The-Legend-of-Delta/Repetier Firmware/Repetier/ui.cpp

3472 lines
112 KiB
C++

/*
This file is part of Repetier-Firmware.
Repetier-Firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Repetier-Firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Repetier-Firmware. If not, see <http://www.gnu.org/licenses/>.
*/
#define UI_MAIN 1
#include "Repetier.h"
// The uimenu.h declares static variables of menus, which must be declared only once.
// It does not define interfaces for other modules, so should never be included elsewhere
#include "uimenu.h"
extern const int8_t encoder_table[16] PROGMEM ;
#include <math.h>
#include <stdlib.h>
#include <inttypes.h>
#include <ctype.h>
#if BEEPER_TYPE==2 && defined(UI_HAS_I2C_KEYS) && UI_I2C_KEY_ADDRESS!=BEEPER_ADDRESS
#error Beeper address and i2c key address must be identical
#else
#if BEEPER_TYPE==2
#define UI_I2C_KEY_ADDRESS BEEPER_ADDRESS
#endif
#endif
#if UI_AUTORETURN_TO_MENU_AFTER!=0
long ui_autoreturn_time=0;
#endif
void beep(uint8_t duration,uint8_t count)
{
#if FEATURE_BEEPER
#if BEEPER_TYPE!=0
#if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0
SET_OUTPUT(BEEPER_PIN);
#endif
#if BEEPER_TYPE==2
HAL::i2cStartWait(BEEPER_ADDRESS+I2C_WRITE);
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite( 0x14); // Start at port a
#endif
#endif
for(uint8_t i=0; i < count; i++)
{
#if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0
#if defined(BEEPER_TYPE_INVERTING) && BEEPER_TYPE_INVERTING
WRITE(BEEPER_PIN,LOW);
#else
WRITE(BEEPER_PIN,HIGH);
#endif
#else
#if UI_DISPLAY_I2C_CHIPTYPE==0
#if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS
HAL::i2cWrite(uid.outputMask & ~BEEPER_PIN);
#else
HAL::i2cWrite(~BEEPER_PIN);
#endif
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite((BEEPER_PIN) | uid.outputMask);
HAL::i2cWrite(((BEEPER_PIN) | uid.outputMask)>>8);
#endif
#endif
HAL::delayMilliseconds(duration);
#if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0
#if defined(BEEPER_TYPE_INVERTING) && BEEPER_TYPE_INVERTING
WRITE(BEEPER_PIN,HIGH);
#else
WRITE(BEEPER_PIN,LOW);
#endif
#else
#if UI_DISPLAY_I2C_CHIPTYPE==0
#if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS
HAL::i2cWrite((BEEPER_PIN) | uid.outputMask);
#else
HAL::i2cWrite(255);
#endif
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite( uid.outputMask);
HAL::i2cWrite(uid.outputMask>>8);
#endif
#endif
HAL::delayMilliseconds(duration);
}
#if BEEPER_TYPE==2
HAL::i2cStop();
#endif
#endif
#endif
}
bool UIMenuEntry::showEntry() const
{
bool ret = true;
uint8_t f, f2;
f = HAL::readFlashByte((PGM_P)&filter);
if(f != 0)
ret = (f & Printer::menuMode) != 0;
if(ret && (f2 = HAL::readFlashByte((PGM_P)&nofilter)) != 0)
ret = (f2 & Printer::menuMode) == 0;
return ret;
}
#if UI_DISPLAY_TYPE != NO_DISPLAY
UIDisplay uid;
char displayCache[UI_ROWS][MAX_COLS+1];
// Menu up sign - code 1
// ..*.. 4
// .***. 14
// *.*.* 21
// ..*.. 4
// ***.. 28
// ..... 0
// ..... 0
// ..... 0
const uint8_t character_back[8] PROGMEM = {4,14,21,4,28,0,0,0};
// Degrees sign - code 2
// ..*.. 4
// .*.*. 10
// ..*.. 4
// ..... 0
// ..... 0
// ..... 0
// ..... 0
// ..... 0
const uint8_t character_degree[8] PROGMEM = {4,10,4,0,0,0,0,0};
// selected - code 3
// ..... 0
// ***** 31
// ***** 31
// ***** 31
// ***** 31
// ***** 31
// ***** 31
// ..... 0
// ..... 0
const uint8_t character_selected[8] PROGMEM = {0,31,31,31,31,31,0,0};
// unselected - code 4
// ..... 0
// ***** 31
// *...* 17
// *...* 17
// *...* 17
// *...* 17
// ***** 31
// ..... 0
// ..... 0
const uint8_t character_unselected[8] PROGMEM = {0,31,17,17,17,31,0,0};
// unselected - code 5
// ..*.. 4
// .*.*. 10
// .*.*. 10
// .*.*. 10
// .*.*. 10
// .***. 14
// ***** 31
// ***** 31
// .***. 14
const uint8_t character_temperature[8] PROGMEM = {4,10,10,10,14,31,31,14};
// unselected - code 6
// ..... 0
// ***.. 28
// ***** 31
// *...* 17
// *...* 17
// ***** 31
// ..... 0
// ..... 0
const uint8_t character_folder[8] PROGMEM = {0,28,31,17,17,31,0,0};
// printer ready - code 7
// *...* 17
// .*.*. 10
// ..*.. 4
// *...* 17
// ..*.. 4
// .*.*. 10
// *...* 17
// *...* 17
const byte character_ready[8] PROGMEM = {17,10,4,17,4,10,17,17};
const long baudrates[] PROGMEM = {9600,14400,19200,28800,38400,56000,57600,76800,111112,115200,128000,230400,250000,256000,
460800,500000,921600,1000000,1500000,0
};
#define LCD_ENTRYMODE 0x04 /**< Set entrymode */
/** @name GENERAL COMMANDS */
/*@{*/
#define LCD_CLEAR 0x01 /**< Clear screen */
#define LCD_HOME 0x02 /**< Cursor move to first digit */
/*@}*/
/** @name ENTRYMODES */
/*@{*/
#define LCD_ENTRYMODE 0x04 /**< Set entrymode */
#define LCD_INCREASE LCD_ENTRYMODE | 0x02 /**< Set cursor move direction -- Increase */
#define LCD_DECREASE LCD_ENTRYMODE | 0x00 /**< Set cursor move direction -- Decrease */
#define LCD_DISPLAYSHIFTON LCD_ENTRYMODE | 0x01 /**< Display is shifted */
#define LCD_DISPLAYSHIFTOFF LCD_ENTRYMODE | 0x00 /**< Display is not shifted */
/*@}*/
/** @name DISPLAYMODES */
/*@{*/
#define LCD_DISPLAYMODE 0x08 /**< Set displaymode */
#define LCD_DISPLAYON LCD_DISPLAYMODE | 0x04 /**< Display on */
#define LCD_DISPLAYOFF LCD_DISPLAYMODE | 0x00 /**< Display off */
#define LCD_CURSORON LCD_DISPLAYMODE | 0x02 /**< Cursor on */
#define LCD_CURSOROFF LCD_DISPLAYMODE | 0x00 /**< Cursor off */
#define LCD_BLINKINGON LCD_DISPLAYMODE | 0x01 /**< Blinking on */
#define LCD_BLINKINGOFF LCD_DISPLAYMODE | 0x00 /**< Blinking off */
/*@}*/
/** @name SHIFTMODES */
/*@{*/
#define LCD_SHIFTMODE 0x10 /**< Set shiftmode */
#define LCD_DISPLAYSHIFT LCD_SHIFTMODE | 0x08 /**< Display shift */
#define LCD_CURSORMOVE LCD_SHIFTMODE | 0x00 /**< Cursor move */
#define LCD_RIGHT LCD_SHIFTMODE | 0x04 /**< Right shift */
#define LCD_LEFT LCD_SHIFTMODE | 0x00 /**< Left shift */
/*@}*/
/** @name DISPLAY_CONFIGURATION */
/*@{*/
#define LCD_CONFIGURATION 0x20 /**< Set function */
#define LCD_8BIT LCD_CONFIGURATION | 0x10 /**< 8 bits interface */
#define LCD_4BIT LCD_CONFIGURATION | 0x00 /**< 4 bits interface */
#define LCD_2LINE LCD_CONFIGURATION | 0x08 /**< 2 line display */
#define LCD_1LINE LCD_CONFIGURATION | 0x00 /**< 1 line display */
#define LCD_5X10 LCD_CONFIGURATION | 0x04 /**< 5 X 10 dots */
#define LCD_5X7 LCD_CONFIGURATION | 0x00 /**< 5 X 7 dots */
#define LCD_SETCGRAMADDR 0x40
#define lcdPutChar(value) lcdWriteByte(value,1)
#define lcdCommand(value) lcdWriteByte(value,0)
static const uint8_t LCDLineOffsets[] PROGMEM = UI_LINE_OFFSETS;
static const char versionString[] PROGMEM = UI_VERSION_STRING;
#if UI_DISPLAY_TYPE == DISPLAY_I2C
// ============= I2C LCD Display driver ================
inline void lcdStartWrite()
{
HAL::i2cStartWait(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE);
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite( 0x14); // Start at port a
#endif
}
inline void lcdStopWrite()
{
HAL::i2cStop();
}
void lcdWriteNibble(uint8_t value)
{
#if UI_DISPLAY_I2C_CHIPTYPE==0
value|=uid.outputMask;
#if UI_DISPLAY_D4_PIN==1 && UI_DISPLAY_D5_PIN==2 && UI_DISPLAY_D6_PIN==4 && UI_DISPLAY_D7_PIN==8
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
#else
uint8_t v=(value & 1?UI_DISPLAY_D4_PIN:0)|(value & 2?UI_DISPLAY_D5_PIN:0)|(value & 4?UI_DISPLAY_D6_PIN:0)|(value & 8?UI_DISPLAY_D7_PIN:0);
HAL::i2cWrite((v) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(v);
#
#endif
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==1
unsigned int v=(value & 1?UI_DISPLAY_D4_PIN:0)|(value & 2?UI_DISPLAY_D5_PIN:0)|(value & 4?UI_DISPLAY_D6_PIN:0)|(value & 8?UI_DISPLAY_D7_PIN:0) | uid.outputMask;
unsigned int v2 = v | UI_DISPLAY_ENABLE_PIN;
HAL::i2cWrite(v2 & 255);
HAL::i2cWrite(v2 >> 8);
HAL::i2cWrite(v & 255);
HAL::i2cWrite(v >> 8);
#endif
}
void lcdWriteByte(uint8_t c,uint8_t rs)
{
#if UI_DISPLAY_I2C_CHIPTYPE==0
uint8_t mod = (rs?UI_DISPLAY_RS_PIN:0) | uid.outputMask; // | (UI_DISPLAY_RW_PIN);
#if UI_DISPLAY_D4_PIN==1 && UI_DISPLAY_D5_PIN==2 && UI_DISPLAY_D6_PIN==4 && UI_DISPLAY_D7_PIN==8
uint8_t value = (c >> 4) | mod;
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
value = (c & 15) | mod;
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
#else
uint8_t value = (c & 16?UI_DISPLAY_D4_PIN:0)|(c & 32?UI_DISPLAY_D5_PIN:0)|(c & 64?UI_DISPLAY_D6_PIN:0)|(c & 128?UI_DISPLAY_D7_PIN:0) | mod;
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
value = (c & 1?UI_DISPLAY_D4_PIN:0)|(c & 2?UI_DISPLAY_D5_PIN:0)|(c & 4?UI_DISPLAY_D6_PIN:0)|(c & 8?UI_DISPLAY_D7_PIN:0) | mod;
HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN);
HAL::i2cWrite(value);
#endif
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==1
unsigned int mod = (rs?UI_DISPLAY_RS_PIN:0) | uid.outputMask; // | (UI_DISPLAY_RW_PIN);
unsigned int value = (c & 16?UI_DISPLAY_D4_PIN:0)|(c & 32?UI_DISPLAY_D5_PIN:0)|(c & 64?UI_DISPLAY_D6_PIN:0)|(c & 128?UI_DISPLAY_D7_PIN:0) | mod;
unsigned int value2 = (value) | UI_DISPLAY_ENABLE_PIN;
HAL::i2cWrite(value2 & 255);
HAL::i2cWrite(value2 >>8);
HAL::i2cWrite(value & 255);
HAL::i2cWrite(value>>8);
value = (c & 1?UI_DISPLAY_D4_PIN:0)|(c & 2?UI_DISPLAY_D5_PIN:0)|(c & 4?UI_DISPLAY_D6_PIN:0)|(c & 8?UI_DISPLAY_D7_PIN:0) | mod;
value2 = (value) | UI_DISPLAY_ENABLE_PIN;
HAL::i2cWrite(value2 & 255);
HAL::i2cWrite(value2 >>8);
HAL::i2cWrite(value & 255);
HAL::i2cWrite(value>>8);
#endif
}
void initializeLCD()
{
HAL::delayMilliseconds(235);
lcdStartWrite();
HAL::i2cWrite(uid.outputMask & 255);
#if UI_DISPLAY_I2C_CHIPTYPE==1
HAL::i2cWrite(uid.outputMask >> 8);
#endif
HAL::delayMicroseconds(20);
lcdWriteNibble(0x03);
HAL::delayMicroseconds(6000); // I have one LCD for which 4500 here was not long enough.
