EXTRUDER_STEPS_PER_MM, Com::tEPRStepsPerMM);
writeFloat(o + EPR_EXTRUDER_MAX_FEEDRATE, Com::tEPRMaxFeedrate);
writeFloat(o + EPR_EXTRUDER_MAX_START_FEEDRATE, Com::tEPRStartFeedrate);
writeFloat(o + EPR_EXTRUDER_MAX_ACCELERATION, Com::tEPRAcceleration);
writeByte(o + EPR_EXTRUDER_HEAT_MANAGER, Com::tEPRHeatManager);
#if TEMP_PID
writeByte(o + EPR_EXTRUDER_DRIVE_MAX, Com::tEPRDriveMax);
writeByte(o + EPR_EXTRUDER_DRIVE_MIN, Com::tEPRDriveMin);
writeFloat(o + EPR_EXTRUDER_PID_PGAIN, Com::tEPRPGain,4);
writeFloat(o + EPR_EXTRUDER_PID_IGAIN, Com::tEPRIGain,4);
writeFloat(o + EPR_EXTRUDER_PID_DGAIN, Com::tEPRDGain,4);
writeByte(o + EPR_EXTRUDER_PID_MAX, Com::tEPRPIDMaxValue);
#endif
writeLong(o + EPR_EXTRUDER_X_OFFSET, Com::tEPRXOffset);
writeLong(o + EPR_EXTRUDER_Y_OFFSET, Com::tEPRYOffset);
writeInt(o + EPR_EXTRUDER_WATCH_PERIOD, Com::tEPRStabilizeTime);
#if RETRACT_DURING_HEATUP
writeInt(o + EPR_EXTRUDER_WAIT_RETRACT_TEMP, Com::tEPRRetractionWhenHeating);
writeInt(o + EPR_EXTRUDER_WAIT_RETRACT_UNITS, Com::tEPRDistanceRetractHeating);
#endif
writeByte(o + EPR_EXTRUDER_COOLER_SPEED, Com::tEPRExtruderCoolerSpeed);
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
writeFloat(o + EPR_EXTRUDER_ADVANCE_K, Com::tEPRAdvanceK);
#endif
writeFloat(o + EPR_EXTRUDER_ADVANCE_L, Com::tEPRAdvanceL);
#endif
#if MIXING_EXTRUDER
for(uint8_t v = 0; v < VIRTUAL_EXTRUDER; v++)
{
uint16_t pos = o + EPR_EXTRUDER_MIXING_RATIOS + 2 * v;
Com::printF(Com::tEPR1,(int)pos);
Com::print(' ');
Com::print(HAL::eprGetInt16(pos));
Com::print(' ');
writeExtruderPrefix(pos);
Com::printFLN(PSTR("Weight "), (int)(v + 1));
}
#endif
}
#else
Com::printErrorF(Com::tNoEEPROMSupport);
#endif
}
#if EEPROM_MODE != 0
uint8_t EEPROM::computeChecksum()
{
unsigned int i;
uint8_t checksum = 0;
for(i = 0; i < 2048; i++)
{
if(i == EEPROM_OFFSET + EPR_INTEGRITY_BYTE) continue;
checksum += HAL::eprGetByte(i);
}
return checksum;
}
void EEPROM::updateChecksum()
{
uint8_t newcheck = computeChecksum();
if(newcheck!=HAL::eprGetByte(EPR_INTEGRITY_BYTE))
HAL::eprSetByte(EPR_INTEGRITY_BYTE,newcheck);
}
void EEPROM::writeExtruderPrefix(uint pos)
{
if(pos < EEPROM_EXTRUDER_OFFSET || pos >= 800) return;
int n = (pos - EEPROM_EXTRUDER_OFFSET) / EEPROM_EXTRUDER_LENGTH + 1;
Com::printF(Com::tExtrDot, n);
Com::print(' ');
}
void EEPROM::writeFloat(uint pos,PGM_P text,uint8_t digits)
{
Com::printF(Com::tEPR3, static_cast<int>(pos));
Com::print(' ');
Com::printFloat(HAL::eprGetFloat(pos),digits);
Com::print(' ');
writeExtruderPrefix(pos);
Com::printFLN(text);
}
void EEPROM::writeLong(uint pos,PGM_P text)
{
Com::printF(Com::tEPR2, static_cast<int>(pos));
Com::print(' ');
Com::print(HAL::eprGetInt32(pos));
Com::print(' ');
writeExtruderPrefix(pos);
Com::printFLN(text);
}
void EEPROM::writeInt(uint pos,PGM_P text)
{
Com::printF(Com::tEPR1, static_cast<int>(pos));
Com::print(' ');
Com::print(HAL::eprGetInt16(pos));
Com::print(' ');
writeExtruderPrefix(pos);
Com::printFLN(text);
}
void EEPROM::writeByte(uint pos,PGM_P text)
{
Com::printF(Com::tEPR0, static_cast<int>(pos));
Com::print(' ');
Com::print((int)HAL::eprGetByte(pos));
Com::print(' ');
writeExtruderPrefix(pos);
Com::printFLN(text);
}
#if MIXING_EXTRUDER
void EEPROM::storeMixingRatios(bool _updateChecksum)
{
for(uint8_t e = 0; e < NUM_EXTRUDER; e++)
{
for(uint8_t i = 0; i < VIRTUAL_EXTRUDER; i++)
{
HAL::eprSetInt16(EEPROM_EXTRUDER_OFFSET + e * EEPROM_EXTRUDER_LENGTH + EPR_EXTRUDER_MIXING_RATIOS + 2 * i, extruder[e].virtualWeights[i]);
}
}
if(_updateChecksum)
updateChecksum();
}
void EEPROM::readMixingRatios()
{
for(uint8_t e = 0; e < NUM_EXTRUDER; e++)
{
for(uint8_t i = 0; i < VIRTUAL_EXTRUDER; i++)
{
extruder[e].virtualWeights[i] = HAL::eprGetInt16(EEPROM_EXTRUDER_OFFSET + e * EEPROM_EXTRUDER_LENGTH + EPR_EXTRUDER_MIXING_RATIOS + 2 * i);
}
}
}
void EEPROM::restoreMixingRatios()
{
for(uint8_t e = 0; e < NUM_EXTRUDER; e++)
{
for(uint8_t i = 0; i < VIRTUAL_EXTRUDER; i++)
{
extruder[e].virtualWeights[i] = 10;
}
}
}
#endif
void EEPROM::setZCorrection(int32_t c,int index) {
HAL::eprSetInt32(2048 + (index << 2), c);
}
#endif