// second try
lcdWriteNibble(0x03);
HAL::delayMicroseconds(180); // wait
// third go!
lcdWriteNibble(0x03);
HAL::delayMicroseconds(180);
// finally, set to 4-bit interface
lcdWriteNibble(0x02);
HAL::delayMicroseconds(180);
// finally, set # lines, font size, etc.
lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7);
lcdCommand(LCD_CLEAR); //- Clear Screen
HAL::delayMilliseconds(4); // clear is slow operation
lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF); //- Entrymode (Display Shift: off, Increment Address Counter)
lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF); //- Display on
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
uid.createChar(1,character_back);
uid.createChar(2,character_degree);
uid.createChar(3,character_selected);
uid.createChar(4,character_unselected);
uid.createChar(5,character_temperature);
uid.createChar(6,character_folder);
uid.createChar(7,character_ready);
lcdStopWrite();
}
#endif
#if UI_DISPLAY_TYPE == DISPLAY_4BIT || UI_DISPLAY_TYPE == DISPLAY_8BIT
void lcdWriteNibble(uint8_t value)
{
WRITE(UI_DISPLAY_D4_PIN,value & 1);
WRITE(UI_DISPLAY_D5_PIN,value & 2);
WRITE(UI_DISPLAY_D6_PIN,value & 4);
WRITE(UI_DISPLAY_D7_PIN,value & 8);
DELAY1MICROSECOND;
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH);// enable pulse must be >450ns
HAL::delayMicroseconds(UI_DELAYPERCHAR);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
}
void lcdWriteByte(uint8_t c,uint8_t rs)
{
#if false && UI_DISPLAY_RW_PIN >= 0 // not really needed
SET_INPUT(UI_DISPLAY_D4_PIN);
SET_INPUT(UI_DISPLAY_D5_PIN);
SET_INPUT(UI_DISPLAY_D6_PIN);
SET_INPUT(UI_DISPLAY_D7_PIN);
WRITE(UI_DISPLAY_RW_PIN, HIGH);
WRITE(UI_DISPLAY_RS_PIN, LOW);
uint8_t busy;
do
{
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH);
DELAY1MICROSECOND;
busy = READ(UI_DISPLAY_D7_PIN);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
DELAY2MICROSECOND;
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH);
DELAY2MICROSECOND;
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
DELAY2MICROSECOND;
}
while (busy);
SET_OUTPUT(UI_DISPLAY_D4_PIN);
SET_OUTPUT(UI_DISPLAY_D5_PIN);
SET_OUTPUT(UI_DISPLAY_D6_PIN);
SET_OUTPUT(UI_DISPLAY_D7_PIN);
WRITE(UI_DISPLAY_RW_PIN, LOW);
#endif
WRITE(UI_DISPLAY_RS_PIN, rs);
WRITE(UI_DISPLAY_D4_PIN, c & 0x10);
WRITE(UI_DISPLAY_D5_PIN, c & 0x20);
WRITE(UI_DISPLAY_D6_PIN, c & 0x40);
WRITE(UI_DISPLAY_D7_PIN, c & 0x80);
DELAY1MICROSECOND;
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH); // enable pulse must be >450ns
HAL::delayMicroseconds(UI_DELAYPERCHAR);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
WRITE(UI_DISPLAY_D4_PIN, c & 0x01);
WRITE(UI_DISPLAY_D5_PIN, c & 0x02);
WRITE(UI_DISPLAY_D6_PIN, c & 0x04);
WRITE(UI_DISPLAY_D7_PIN, c & 0x08);
DELAY1MICROSECOND;
WRITE(UI_DISPLAY_ENABLE_PIN, HIGH); // enable pulse must be >450ns
HAL::delayMicroseconds(UI_DELAYPERCHAR);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
}
void initializeLCD()
{
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
// according to datasheet, we need at least 40ms after power rises above 2.7V
// before sending commands. Arduino can turn on way before 4.5V.
// is this delay long enough for all cases??
HAL::delayMilliseconds(235);
SET_OUTPUT(UI_DISPLAY_D4_PIN);
SET_OUTPUT(UI_DISPLAY_D5_PIN);
SET_OUTPUT(UI_DISPLAY_D6_PIN);
SET_OUTPUT(UI_DISPLAY_D7_PIN);
SET_OUTPUT(UI_DISPLAY_RS_PIN);
#if UI_DISPLAY_RW_PIN>-1
SET_OUTPUT(UI_DISPLAY_RW_PIN);
#endif
SET_OUTPUT(UI_DISPLAY_ENABLE_PIN);
// Now we pull both RS and R/W low to begin commands
WRITE(UI_DISPLAY_RS_PIN, LOW);
WRITE(UI_DISPLAY_ENABLE_PIN, LOW);
//put the LCD into 4 bit mode
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
// at this point we are in 8 bit mode but of course in this
// interface 4 pins are dangling unconnected and the values
// on them don't matter for these instructions.
WRITE(UI_DISPLAY_RS_PIN, LOW);
HAL::delayMicroseconds(10);
lcdWriteNibble(0x03);
HAL::delayMicroseconds(5500); // I have one LCD for which 4500 here was not long enough.
// second try
lcdWriteNibble(0x03);
HAL::delayMicroseconds(180); // wait
// third go!
lcdWriteNibble(0x03);
HAL::delayMicroseconds(180);
// finally, set to 4-bit interface
lcdWriteNibble(0x02);
HAL::delayMicroseconds(180);
// finally, set # lines, font size, etc.
lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7);
lcdCommand(LCD_CLEAR); //- Clear Screen
HAL::delayMilliseconds(2); // clear is slow operation
lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF); //- Entrymode (Display Shift: off, Increment Address Counter)
lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF); //- Display on
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
uid.createChar(1,character_back);
uid.createChar(2,character_degree);
uid.createChar(3,character_selected);
uid.createChar(4,character_unselected);
uid.createChar(5,character_temperature);
uid.createChar(6,character_folder);
uid.createChar(7,character_ready);
}
// ----------- end direct LCD driver
#endif
#if UI_DISPLAY_TYPE < DISPLAY_ARDUINO_LIB
void UIDisplay::printRow(uint8_t r,char *txt,char *txt2,uint8_t changeAtCol)
{
changeAtCol = RMath::min(UI_COLS,changeAtCol);
uint8_t col=0;
// Set row
if(r >= UI_ROWS) return;
#if UI_DISPLAY_TYPE == DISPLAY_I2C
lcdStartWrite();
#endif
lcdWriteByte(128 + HAL::readFlashByte((const char *)&LCDLineOffsets[r]), 0); // Position cursor
char c;
while((c = *txt) != 0x00 && col < changeAtCol)
{
txt++;
lcdPutChar(c);
col++;
}
while(col < changeAtCol)
{
lcdPutChar(' ');
col++;
}
if(txt2 != NULL)
{
while((c = *txt2) != 0x00 && col < UI_COLS)
{
txt2++;
lcdPutChar(c);
col++;
}
while(col < UI_COLS)
{
lcdPutChar(' ');
col++;
}
}
#if UI_DISPLAY_TYPE == DISPLAY_I2C
lcdStopWrite();
#endif
#if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0
uiCheckSlowEncoder();
#endif
}
#endif
#if UI_DISPLAY_TYPE == DISPLAY_ARDUINO_LIB
// Use LiquidCrystal library instead
#include <LiquidCrystal.h>
LiquidCrystal lcd(UI_DISPLAY_RS_PIN, UI_DISPLAY_RW_PIN,UI_DISPLAY_ENABLE_PIN,UI_DISPLAY_D4_PIN,UI_DISPLAY_D5_PIN,UI_DISPLAY_D6_PIN,UI_DISPLAY_D7_PIN);
void UIDisplay::createChar(uint8_t location,const uint8_t charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
uint8_t data[8];
for (int i = 0; i < 8; i++)
{
data[i] = pgm_read_byte(&(charmap[i]));
}
lcd.createChar(location, data);
}
void UIDisplay::printRow(uint8_t r,char *txt,char *txt2,uint8_t changeAtCol)
{
changeAtCol = RMath::min(UI_COLS,changeAtCol);
uint8_t col = 0;
// Set row
if(r >= UI_ROWS) return;
lcd.setCursor(0,r);
char c;
while((c = *txt) != 0x00 && col < changeAtCol)
{
txt++;
lcd.write(c);
col++;
}
while(col < changeAtCol)
{
lcd.write(' ');
col++;
}
if(txt2 != NULL)
{
while((c = *txt2) != 0x00 && col < UI_COLS)
{
txt2++;
lcd.write(c);
col++;
}
while(col < UI_COLS)
{
lcd.write(' ');
col++;
}
}
#if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0
uiCheckSlowEncoder();
#endif
}
void initializeLCD()
{
lcd.begin(UI_COLS,UI_ROWS);
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
uid.createChar(1,character_back);
uid.createChar(2,character_degree);
uid.createChar(3,character_selected);
uid.createChar(4,character_unselected);
}
// ------------------ End LiquidCrystal library as LCD driver
#endif // UI_DISPLAY_TYPE == DISPLAY_ARDUINO_LIB
#if UI_DISPLAY_TYPE == DISPLAY_U8G
//u8glib
#ifdef U8GLIB_ST7920
#define UI_SPI_SCK UI_DISPLAY_D4_PIN
#define UI_SPI_MOSI UI_DISPLAY_ENABLE_PIN
#define UI_SPI_CS UI_DISPLAY_RS_PIN
#endif
#include "u8glib_ex.h"
u8g_t u8g;
u8g_uint_t u8_tx = 0, u8_ty = 0;
void u8PrintChar(char c)
{
switch(c)
{
case 0x7E: // right arrow
u8g_SetFont(&u8g, u8g_font_6x12_67_75);
u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0x52);
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
break;
case CHAR_SELECTOR:
u8g_SetFont(&u8g, u8g_font_6x12_67_75);
u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0xb7);
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
break;
case CHAR_SELECTED:
u8g_SetFont(&u8g, u8g_font_6x12_67_75);
u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0xb6);
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
break;
default:
u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, c);
}
}
void printU8GRow(uint8_t x,uint8_t y,char *text)
{
char c;
while((c = *(text++)) != 0)
x += u8g_DrawGlyph(&u8g,x,y,c);
}
void UIDisplay::printRow(uint8_t r,char *txt,char *txt2,uint8_t changeAtCol)
{
changeAtCol = RMath::min(UI_COLS,changeAtCol);
uint8_t col=0;
// Set row
if(r >= UI_ROWS) return;
int y = r*UI_FONT_HEIGHT;
if(!u8g_IsBBXIntersection(&u8g,0,y,UI_LCD_WIDTH,UI_FONT_HEIGHT+2)) return; // row not visible
u8_tx = 0;
u8_ty = y+UI_FONT_HEIGHT; //set position
bool highlight = ((uint8_t)(*txt) == CHAR_SELECTOR) || ((uint8_t)(*txt) == CHAR_SELECTED);
if(highlight)
{
u8g_SetColorIndex(&u8g,1);
u8g_draw_box(&u8g, 0, y+1, u8g_GetWidth(&u8g), UI_FONT_HEIGHT+1);
u8g_SetColorIndex(&u8g,0);
}
char c;
while((c = *(txt++)) != 0 && col < changeAtCol)
{
u8PrintChar(c);
col++;
}
if(txt2 != NULL)
{
col = changeAtCol;
u8_tx = col*UI_FONT_WIDTH; //set position
while((c=*(txt2++)) != 0 && col < UI_COLS)
{
u8PrintChar(c);
col++;
}
}
if(highlight)
{
u8g_SetColorIndex(&u8g,1);
}
#if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0
uiCheckSlowEncoder();
#endif
}
void initializeLCD()
{
#ifdef U8GLIB_ST7920
//U8GLIB_ST7920_128X64_1X u8g(UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN);
u8g_InitSPI(&u8g,&u8g_dev_st7920_128x64_sw_spi, UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN, U8G_PIN_NONE, U8G_PIN_NONE);
#endif
u8g_Begin(&u8g);
//u8g.firstPage();
u8g_FirstPage(&u8g);
do
{
u8g_SetColorIndex(&u8g, 0);
}
while( u8g_NextPage(&u8g) );
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
u8g_SetColorIndex(&u8g, 1);
uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds();
}
// ------------------ End u8GLIB library as LCD driver
#endif // UI_DISPLAY_TYPE == DISPLAY_U8G
#if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2
#include "gameduino2.h"
#endif
UIDisplay::UIDisplay()
{
}
#if UI_ANIMATION
void slideIn(uint8_t row,FSTRINGPARAM(text))
{
char *empty="";
int8_t i = 0;
uid.col=0;
uid.addStringP(text);
uid.printCols[uid.col]=0;
for(i=UI_COLS-1; i>=0; i--)
{
uid.printRow(row,empty,uid.printCols,i);
HAL::pingWatchdog();
HAL::delayMilliseconds(10);
}
}
#endif // UI_ANIMATION
void UIDisplay::initialize()
{
oldMenuLevel = -2;
#ifdef COMPILE_I2C_DRIVER
uid.outputMask = UI_DISPLAY_I2C_OUTPUT_START_MASK;
#if UI_DISPLAY_I2C_CHIPTYPE==0 && BEEPER_TYPE==2 && BEEPER_PIN>=0
#if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS
uid.outputMask |= BEEPER_PIN;
#endif
#endif
HAL::i2cInit(UI_I2C_CLOCKSPEED);
#if UI_DISPLAY_I2C_CHIPTYPE==1
// set direction of pins
HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE);
HAL::i2cWrite(0); // IODIRA
HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS & 255));
HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS >> 8));
HAL::i2cStop();
// Set pullups according to UI_DISPLAY_I2C_PULLUP
HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE);
HAL::i2cWrite(0x0C); // GPPUA
HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP & 255);
HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP >> 8);
HAL::i2cStop();
#endif
#endif
flags = 0;
menuLevel = 0;
shift = -2;
menuPos[0] = 0;
lastAction = 0;
delayedAction = 0;
lastButtonAction = 0;
activeAction = 0;
statusMsg[0] = 0;
uiInitKeys();
cwd[0]='/';
cwd[1]=0;
folderLevel=0;
UI_STATUS(UI_TEXT_PRINTER_READY);
#if UI_DISPLAY_TYPE != NO_DISPLAY
initializeLCD();
#if UI_DISPLAY_TYPE == DISPLAY_I2C
// I don't know why but after power up the lcd does not come up
// but if I reinitialize i2c and the lcd again here it works.
HAL::delayMilliseconds(10);
HAL::i2cInit(UI_I2C_CLOCKSPEED);
// set direction of pins
HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE);
HAL::i2cWrite(0); // IODIRA
HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS & 255));
HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS >> 8));
HAL::i2cStop();
// Set pullups according to UI_DISPLAY_I2C_PULLUP
HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE);
HAL::i2cWrite(0x0C); // GPPUA
HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP & 255);
HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP >> 8);
HAL::i2cStop();
initializeLCD();
#endif
#if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2
GD2::startScreen();
#else
#if UI_ANIMATION==false || UI_DISPLAY_TYPE == DISPLAY_U8G
#if UI_DISPLAY_TYPE == DISPLAY_U8G
//u8g picture loop
u8g_FirstPage(&u8g);
do
{
#endif
for(uint8_t y=0; y<UI_ROWS; y++) displayCache[y][0] = 0;
printRowP(0, PSTR(UI_PRINTER_COMPANY));
printRowP(1, PSTR(UI_PRINTER_NAME));
#if UI_ROWS>2
printRowP(UI_ROWS-2, PSTR(UI_FW_DATE));
printRowP(UI_ROWS-1, versionString); // printRowP(UI_ROWS-1, PSTR(UI_PRINTER_NAME));
#endif
#if UI_DISPLAY_TYPE == DISPLAY_U8G
}
while( u8g_NextPage(&u8g) ); //end picture loop
#endif
#else
slideIn(0, versionString);
strcpy(displayCache[0], uid.printCols);
slideIn(1, PSTR(UI_PRINTER_NAME));
strcpy(displayCache[1], uid.printCols);
#if UI_ROWS>2
slideIn(UI_ROWS-1, PSTR(UI_PRINTER_COMPANY));
strcpy(displayCache[UI_ROWS-1], uid.printCols);
#endif
#endif
#endif // gameduino2
HAL::delayMilliseconds(UI_START_SCREEN_DELAY);
#endif
#if UI_DISPLAY_I2C_CHIPTYPE==0 && (BEEPER_TYPE==2 || defined(UI_HAS_I2C_KEYS))
// Make sure the beeper is off
HAL::i2cStartWait(UI_I2C_KEY_ADDRESS+I2C_WRITE);
HAL::i2cWrite(255); // Disable beeper, enable read for other pins.
HAL::i2cStop();
#endif
}
#if UI_DISPLAY_TYPE == DISPLAY_4BIT || UI_DISPLAY_TYPE == DISPLAY_8BIT || UI_DISPLAY_TYPE == DISPLAY_I2C
void UIDisplay::createChar(uint8_t location,const uint8_t PROGMEM charmap[])
{
location &= 0x7; // we only have 8 locations 0-7
lcdCommand(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++)
{
lcdPutChar(pgm_read_byte(&(charmap[i])));
}
}
#endif
void UIDisplay::waitForKey()
{
int nextAction = 0;
lastButtonAction = 0;
while(lastButtonAction==nextAction)
{
uiCheckSlowKeys(nextAction);
}
}
void UIDisplay::printRowP(uint8_t r,PGM_P txt)
{
if(r >= UI_ROWS) return;
col = 0;
addStringP(txt);
uid.printCols[col] = 0;
printRow(r,uid.printCols,NULL,UI_COLS);
}
void UIDisplay::addInt(int value,uint8_t digits,char fillChar)
{
uint8_t dig=0,neg=0;
if(value<0)
{
value = -value;
neg=1;
dig++;
}
char buf[7]; // Assumes 8-bit chars plus zero byte.
char *str = &buf[6];
buf[6]=0;
do
{
unsigned int m = value;
value /= 10;
char c = m - 10 * value;
*--str = c + '0';
dig++;
}
while(value);
if(neg)
uid.printCols[col++]='-';
if(digits<6)
while(dig<digits)
{
*--str = fillChar; //' ';
dig++;
}
while(*str && col<MAX_COLS)
{
uid.printCols[col++] = *str;
str++;
}
}
void UIDisplay::addLong(long value,char digits)
{
uint8_t dig = 0,neg=0;
byte addspaces = digits>0;
if (digits<0) digits = -digits;
if(value<0)
{
neg=1;
value = -value;
dig++;
}
char buf[13]; // Assumes 8-bit chars plus zero byte.
char *str = &buf[12];
buf[12]=0;
do
{
unsigned long m = value;
value /= 10;
char c = m - 10 * value;
*--str = c + '0';
dig++;
}
while(value);
if(neg)
uid.printCols[col++]='-';
if(addspaces && digits<=11)
while(dig<digits)
{
*--str = ' ';
dig++;
}
while(*str && col<MAX_COLS)
{
uid.printCols[col++] = *str;
str++;
}
}
const float roundingTable[] PROGMEM = {0.5,0.05,0.005,0.0005};
void UIDisplay::addFloat(float number, char fixdigits,uint8_t digits)
{
// Handle negative numbers
if (number < 0.0)
{
uid.printCols[col++]='-';
if(col>=MAX_COLS) return;
number = -number;
fixdigits--;
}
number += pgm_read_float(&roundingTable[digits]); // for correct rounding
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
float remainder = number - (float)int_part;
addLong(int_part,fixdigits);
if(col>=UI_COLS) return;
// Print the decimal point, but only if there are digits beyond
if (digits > 0)
{
uid.printCols[col++]='.';
}
// Extract digits from the remainder one at a time
while (col<MAX_COLS && digits-- > 0)
{
remainder *= 10.0;
uint8_t toPrint = uint8_t(remainder);
uid.printCols[col++] = '0'+toPrint;
remainder -= toPrint;
}
}
void UIDisplay::addStringP(FSTRINGPARAM(text))
{
while(col<MAX_COLS)
{
uint8_t c = HAL::readFlashByte(text++);
if(c==0) return;
uid.printCols[col++]=c;
}
}
void UIDisplay::addChar(const char c)
{
if(col<UI_COLS)
{
uid.printCols[col++]=c;
}
}
void UIDisplay::addGCode(GCode *code)
{
// assume volatile and make copy so we dont "see" multple code lines as we go.
//GCode myCode = *code; insuffeicnet memory for this safety check
//code = &myCode;
addChar('#');
addLong(code->N);
if(code->hasM())
{
addChar('M');
addLong((long)code->M);
}
if(code->hasG())
{
addChar('G');
addLong((long)code->G);
}
if(code->hasT())
{
addChar('T');
addLong((long)code->T);
}
if(code->hasX())
{
addChar('X');
addFloat(code->X);
}
if(code->hasY())
{
addChar('Y');
addFloat(code->Y);
}
if(code->hasZ())
{
addChar('Z');
addFloat(code->Z);
}
if(code->hasE())
{
addChar('E');
addFloat(code->E);
}
if(code->hasF())
{
addChar('F');
addFloat(code->F);
}
if(code->hasS())
{
addChar('S');
addLong(code->S);
}
if(code->hasP())
{
addChar('P');
addLong(code->P);
}
#ifdef ARC_SUPPORT
if(code->hasI())
{
addChar('I');
addFloat(code->I);
}
if(code->hasJ())
{
addChar('J');
addFloat(code->J);
}
if(code->hasR())
{
addChar('R');
addFloat(code->R);
}
#endif
// cannot print string, it isnt part of the gcode structure.
//it points to temp memory in a buffer.
//if(code->hasSTRING())
}
UI_STRING(ui_text_on,UI_TEXT_ON);
UI_STRING(ui_text_off,UI_TEXT_OFF);
UI_STRING(ui_text_na,UI_TEXT_NA);
UI_STRING(ui_yes,UI_TEXT_YES);
UI_STRING(ui_no,UI_TEXT_NO);
UI_STRING(ui_print_pos,UI_TEXT_PRINT_POS);
UI_STRING(ui_selected,UI_TEXT_SEL);
UI_STRING(ui_unselected,UI_TEXT_NOSEL);
UI_STRING(ui_action,UI_TEXT_STRING_ACTION);
void UIDisplay::parse(const char *txt,bool ram)
{
int ivalue=0;
float fvalue=0;
while(col<MAX_COLS)
{
char c=(ram ? *(txt++) : pgm_read_byte(txt++));
if(c==0) break; // finished
if(c!='%')
{
uid.printCols[col++]=c;
continue;
}
// dynamic parameter, parse meaning and replace
char c1=(ram ? *(txt++) : pgm_read_byte(txt++));
char c2=(ram ? *(txt++) : pgm_read_byte(txt++));
switch(c1)
{
case '%':
{
// print % for input '%%' or '%%%'
if(col<UI_COLS) uid.printCols[col++]='%'; // if data = '%%?' escaped percent, with left over ? char
if (c2 != '%') txt--; // Be flexible and accept 2 or 3 chars
break;
} // case '%'
case '?' : // conditional spacer or other char
{
// If something has been printed, check if the last char is c2.
// if not, append c2.
// otherwise do nothing.
if (col>0 && col<UI_COLS)
{
if (uid.printCols[col-1] != c2) uid.printCols[col++]=c2;
}
break;
}
case 'a': // Acceleration settings
if(c2=='x') addFloat(Printer::maxAccelerationMMPerSquareSecond[X_AXIS],5,0);
else if(c2=='y') addFloat(Printer::maxAccelerationMMPerSquareSecond[Y_AXIS],5,0);
else if(c2=='z') addFloat(Printer::maxAccelerationMMPerSquareSecond[Z_AXIS],5,0);
else if(c2=='X') addFloat(Printer::maxTravelAccelerationMMPerSquareSecond[X_AXIS],5,0);
else if(c2=='Y') addFloat(Printer::maxTravelAccelerationMMPerSquareSecond[Y_AXIS],5,0);
else if(c2=='Z') addFloat(Printer::maxTravelAccelerationMMPerSquareSecond[Z_AXIS],5,0);
else if(c2=='j') addFloat(Printer::maxJerk,3,1);
#if DRIVE_SYSTEM!=DELTA
else if(c2=='J') addFloat(Printer::maxZJerk,3,1);
#endif
break;
case 'd':
if(c2=='o') addStringP(Printer::debugEcho()?ui_text_on:ui_text_off);
else if(c2=='i') addStringP(Printer::debugInfo()?ui_text_on:ui_text_off);
else if(c2=='e') addStringP(Printer::debugErrors()?ui_text_on:ui_text_off);
else if(c2=='d') addStringP(Printer::debugDryrun()?ui_text_on:ui_text_off);
break;
case 'e': // Extruder temperature
if(c2=='I')
{
//give integer display
char c2=(ram ? *(txt++) : pgm_read_byte(txt++));
ivalue=0;
}
else ivalue = UI_TEMP_PRECISION;
if(c2=='r') // Extruder relative mode
{
addStringP(Printer::relativeExtruderCoordinateMode?ui_yes:ui_no);
break;
}
if(Printer::flag0 & PRINTER_FLAG0_TEMPSENSOR_DEFECT)
{
addStringP(PSTR(" def "));
break;
}
if(c2=='c') fvalue=Extruder::current->tempControl.currentTemperatureC;
else if(c2>='0' && c2<='9') fvalue=extruder[c2-'0'].tempControl.currentTemperatureC;
else if(c2=='b') fvalue=Extruder::getHeatedBedTemperature();
else if(c2=='B')
{
ivalue=0;
fvalue=Extruder::getHeatedBedTemperature();
}
addFloat(fvalue,3,ivalue);
break;
case 'E': // Target extruder temperature
if(c2=='c') fvalue=Extruder::current->tempControl.targetTemperatureC;
else if(c2>='0' && c2<='9') fvalue=extruder[c2-'0'].tempControl.targetTemperatureC;
#if HAVE_HEATED_BED
else if(c2=='b') fvalue=heatedBedController.targetTemperatureC;
#endif
addFloat(fvalue, 3, 0 /*UI_TEMP_PRECISION*/);
break;
#if FAN_PIN>-1 && FEATURE_FAN_CONTROL
case 'F': // FAN speed
if(c2=='s') addInt(floor(Printer::getFanSpeed() * 100 / 255 + 0.5f), 3);
break;
#endif
case 'f':
if(c2 == 'x') addFloat(Printer::maxFeedrate[X_AXIS], 5, 0);
else if(c2 == 'y') addFloat(Printer::maxFeedrate[Y_AXIS], 5, 0);
else if(c2 == 'z') addFloat(Printer::maxFeedrate[Z_AXIS], 5, 0);
else if(c2 == 'X') addFloat(Printer::homingFeedrate[X_AXIS], 5, 0);
else if(c2 == 'Y') addFloat(Printer::homingFeedrate[Y_AXIS], 5, 0);
else if(c2 == 'Z') addFloat(Printer::homingFeedrate[Z_AXIS], 5, 0);
break;
case 'i':
if(c2 == 's') addLong(stepperInactiveTime/1000,4);
else if(c2 == 'p') addLong(maxInactiveTime/1000,4);
break;
case 'O': // ops related stuff
break;
case 'l':
if(c2 == 'a') addInt(lastAction,4);
#if defined(CASE_LIGHTS_PIN) && CASE_LIGHTS_PIN >= 0
else if(c2 == 'o') addStringP(READ(CASE_LIGHTS_PIN) ? ui_text_on : ui_text_off); // Lights on/off
#endif
break;
case 'o':
if(c2=='s')
{
#if SDSUPPORT
if(sd.sdactive && sd.sdmode)
{
addStringP(PSTR( UI_TEXT_PRINT_POS));
unsigned long percent;
if(sd.filesize<20000000) percent=sd.sdpos*100/sd.filesize;
else percent = (sd.sdpos>>8)*100/(sd.filesize>>8);
addInt((int)percent,3);
if(col<MAX_COLS)
uid.printCols[col++]='%';
}
else
#endif
parse(statusMsg,true);
break;
}
if(c2=='c')
{
addLong(baudrate,6);
break;
}
if(c2=='e')
{
if(errorMsg!=0)addStringP((char PROGMEM *)errorMsg);
break;
}
if(c2=='B')
{
addInt((int)PrintLine::linesCount,2);
break;
}
if(c2=='f')
{
addInt(Printer::extrudeMultiply,3);
break;
}
if(c2=='m')
{
addInt(Printer::feedrateMultiply,3);
break;
}
if(c2=='h')
{
addFloat(Printer::radius0,3,2);
break;
}
// Extruder output level
if(c2>='0' && c2<='9') ivalue=pwm_pos[c2-'0'];
#if HAVE_HEATED_BED
else if(c2=='b') ivalue=pwm_pos[heatedBedController.pwmIndex];
#endif
else if(c2=='C') ivalue=pwm_pos[Extruder::current->id];
ivalue=(ivalue*100)/255;
addInt(ivalue,3);
if(col<MAX_COLS)
uid.printCols[col++]='%';
break;
case 's': // Endstop positions
if(c2=='x')
{
#if (X_MIN_PIN > -1) && MIN_HARDWARE_ENDSTOP_X
addStringP(Printer::isXMinEndstopHit()?ui_text_on:ui_text_off);
#else
addStringP(ui_text_na);
#endif
}
if(c2=='X')
#if (X_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_X
addStringP(Printer::isXMaxEndstopHit()?ui_text_on:ui_text_off);
#else
addStringP(ui_text_na);
#endif
if(c2=='y')
#if (Y_MIN_PIN > -1)&& MIN_HARDWARE_ENDSTOP_Y
addStringP(Printer::isYMinEndstopHit()?ui_text_on:ui_text_off);
#else
addStringP(ui_text_na);
#endif
if(c2=='Y')
#if (Y_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_Y
addStringP(Printer::isYMaxEndstopHit()?ui_text_on:ui_text_off);
#else
addStringP(ui_text_na);
#endif
if(c2=='z')
#if (Z_MIN_PIN > -1) && MIN_HARDWARE_ENDSTOP_Z
addStringP(Printer::isZMinEndstopHit()?ui_text_on:ui_text_off);
#else
addStringP(ui_text_na);
#endif
if(c2=='Z')
#if (Z_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_Z
addStringP(Printer::isZMaxEndstopHit()?ui_text_on:ui_text_off);
#else
addStringP(ui_text_na);
#endif
if(c2=='P')
#if (Z_PROBE_PIN > -1)
addStringP(Printer::isZProbeHit()?ui_text_on:ui_text_off);
#else
addStringP(ui_text_na);
#endif
break;
case 'S':
if(c2=='x') addFloat(Printer::axisStepsPerMM[X_AXIS],3,1);
if(c2=='y') addFloat(Printer::axisStepsPerMM[Y_AXIS],3,1);
if(c2=='z') addFloat(Printer::axisStepsPerMM[Z_AXIS],3,1);
if(c2=='e') addFloat(Extruder::current->stepsPerMM,3,1);
break;
case 'U':
if(c2=='t') // Printing time
{
#if EEPROM_MODE
bool alloff = true;
for(uint8_t i = 0; i < NUM_EXTRUDER; i++)
if(tempController[i]->targetTemperatureC>15) alloff = false;
long seconds = (alloff ? 0 : (HAL::timeInMilliseconds() - Printer::msecondsPrinting) / 1000) + HAL::eprGetInt32(EPR_PRINTING_TIME);
long tmp = seconds / 86400;
seconds -= tmp * 86400;
addInt(tmp, 5);
addStringP(PSTR(UI_TEXT_PRINTTIME_DAYS));
tmp = seconds / 3600;
addInt(tmp,2);
addStringP(PSTR(UI_TEXT_PRINTTIME_HOURS));
seconds -= tmp * 3600;
tmp = seconds / 60;
addInt(tmp,2,'0');
addStringP(PSTR(UI_TEXT_PRINTTIME_MINUTES));
#endif
}
else if(c2 == 'f') // Filament usage
{
#if EEPROM_MODE
float dist = Printer::filamentPrinted * 0.001 + HAL::eprGetFloat(EPR_PRINTING_DISTANCE);
addFloat(dist, 6, 1);
#endif
}
break;
case 'x':
if(c2>='0' && c2<='3')
{
if(c2=='0')
fvalue = Printer::realXPosition();
else if(c2=='1')
fvalue = Printer::realYPosition();
else if(c2=='2')
fvalue = Printer::realZPosition();
else
fvalue = (float)Printer::currentPositionSteps[E_AXIS]*Printer::invAxisStepsPerMM[E_AXIS];
}
addFloat(fvalue,4,2);
break;
case 'X': // Extruder related
#if NUM_EXTRUDER>0
if(c2>='0' && c2<='9')
{
addStringP(Extruder::current->id==c2-'0'?ui_selected:ui_unselected);
}
#if TEMP_PID
else if(c2=='i')
{
addFloat(Extruder::current->tempControl.pidIGain,4,2);
}
else if(c2=='p')
{
addFloat(Extruder::current->tempControl.pidPGain,4,2);
}
else if(c2=='d')
{
addFloat(Extruder::current->tempControl.pidDGain,4,2);
}
else if(c2=='m')
{
addInt(Extruder::current->tempControl.pidDriveMin,3);
}
else if(c2=='M')
{
addInt(Extruder::current->tempControl.pidDriveMax,3);
}
else if(c2=='D')
{
addInt(Extruder::current->tempControl.pidMax,3);
}
#endif
else if(c2=='w')
{
addInt(Extruder::current->watchPeriod,4);
}
#if RETRACT_DURING_HEATUP
else if(c2=='T')
{
addInt(Extruder::current->waitRetractTemperature,4);
}
else if(c2=='U')
{
addInt(Extruder::current->waitRetractUnits,2);
}
#endif
else if(c2=='h')
{
uint8_t hm = Extruder::current->tempControl.heatManager;
if(hm == HTR_PID)
addStringP(PSTR(UI_TEXT_STRING_HM_PID));
else if(hm == HTR_DEADTIME)
addStringP(PSTR(UI_TEXT_STRING_HM_DEADTIME));
else if(hm == HTR_SLOWBANG)
addStringP(PSTR(UI_TEXT_STRING_HM_SLOWBANG));
else
addStringP(PSTR(UI_TEXT_STRING_HM_BANGBANG));
}
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
else if(c2=='a')
{
addFloat(Extruder::current->advanceK,3,0);
}
#endif
else if(c2=='l')
{
addFloat(Extruder::current->advanceL,3,0);
}
#endif
else if(c2=='x')
{
addFloat(Extruder::current->xOffset,4,2);
}
else if(c2=='y')
{
addFloat(Extruder::current->yOffset,4,2);
}
else if(c2=='f')
{
addFloat(Extruder::current->maxStartFeedrate,5,0);
}
else if(c2=='F')
{
addFloat(Extruder::current->maxFeedrate,5,0);
}
else if(c2=='A')
{
addFloat(Extruder::current->maxAcceleration,5,0);
}
#endif
break;
case 'y':
#if DRIVE_SYSTEM==DELTA
if(c2>='0' && c2<='3') fvalue = (float)Printer::currentDeltaPositionSteps[c2-'0']*Printer::invAxisStepsPerMM[c2-'0'];
addFloat(fvalue,3,2);
#endif
break;
}
}
uid.printCols[col] = 0;
}
void UIDisplay::setStatusP(PGM_P txt,bool error)
{
if(!error && Printer::isUIErrorMessage()) return;
uint8_t i=0;
while(i<20)
{
uint8_t c = pgm_read_byte(txt++);
if(!c) break;
statusMsg[i++] = c;
}
statusMsg[i]=0;
if(error)
Printer::setUIErrorMessage(true);
}
void UIDisplay::setStatus(const char *txt,bool error)
{
if(!error && Printer::isUIErrorMessage()) return;
uint8_t i=0;
while(*txt && i<20)
statusMsg[i++] = *txt++;
statusMsg[i]=0;
if(error)
Printer::setUIErrorMessage(true);
}
const UIMenu * const ui_pages[UI_NUM_PAGES] PROGMEM = UI_PAGES;
uint16_t nFilesOnCard;
void UIDisplay::updateSDFileCount()
{
#if SDSUPPORT
dir_t* p = NULL;
byte offset = menuTop[menuLevel];
SdBaseFile *root = sd.fat.vwd();
root->rewind();
nFilesOnCard = 0;
while ((p = root->getLongFilename(p, NULL, 0, NULL)))
{
if (! (DIR_IS_FILE(p) || DIR_IS_SUBDIR(p)))
continue;
if (folderLevel>=SD_MAX_FOLDER_DEPTH && DIR_IS_SUBDIR(p) && !(p->name[0]=='.' && p->name[1]=='.'))
continue;
nFilesOnCard++;
if (nFilesOnCard > 5000) // Arbitrary maximum, limited only by how long someone would scroll
return;
}
#endif
}
void getSDFilenameAt(uint16_t filePos,char *filename)
{
#if SDSUPPORT
dir_t* p;
SdBaseFile *root = sd.fat.vwd();
root->rewind();
while ((p = root->getLongFilename(p, tempLongFilename, 0, NULL)))
{
HAL::pingWatchdog();
if (!DIR_IS_FILE(p) && !DIR_IS_SUBDIR(p)) continue;
if(uid.folderLevel>=SD_MAX_FOLDER_DEPTH && DIR_IS_SUBDIR(p) && !(p->name[0]=='.' && p->name[1]=='.')) continue;
if (filePos--)
continue;
strcpy(filename, tempLongFilename);
if(DIR_IS_SUBDIR(p)) strcat(filename, "/"); // Set marker for directory
break;
}
#endif
}
bool UIDisplay::isDirname(char *name)
{
while(*name) name++;
name--;
return *name=='/';
}
void UIDisplay::goDir(char *name)
{
#if SDSUPPORT
char *p = cwd;
while(*p)p++;
if(name[0]=='.' && name[1]=='.')
{
if(folderLevel==0) return;
p--;
p--;
while(*p!='/') p--;
p++;
*p = 0;
folderLevel--;
}
else
{
if(folderLevel>=SD_MAX_FOLDER_DEPTH) return;
while(*name) *p++ = *name++;
*p = 0;
folderLevel++;
}
sd.fat.chdir(cwd);
updateSDFileCount();
#endif
}
void sdrefresh(uint16_t &r,char cache[UI_ROWS][MAX_COLS+1])
{
#if SDSUPPORT
dir_t* p = NULL;
uint16_t offset = uid.menuTop[uid.menuLevel];
SdBaseFile *root;
uint16_t length, skip;
sd.fat.chdir(uid.cwd);
root = sd.fat.vwd();
root->rewind();
skip = (offset > 0 ? offset - 1 : 0);
while (r + offset < nFilesOnCard + 1 && r < UI_ROWS && (p = root->getLongFilename(p, tempLongFilename, 0, NULL)))
{
HAL::pingWatchdog();
// done if past last used entry
// skip deleted entry and entries for . and ..
// only list subdirectories and files
if ((DIR_IS_FILE(p) || DIR_IS_SUBDIR(p)))
{
if(uid.folderLevel >= SD_MAX_FOLDER_DEPTH && DIR_IS_SUBDIR(p) && !(p->name[0]=='.' && p->name[1]=='.'))
continue;
if(skip > 0)
{
skip--;
continue;
}
uid.col = 0;
if(r + offset == uid.menuPos[uid.menuLevel])
uid.printCols[uid.col++] = CHAR_SELECTOR;
else
uid.printCols[uid.col++] = ' ';
// print file name with possible blank fill
if(DIR_IS_SUBDIR(p))
uid.printCols[uid.col++] = bFOLD; // Prepend folder symbol
length = RMath::min((int)strlen(tempLongFilename), MAX_COLS - uid.col);
memcpy(uid.printCols + uid.col, tempLongFilename, length);
uid.col += length;
uid.printCols[uid.col] = 0;
strcpy(cache[r++],uid.printCols);
}
}
#endif
}
// Refresh current menu page
void UIDisplay::refreshPage()
{
#if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2
GD2::refresh();
#else
uint16_t r;
uint8_t mtype;
char cache[UI_ROWS][MAX_COLS+1];
adjustMenuPos();
#if UI_AUTORETURN_TO_MENU_AFTER!=0
// Reset timeout on menu back when user active on menu
if (uid.encoderLast != encoderStartScreen)
ui_autoreturn_time=HAL::timeInMilliseconds()+UI_AUTORETURN_TO_MENU_AFTER;
#endif
encoderStartScreen = uid.encoderLast;
// Copy result into cache
if(menuLevel == 0) // Top level menu
{
UIMenu *men = (UIMenu*)pgm_read_word(&(ui_pages[menuPos[0]]));
uint16_t nr = pgm_read_word_near(&(men->numEntries));
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
for(r = 0; r < nr && r < UI_ROWS; r++)
{
UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[r]));
col = 0;
parse((char*)pgm_read_word(&(ent->text)),false);
strcpy(cache[r],uid.printCols);
}
}
else
{
UIMenu *men = (UIMenu*)menu[menuLevel];
uint16_t nr = pgm_read_word_near((void*)&(men->numEntries));
mtype = pgm_read_byte((void*)&(men->menuType));
uint16_t offset = menuTop[menuLevel];
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
for(r = 0; r + offset < nr && r < UI_ROWS; )
{
UIMenuEntry *ent =(UIMenuEntry *)pgm_read_word(&(entries[r+offset]));
if(!ent->showEntry())
{
offset++;
continue;
}
uint8_t entType = pgm_read_byte(&(ent->menuType));
uint16_t entAction = pgm_read_word(&(ent->action));
col = 0;
if(entType >= 2 && entType <= 4)
{
if(r + offset == menuPos[menuLevel] && activeAction != entAction)
uid.printCols[col++] = CHAR_SELECTOR;
else if(activeAction == entAction)
uid.printCols[col++] = CHAR_SELECTED;
else
uid.printCols[col++]=' ';
}
parse((char*)pgm_read_word(&(ent->text)),false);
if(entType == 2) // Draw submenu marker at the right side
{
while(col<UI_COLS-1) uid.printCols[col++]=' ';
if(col>UI_COLS)
{
uid.printCols[RMath::min(UI_COLS-1,col)] = CHAR_RIGHT;
}
else
uid.printCols[col] = CHAR_RIGHT; // Arrow right
uid.printCols[++col] = 0;
}
strcpy(cache[r],uid.printCols);
r++;
}
}
#if SDSUPPORT
if(mtype == UI_MENU_TYPE_FILE_SELECTOR)
{
sdrefresh(r,cache);
}
#endif
uid.printCols[0] = 0;
while(r < UI_ROWS) // delete trailing empty rows
strcpy(cache[r++],uid.printCols);
// cache now contains the data to show
// Compute transition
uint8_t transition = 0; // 0 = display, 1 = up, 2 = down, 3 = left, 4 = right
#if UI_ANIMATION
if(menuLevel != oldMenuLevel && !PrintLine::hasLines())
{
if(oldMenuLevel == 0 || oldMenuLevel == -2)
transition = 1;
else if(menuLevel == 0)
transition = 2;
else if(menuLevel>oldMenuLevel)
transition = 3;
else
transition = 4;
}
#endif
uint8_t loops = 1;
uint8_t dt = 1,y;
if(transition == 1 || transition == 2) loops = UI_ROWS;
else if(transition > 2)
{
dt = (UI_COLS + UI_COLS - 1) / 16;
loops = UI_COLS + 1 / dt;
}
uint8_t off0 = (shift <= 0 ? 0 : shift);
uint8_t scroll = dt;
uint8_t off[UI_ROWS];
if(transition == 0) // Copy cache to displayCache
{
for(y = 0; y < UI_ROWS; y++)
strcpy(displayCache[y],cache[y]);
}
for(y = 0; y < UI_ROWS; y++)
{
uint8_t len = strlen(displayCache[y]); // length of line content
off[y] = len > UI_COLS ? RMath::min(len - UI_COLS,off0) : 0;
if(len > UI_COLS)
{
off[y] = RMath::min(len - UI_COLS,off0);
if(transition == 0 && (mtype == UI_MENU_TYPE_FILE_SELECTOR || mtype == UI_MENU_TYPE_SUBMENU)) // Copy first char to front
{
//displayCache[y][off[y]] = displayCache[y][0];
cache[y][off[y]] = cache[y][0];
}
}
else off[y] = 0;
#if UI_ANIMATION
if(transition == 3)
{
for(r = len; r < MAX_COLS; r++)
{
displayCache[y][r] = 32;
}
displayCache[y][MAX_COLS] = 0;
}
else if(transition == 4)
{
for(r = strlen(cache[y]); r < MAX_COLS; r++)
{
cache[y][r] = 32;
}
cache[y][MAX_COLS] = 0;
}
#endif
}
for(uint8_t l = 0; l<loops; l++)
{
if(uid.encoderLast != encoderStartScreen)
{
scroll = 200;
}
scroll += dt;
#if UI_DISPLAY_TYPE == DISPLAY_U8G
#define drawHProgressBar(x,y,width,height,progress) \
{u8g_DrawFrame(&u8g,x,y, width, height); \
int p = ceil((width-2) * progress / 100); \
u8g_DrawBox(&u8g,x+1,y+1, p, height-2);}
#define drawVProgressBar(x,y,width,height,progress) \
{u8g_DrawFrame(&u8g,x,y, width, height); \
int p = height-1 - ceil((height-2) * progress / 100); \
u8g_DrawBox(&u8g,x+1,y+p, width-2, (height-p));}
#if UI_DISPLAY_TYPE == DISPLAY_U8G
#if SDSUPPORT
unsigned long sdPercent;
#endif
//fan
int fanPercent;
char fanString[2];
if(menuLevel == 0 && menuPos[0] == 0 ) // Main menu with special graphics
{
//ext1 and ext2 animation symbols
if(extruder[0].tempControl.targetTemperatureC > 0)
cache[0][0] = Printer::isAnimation()?'\x08':'\x09';
else
cache[0][0] = '\x0a'; //off
#if NUM_EXTRUDER>1
if(extruder[1].tempControl.targetTemperatureC > 0)
cache[1][0] = Printer::isAnimation()?'\x08':'\x09';
else
#endif
cache[1][0] = '\x0a'; //off
#if HAVE_HEATED_BED
//heatbed animated icons
if(heatedBedController.targetTemperatureC > 0)
cache[2][0] = Printer::isAnimation()?'\x0c':'\x0d';
else
cache[2][0] = '\x0b';
#endif
//fan
fanPercent = Printer::getFanSpeed()*100/255;
fanString[1]=0;
if(fanPercent > 0) //fan running anmation
{
fanString[0] = Printer::isAnimation() ? '\x0e' : '\x0f';
}
else
{
fanString[0] = '\x0e';
}
#if SDSUPPORT
//SD Card
if(sd.sdactive)
{
if(sd.sdactive && sd.sdmode)
{
if(sd.filesize<20000000) sdPercent=sd.sdpos*100/sd.filesize;
else sdPercent = (sd.sdpos>>8)*100/(sd.filesize>>8);
}
else
{
sdPercent = 0;
}
}
#endif
}
#endif
//u8g picture loop
u8g_FirstPage(&u8g);
do
{
#endif
if(transition == 0)
{
#if UI_DISPLAY_TYPE == DISPLAY_U8G
if(menuLevel==0 && menuPos[0] == 0 )
{
u8g_SetFont(&u8g,UI_FONT_SMALL);
uint8_t py = 8;
for(uint8_t r=0; r<3; r++)
{
if(u8g_IsBBXIntersection(&u8g, 0, py-UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(0,py,cache[r]);
py+=10;
}
#if FAN_PIN>-1 && FEATURE_FAN_CONTROL
//fan
if(u8g_IsBBXIntersection(&u8g, 0, 30-UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(117,30,fanString);
drawVProgressBar(116, 0, 9, 20, fanPercent);
if(u8g_IsBBXIntersection(&u8g, 0, 43-UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(0,43,cache[3]); //mul
if(u8g_IsBBXIntersection(&u8g, 0, 52-UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(0,52,cache[4]); //buf
#endif
#if SDSUPPORT
//SD Card
if(sd.sdactive && u8g_IsBBXIntersection(&u8g, 70, 48-UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
{
printU8GRow(70,48,"SD");
drawHProgressBar(83,42, 40, 5, sdPercent);
}
#endif
//Status
py = u8g_GetHeight(&u8g)-2;
if(u8g_IsBBXIntersection(&u8g, 70, py-UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT))
printU8GRow(0,py,cache[5]);
//divider lines
u8g_DrawHLine(&u8g,0, 32, u8g_GetWidth(&u8g));
if ( u8g_IsBBXIntersection(&u8g, 55, 0, 1, 32) )
{
u8g_draw_vline(&u8g,112, 0, 32);
u8g_draw_vline(&u8g,62, 0, 32);
}
u8g_SetFont(&u8g, UI_FONT_DEFAULT);
}
else
{
#endif
for(y = 0; y < UI_ROWS; y++)
printRow(y,&cache[y][off[y]],NULL,UI_COLS);
#if UI_DISPLAY_TYPE == DISPLAY_U8G
}
#endif
}
#if UI_ANIMATION
else
{
if(transition == 1) // up
{
if(scroll > UI_ROWS)
{
scroll = UI_ROWS;
l = loops;
}
for(y=0; y<UI_ROWS-scroll; y++)
{
r = y+scroll;
printRow(y,&displayCache[r][off[r]],NULL,UI_COLS);
}
for(y=0; y<scroll; y++)
{
printRow(UI_ROWS-scroll+y,cache[y],NULL,UI_COLS);
}
}
else if(transition == 2) // down
{
if(scroll > UI_ROWS)
{
scroll = UI_ROWS;
l = loops;
}
for(y=0; y<scroll; y++)
{
printRow(y,cache[UI_ROWS-scroll+y],NULL,UI_COLS);
}
for(y=0; y<UI_ROWS-scroll; y++)
{
r = y+scroll;
printRow(y+scroll,&displayCache[y][off[y]],NULL,UI_COLS);
}
}
else if(transition == 3) // left
{
if(scroll > UI_COLS)
{
scroll = UI_COLS;
l = loops;
}
for(y=0; y<UI_ROWS; y++)
{
printRow(y,&displayCache[y][off[y]+scroll],cache[y],UI_COLS-scroll);
}
}
else // right
{
if(scroll > UI_COLS)
{
scroll = UI_COLS;
l = loops;
}
for(y=0; y<UI_ROWS; y++)
{
printRow(y,cache[y] + UI_COLS - scroll,&displayCache[y][off[y]],scroll);
}
}
#if DISPLAY_TYPE != 5
HAL::delayMilliseconds(transition<3 ? 200 : 70);
#endif
HAL::pingWatchdog();
}
#endif
#if UI_DISPLAY_TYPE == DISPLAY_U8G
}
while( u8g_NextPage(&u8g) ); //end picture loop
Printer::toggleAnimation();
#endif
} // for l
#if UI_ANIMATION
// copy to last cache
if(transition != 0)
for(y=0; y<UI_ROWS; y++)
strcpy(displayCache[y],cache[y]);
oldMenuLevel = menuLevel;
#endif
#endif
}
void UIDisplay::pushMenu(const UIMenu *men,bool refresh)
{
if(men == menu[menuLevel])
{
refreshPage();
return;
}
if(menuLevel == 4) return; // Max. depth reached. No more memory to down further.
menuLevel++;
menu[menuLevel] = men;
menuTop[menuLevel] = menuPos[menuLevel] = 0;
#if SDSUPPORT
UIMenu *men2 = (UIMenu*)menu[menuLevel];
if(pgm_read_byte(&(men2->menuType)) == 1)
{
// Menu is Open files list
updateSDFileCount();
// Keep menu positon in file list, more user friendly.
// If file list changed, still need to reset position.
if (menuPos[menuLevel] > nFilesOnCard)
{
//This exception can happen if the card was unplugged or modified.
menuTop[menuLevel] = 0;
menuPos[menuLevel] = 0;//UI_MENU_BACKCNT; // if top entry is back, default to next useful item
}
}
else
#endif
{
// With or without SDCARD, being here means the menu is not a files list
// Reset menu to top
menuTop[menuLevel] = 0;
menuPos[menuLevel] = 0;//UI_MENU_BACKCNT; // if top entry is back, default to next useful item
}
if(refresh)
refreshPage();
}
void UIDisplay::popMenu(bool refresh)
{
if(menuLevel > 0) menuLevel--;
Printer::setAutomount(false);
activeAction = 0;
if(refresh)
refreshPage();
}
int UIDisplay::okAction(bool allowMoves)
{
if(Printer::isUIErrorMessage())
{
Printer::setUIErrorMessage(false);
return 0;
}
#if UI_HAS_KEYS == 1
if(menuLevel == 0) // Enter menu
{
menuLevel = 1;
menuTop[1] = 0;
menuPos[1] = UI_MENU_BACKCNT; // if top entry is back, default to next useful item
int16_t advanced_menu = EEPROM::isAdvanced(); // grab what menu system from eeprom
// setup menu system, full menus or simple;
if (advanced_menu != 0)
menu[1] = &ui_menu_main;
else
menu[1] = &ui_menu_simple;
BEEP_SHORT
return 0;
}
UIMenu *men = (UIMenu*)menu[menuLevel];
//uint8_t nr = pgm_read_word_near(&(menu->numEntries));
uint8_t mtype = pgm_read_byte(&(men->menuType));
UIMenuEntry **entries;
UIMenuEntry *ent;
unsigned char entType;
int action;
#if SDSUPPORT
if(mtype == UI_MENU_TYPE_FILE_SELECTOR)
{
if(menuPos[menuLevel] == 0) // Selected back instead of file
{
return executeAction(UI_ACTION_BACK, allowMoves);
}
if(!sd.sdactive)
return 0;
uint8_t filePos = menuPos[menuLevel] - 1;
char filename[LONG_FILENAME_LENGTH + 1];
getSDFilenameAt(filePos, filename);
if(isDirname(filename)) // Directory change selected
{
goDir(filename);
menuTop[menuLevel] = 0;
menuPos[menuLevel] = 1;
refreshPage();
oldMenuLevel = -1;
return 0;
}
int16_t shortAction; // renamed to avoid scope confusion
if (Printer::isAutomount())
shortAction = UI_ACTION_SD_PRINT;
else
{
men = menu[menuLevel-1];
entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
ent =(UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel-1]]));
shortAction = pgm_read_word(&(ent->action));
}
sd.file.close();
sd.fat.chdir(cwd);
switch(shortAction)
{
case UI_ACTION_SD_PRINT:
if (sd.selectFile(filename, false))
{
sd.startPrint();
BEEP_LONG;
menuLevel = 0;
}
break;
case UI_ACTION_SD_DELETE:
if(sd.sdactive)
{
sd.sdmode = 0;
sd.file.close();
if(sd.fat.remove(filename))
{
Com::printFLN(Com::tFileDeleted);
BEEP_LONG
}
else
{
Com::printFLN(Com::tDeletionFailed);
}
}
break;
}
return 0;
}
#endif
entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
ent =(UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
entType = pgm_read_byte(&(ent->menuType));// 0 = Info, 1 = Headline, 2 = submenu ref, 3 = direct action command, 4 = modify action
action = pgm_read_word(&(ent->action));
if(mtype == UI_MENU_TYPE_MODIFICATION_MENU) // action menu
{
action = pgm_read_word(&(men->id));
finishAction(action);
return executeAction(UI_ACTION_BACK, true);
}
if(mtype == UI_MENU_TYPE_SUBMENU && entType == 4) // Modify action
{
if(activeAction) // finish action
{
finishAction(action);
activeAction = 0;
}
else
activeAction = action;
return 0;
}
if(mtype == UI_MENU_TYPE_WIZARD)
{
action = pgm_read_word(&(men->id));
switch(action)
{
#if FEATURE_RETRACTION
case UI_ACTION_WIZARD_FILAMENTCHANGE: // filament change is finished
Extruder::current->retractDistance(EEPROM_FLOAT(RETRACTION_LENGTH));
#if FILAMENTCHANGE_REHOME
#if Z_HOME_DIR > 0
Printer::homeAxis(true,true,FILAMENTCHANGE_REHOME == 2);
#else
Printer::homeAxis(true,true,false);
#endif
#endif
Printer::GoToMemoryPosition(true,true,false,false,Printer::homingFeedrate[X_AXIS]);
Printer::GoToMemoryPosition(false,false,true,false,Printer::homingFeedrate[Z_AXIS]);
Extruder::current->retractDistance(-EEPROM_FLOAT(RETRACTION_LENGTH));
Printer::currentPositionSteps[E_AXIS] = Printer::popWizardVar().l; // set e to starting position
popMenu(true);
Printer::setBlockingReceive(false);
break;
#endif
}
return 0;
}
if(entType == 2) // Enter submenu
{
pushMenu((UIMenu*)action, false);
BEEP_SHORT
return 0;
}
if(entType == 3)
{
return executeAction(action, allowMoves);
}
return executeAction(UI_ACTION_BACK, allowMoves);
#endif
}
#define INCREMENT_MIN_MAX(a,steps,_min,_max) if ( (increment<0) && (_min>=0) && (a<_min-increment*steps) ) {a=_min;} else { a+=increment*steps; if(a<_min) a=_min; else if(a>_max) a=_max;};
void UIDisplay::adjustMenuPos()
{
if(menuLevel == 0) return;
UIMenu *men = (UIMenu*)menu[menuLevel];
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
uint8_t mtype = HAL::readFlashByte((PGM_P)&(men->menuType));
int numEntries = pgm_read_word(&(men->numEntries));
if(mtype != 2) return;
UIMenuEntry *entry;
while(menuPos[menuLevel] > 0) // Go up until we reach visible position
{
entry = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
if(pgm_read_byte((void*)&(entry->menuType)) == 1) // skip headlines
menuPos[menuLevel]--;
else if(entry->showEntry())
break;
else
menuPos[menuLevel]--;
}
// with bad luck the only visible option was in the opposite direction
while(menuPos[menuLevel] < numEntries - 1) // Go down until we reach visible position
{
entry = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
if(pgm_read_byte((void*)&(entry->menuType)) == 1) // skip headlines
menuPos[menuLevel]++;
else if(entry->showEntry())
break;
else
menuPos[menuLevel]++;
}
uint8_t skipped = 0;
bool modified;
if(menuTop[menuLevel] > menuPos[menuLevel])
menuTop[menuLevel] = menuPos[menuLevel];
do
{
skipped = 0;
modified = false;
for(uint8_t r = menuTop[menuLevel]; r < menuPos[menuLevel]; r++)
{
UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[r]));
if(!ent->showEntry())
skipped++;
}
if(menuTop[menuLevel] + skipped + UI_ROWS - 1 < menuPos[menuLevel])
{
menuTop[menuLevel] = menuPos[menuLevel] + 1 - UI_ROWS;
modified = true;
}
}
while(modified);
}
bool UIDisplay::isWizardActive()
{
UIMenu *men = (UIMenu*)menu[menuLevel];
return HAL::readFlashByte((PGM_P)&(men->menuType)) == 5;
}
bool UIDisplay::nextPreviousAction(int8_t next, bool allowMoves)
{
if(Printer::isUIErrorMessage())
{
Printer::setUIErrorMessage(false);
return true;
}
millis_t actTime = HAL::timeInMilliseconds();
millis_t dtReal;
millis_t dt = dtReal = actTime - lastNextPrev;
lastNextPrev = actTime;
if(dt < SPEED_MAX_MILLIS) dt = SPEED_MAX_MILLIS;
if(dt > SPEED_MIN_MILLIS)
{
dt = SPEED_MIN_MILLIS;
lastNextAccumul = 1;
}
float f = (float)(SPEED_MIN_MILLIS - dt) / (float)(SPEED_MIN_MILLIS - SPEED_MAX_MILLIS);
lastNextAccumul = 1.0f + (float)SPEED_MAGNIFICATION * f * f * f;
#if UI_HAS_KEYS == 1
if(menuLevel == 0)
{
lastSwitch = HAL::timeInMilliseconds();
if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0))
{
menuPos[0]++;
if(menuPos[0] >= UI_NUM_PAGES)
menuPos[0] = 0;
}
else
{
menuPos[0] = (menuPos[0] == 0 ? UI_NUM_PAGES - 1 : menuPos[0] - 1);
}
return true;
}
UIMenu *men = (UIMenu*)menu[menuLevel];
uint8_t nr = pgm_read_word_near(&(men->numEntries));
uint8_t mtype = HAL::readFlashByte((PGM_P)&(men->menuType));
UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries));
UIMenuEntry *ent =(UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
UIMenuEntry *testEnt;
// 0 = Info, 1 = Headline, 2 = submenu ref, 3 = direct action command
uint8_t entType = HAL::readFlashByte((PGM_P)&(ent->menuType));
int action = pgm_read_word(&(ent->action));
if(mtype == UI_MENU_TYPE_SUBMENU && activeAction == 0) // browse through menu items
{
if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0))
{
while(menuPos[menuLevel] + 1 < nr)
{
menuPos[menuLevel]++;
testEnt = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
if(testEnt->showEntry())
break;
}
}
else if(menuPos[menuLevel] > 0)
{
while(menuPos[menuLevel] > 0)
{
menuPos[menuLevel]--;
testEnt = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]]));
if(testEnt->showEntry())
break;
}
}
shift = -2; // reset shift position
adjustMenuPos();
return true;
}
#if SDSUPPORT
if(mtype == UI_MENU_TYPE_FILE_SELECTOR) // SD listing
{
if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0))
{
if(menuPos[menuLevel] < nFilesOnCard) menuPos[menuLevel]++;
}
else if(menuPos[menuLevel] > 0)
menuPos[menuLevel]--;
if(menuTop[menuLevel] > menuPos[menuLevel])
menuTop[menuLevel] = menuPos[menuLevel];
else if(menuTop[menuLevel] + UI_ROWS - 1 < menuPos[menuLevel])
menuTop[menuLevel] = menuPos[menuLevel] + 1 - UI_ROWS;
shift = -2; // reset shift position
return true;
}
#endif
if(mtype == UI_MENU_TYPE_MODIFICATION_MENU || mtype == UI_MENU_TYPE_WIZARD) action = pgm_read_word(&(men->id));
else action = activeAction;
int8_t increment = next;
switch(action)
{
case UI_ACTION_FANSPEED:
Commands::setFanSpeed(Printer::getFanSpeed() + increment * 3,false);
break;
case UI_ACTION_XPOSITION:
if(!allowMoves) return false;
#if UI_SPEEDDEPENDENT_POSITIONING
{
float d = 0.01*(float)increment * lastNextAccumul;
if(fabs(d) * 2000 > Printer::maxFeedrate[X_AXIS] * dtReal)
d *= Printer::maxFeedrate[X_AXIS]*dtReal / (2000 * fabs(d));
long steps = (long)(d * Printer::axisStepsPerMM[X_AXIS]);
steps = ( increment < 0 ? RMath::min(steps,(long)increment) : RMath::max(steps,(long)increment));
PrintLine::moveRelativeDistanceInStepsReal(steps,0,0,0,Printer::maxFeedrate[X_AXIS],true);
}
#else
PrintLine::moveRelativeDistanceInStepsReal(increment,0,0,0,Printer::homingFeedrate[X_AXIS],true);
#endif
Commands::printCurrentPosition(PSTR("UI_ACTION_XPOSITION "));
break;
case UI_ACTION_YPOSITION:
if(!allowMoves) return false;
#if UI_SPEEDDEPENDENT_POSITIONING
{
float d = 0.01 * (float)increment * lastNextAccumul;
if(fabs(d) * 2000 > Printer::maxFeedrate[Y_AXIS] * dtReal)
d *= Printer::maxFeedrate[Y_AXIS] * dtReal / (2000 * fabs(d));
long steps = (long)(d * Printer::axisStepsPerMM[Y_AXIS]);
steps = ( increment < 0 ? RMath::min(steps,(long)increment) : RMath::max(steps,(long)increment));
PrintLine::moveRelativeDistanceInStepsReal(0,steps,0,0,Printer::maxFeedrate[Y_AXIS],true);
}
#else
PrintLine::moveRelativeDistanceInStepsReal(0,increment,0,0,Printer::homingFeedrate[Y_AXIS],true);
#endif
Commands::printCurrentPosition(PSTR("UI_ACTION_YPOSITION "));
break;
case UI_ACTION_ZPOSITION:
if(!allowMoves) return false;
#if UI_SPEEDDEPENDENT_POSITIONING
{
float d = 0.01*(float)increment*lastNextAccumul;
if(fabs(d)*2000>Printer::maxFeedrate[Z_AXIS]*dtReal)
d *= Printer::maxFeedrate[Z_AXIS]*dtReal/(2000*fabs(d));
long steps = (long)(d*Printer::axisStepsPerMM[Z_AXIS]);
steps = ( increment<0 ? RMath::min(steps,(long)increment) : RMath::max(steps,(long)increment));
PrintLine::moveRelativeDistanceInStepsReal(0,0,steps,0,Printer::maxFeedrate[Z_AXIS],true);
}
#else
PrintLine::moveRelativeDistanceInStepsReal(0,0,increment,0,Printer::homingFeedrate[Z_AXIS],true);
#endif
Commands::printCurrentPosition(PSTR("UI_ACTION_ZPOSITION "));
break;
case UI_ACTION_XPOSITION_FAST:
if(!allowMoves) return false;
PrintLine::moveRelativeDistanceInStepsReal(Printer::axisStepsPerMM[X_AXIS]*increment,0,0,0,Printer::homingFeedrate[X_AXIS],true);
Commands::printCurrentPosition(PSTR("UI_ACTION_XPOSITION_FAST "));
break;
case UI_ACTION_YPOSITION_FAST:
if(!allowMoves) return false;
PrintLine::moveRelativeDistanceInStepsReal(0,Printer::axisStepsPerMM[Y_AXIS]*increment,0,0,Printer::homingFeedrate[Y_AXIS],true);
Commands::printCurrentPosition(PSTR("UI_ACTION_YPOSITION_FAST "));
break;
case UI_ACTION_ZPOSITION_FAST:
if(!allowMoves) return false;
PrintLine::moveRelativeDistanceInStepsReal(0,0,Printer::axisStepsPerMM[Z_AXIS]*increment,0,Printer::homingFeedrate[Z_AXIS],true);
Commands::printCurrentPosition(PSTR("UI_ACTION_ZPOSITION_FAST "));
break;
case UI_ACTION_EPOSITION:
if(!allowMoves) return false;
PrintLine::moveRelativeDistanceInSteps(0,0,0,Printer::axisStepsPerMM[E_AXIS]*increment / Printer::extrusionFactor,UI_SET_EXTRUDER_FEEDRATE,true,false);
Commands::printCurrentPosition(PSTR("UI_ACTION_EPOSITION "));
break;
#if FEATURE_RETRACTION
case UI_ACTION_WIZARD_FILAMENTCHANGE: // filament change is finished
Extruder::current->retractDistance(-increment);
Commands::waitUntilEndOfAllMoves();
Extruder::current->disableCurrentExtruderMotor();
break;
#endif
case UI_ACTION_ZPOSITION_NOTEST:
if(!allowMoves) return false;
Printer::setNoDestinationCheck(true);
#if UI_SPEEDDEPENDENT_POSITIONING
{
float d = 0.01*(float)increment*lastNextAccumul;
if(fabs(d)*2000>Printer::maxFeedrate[Z_AXIS]*dtReal)
d *= Printer::maxFeedrate[Z_AXIS]*dtReal/(2000*fabs(d));
long steps = (long)(d*Printer::axisStepsPerMM[Z_AXIS]);
steps = ( increment<0 ? RMath::min(steps,(long)increment) : RMath::max(steps,(long)increment));
PrintLine::moveRelativeDistanceInStepsReal(0,0,steps,0,Printer::maxFeedrate[Z_AXIS],true);
}
#else
PrintLine::moveRelativeDistanceInStepsReal(0,0,increment,0,Printer::homingFeedrate[Z_AXIS],true);
#endif
Commands::printCurrentPosition(PSTR("UI_ACTION_ZPOSITION_NOTEST "));
Printer::setNoDestinationCheck(false);
break;
case UI_ACTION_ZPOSITION_FAST_NOTEST:
Printer::setNoDestinationCheck(true);
PrintLine::moveRelativeDistanceInStepsReal(0,0,Printer::axisStepsPerMM[Z_AXIS]*increment,0,Printer::homingFeedrate[Z_AXIS],true);
Commands::printCurrentPosition(PSTR("UI_ACTION_ZPOSITION_FAST_NOTEST "));
Printer::setNoDestinationCheck(false);
break;
case UI_ACTION_Z_BABYSTEPS:
{
previousMillisCmd = HAL::timeInMilliseconds();
if(increment > 0)
{
if((int)Printer::zBabystepsMissing+BABYSTEP_MULTIPLICATOR<127)
Printer::zBabystepsMissing+=BABYSTEP_MULTIPLICATOR;
}
else
{
if((int)Printer::zBabystepsMissing-BABYSTEP_MULTIPLICATOR>-127)
Printer::zBabystepsMissing-=BABYSTEP_MULTIPLICATOR;
}
}
break;
case UI_ACTION_HEATED_BED_TEMP:
#if HAVE_HEATED_BED
{
int tmp = (int)heatedBedController.targetTemperatureC;
if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0;
tmp += increment;
if(tmp == 1) tmp = UI_SET_MIN_HEATED_BED_TEMP;
if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0;
else if(tmp>UI_SET_MAX_HEATED_BED_TEMP) tmp = UI_SET_MAX_HEATED_BED_TEMP;
Extruder::setHeatedBedTemperature(tmp);
}
#endif
break;
case UI_ACTION_EXTRUDER0_TEMP:
{
int tmp = (int)extruder[0].tempControl.targetTemperatureC;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
tmp += increment;
if(tmp == 1) tmp = UI_SET_MIN_EXTRUDER_TEMP;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP;
Extruder::setTemperatureForExtruder(tmp,0);
#if NUM_EXTRUDER > 1
Extruder::setTemperatureForExtruder(tmp,1);
#endif
}
break;
case UI_ACTION_EXTRUDER1_TEMP:
#if NUM_EXTRUDER>1
{
int tmp = (int)extruder[1].tempControl.targetTemperatureC;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
tmp += increment;
if(tmp == 1) tmp = UI_SET_MIN_EXTRUDER_TEMP;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP;
Extruder::setTemperatureForExtruder(tmp,1);
#if NUM_EXTRUDER > 1
Extruder::setTemperatureForExtruder(tmp,0);
#endif
}
#endif
break;
case UI_ACTION_EXTRUDER2_TEMP:
#if NUM_EXTRUDER>2
{
int tmp = (int)extruder[2].tempControl.targetTemperatureC;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
tmp += increment;
if(tmp == 1) tmp = UI_SET_MIN_EXTRUDER_TEMP;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP;
Extruder::setTemperatureForExtruder(tmp,2);
}
#endif
break;
case UI_ACTION_FEEDRATE_MULTIPLY:
{
int fr = Printer::feedrateMultiply;
INCREMENT_MIN_MAX(fr,1,25,500);
Commands::changeFeedrateMultiply(fr);
}
break;
case UI_ACTION_HORIZONTAL_RADIUS:
{
INCREMENT_MIN_MAX(Printer::radius0, 0.01,60,150);
Commands::changeHorizontalRadius(Printer::radius0);
EEPROM::storeDataIntoEEPROM(false);
}
break;
case UI_ACTION_FLOWRATE_MULTIPLY:
{
INCREMENT_MIN_MAX(Printer::extrudeMultiply,1,25,500);
Commands::changeFlowrateMultiply(Printer::extrudeMultiply);
}
break;
case UI_ACTION_STEPPER_INACTIVE:
stepperInactiveTime -= stepperInactiveTime % 1000;
INCREMENT_MIN_MAX(stepperInactiveTime,60000UL,0,10080000UL);
break;
case UI_ACTION_MAX_INACTIVE:
maxInactiveTime -= maxInactiveTime % 1000;
INCREMENT_MIN_MAX(maxInactiveTime,60000UL,0,10080000UL);
break;
case UI_ACTION_PRINT_ACCEL_X:
INCREMENT_MIN_MAX(Printer::maxAccelerationMMPerSquareSecond[X_AXIS],100,0,10000);
Printer::updateDerivedParameter();
break;
case UI_ACTION_PRINT_ACCEL_Y:
#if DRIVE_SYSTEM!=DELTA
INCREMENT_MIN_MAX(Printer::maxAccelerationMMPerSquareSecond[Y_AXIS],1,0,10000);
#else
INCREMENT_MIN_MAX(Printer::maxAccelerationMMPerSquareSecond[Y_AXIS],100,0,10000);
#endif
Printer::updateDerivedParameter();
break;
case UI_ACTION_PRINT_ACCEL_Z:
INCREMENT_MIN_MAX(Printer::maxAccelerationMMPerSquareSecond[Z_AXIS],100,0,10000);
Printer::updateDerivedParameter();
break;
case UI_ACTION_MOVE_ACCEL_X:
INCREMENT_MIN_MAX(Printer::maxTravelAccelerationMMPerSquareSecond[X_AXIS],100,0,10000);
Printer::updateDerivedParameter();
break;
case UI_ACTION_MOVE_ACCEL_Y:
INCREMENT_MIN_MAX(Printer::maxTravelAccelerationMMPerSquareSecond[Y_AXIS],100,0,10000);
Printer::updateDerivedParameter();
break;
case UI_ACTION_MOVE_ACCEL_Z:
#if DRIVE_SYSTEM != DELTA
INCREMENT_MIN_MAX(Printer::maxTravelAccelerationMMPerSquareSecond[Z_AXIS],1,0,10000);
#else
INCREMENT_MIN_MAX(Printer::maxTravelAccelerationMMPerSquareSecond[Z_AXIS],100,0,10000);
#endif
Printer::updateDerivedParameter();
break;
case UI_ACTION_MAX_JERK:
INCREMENT_MIN_MAX(Printer::maxJerk,0.1,1,99.9);
break;
#if DRIVE_SYSTEM != DELTA
case UI_ACTION_MAX_ZJERK:
INCREMENT_MIN_MAX(Printer::maxZJerk,0.1,0.1,99.9);
break;
#endif
case UI_ACTION_HOMING_FEEDRATE_X:
INCREMENT_MIN_MAX(Printer::homingFeedrate[X_AXIS],1,5,1000);
break;
case UI_ACTION_HOMING_FEEDRATE_Y:
INCREMENT_MIN_MAX(Printer::homingFeedrate[Y_AXIS],1,5,1000);
break;
case UI_ACTION_HOMING_FEEDRATE_Z:
INCREMENT_MIN_MAX(Printer::homingFeedrate[Z_AXIS],1,1,1000);
break;
case UI_ACTION_MAX_FEEDRATE_X:
INCREMENT_MIN_MAX(Printer::maxFeedrate[X_AXIS],1,1,1000);
break;
case UI_ACTION_MAX_FEEDRATE_Y:
INCREMENT_MIN_MAX(Printer::maxFeedrate[Y_AXIS],1,1,1000);
break;
case UI_ACTION_MAX_FEEDRATE_Z:
INCREMENT_MIN_MAX(Printer::maxFeedrate[Z_AXIS],1,1,1000);
break;
case UI_ACTION_STEPS_X:
INCREMENT_MIN_MAX(Printer::axisStepsPerMM[X_AXIS],0.1,0,999);
Printer::updateDerivedParameter();
break;
case UI_ACTION_STEPS_Y:
INCREMENT_MIN_MAX(Printer::axisStepsPerMM[Y_AXIS],0.1,0,999);
Printer::updateDerivedParameter();
break;
case UI_ACTION_STEPS_Z:
INCREMENT_MIN_MAX(Printer::axisStepsPerMM[Z_AXIS],0.1,0,999);
Printer::updateDerivedParameter();
break;
case UI_ACTION_BAUDRATE:
#if EEPROM_MODE != 0
{
char p=0;
int32_t rate;
do
{
rate = pgm_read_dword(&(baudrates[p]));
if(rate==baudrate) break;
p++;
}
while(rate!=0);
if(rate==0) p-=2;
p+=increment;
if(p<0) p = 0;
rate = pgm_read_dword(&(baudrates[p]));
if(rate==0) p--;
baudrate = pgm_read_dword(&(baudrates[p]));
}
#endif
break;
#if TEMP_PID
case UI_ACTION_PID_PGAIN:
INCREMENT_MIN_MAX(Extruder::current->tempControl.pidPGain,0.1,0,200);
break;
case UI_ACTION_PID_IGAIN:
INCREMENT_MIN_MAX(Extruder::current->tempControl.pidIGain,0.01,0,100);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_PID_DGAIN:
INCREMENT_MIN_MAX(Extruder::current->tempControl.pidDGain,0.1,0,200);
break;
case UI_ACTION_DRIVE_MIN:
INCREMENT_MIN_MAX(Extruder::current->tempControl.pidDriveMin,1,1,255);
break;
case UI_ACTION_DRIVE_MAX:
INCREMENT_MIN_MAX(Extruder::current->tempControl.pidDriveMax,1,1,255);
break;
case UI_ACTION_PID_MAX:
INCREMENT_MIN_MAX(Extruder::current->tempControl.pidMax,1,1,255);
break;
#endif
case UI_ACTION_X_OFFSET:
INCREMENT_MIN_MAX(Extruder::current->xOffset,1,-99999,99999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_Y_OFFSET:
INCREMENT_MIN_MAX(Extruder::current->yOffset,1,-99999,99999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_STEPS:
INCREMENT_MIN_MAX(Extruder::current->stepsPerMM,1,1,9999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_ACCELERATION:
INCREMENT_MIN_MAX(Extruder::current->maxAcceleration,10,10,99999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_MAX_FEEDRATE:
INCREMENT_MIN_MAX(Extruder::current->maxFeedrate,1,1,999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_START_FEEDRATE:
INCREMENT_MIN_MAX(Extruder::current->maxStartFeedrate,1,1,999);
Extruder::selectExtruderById(Extruder::current->id);
break;
case UI_ACTION_EXTR_HEATMANAGER:
INCREMENT_MIN_MAX(Extruder::current->tempControl.heatManager,1,0,3);
break;
case UI_ACTION_EXTR_WATCH_PERIOD:
INCREMENT_MIN_MAX(Extruder::current->watchPeriod,1,0,999);
break;
#if RETRACT_DURING_HEATUP
case UI_ACTION_EXTR_WAIT_RETRACT_TEMP:
INCREMENT_MIN_MAX(Extruder::current->waitRetractTemperature,1,100,UI_SET_MAX_EXTRUDER_TEMP);
break;
case UI_ACTION_EXTR_WAIT_RETRACT_UNITS:
INCREMENT_MIN_MAX(Extruder::current->waitRetractUnits,1,0,99);
break;
#endif
#if USE_ADVANCE
#if ENABLE_QUADRATIC_ADVANCE
case UI_ACTION_ADVANCE_K:
INCREMENT_MIN_MAX(Extruder::current->advanceK,1,0,200);
break;
#endif
case UI_ACTION_ADVANCE_L:
INCREMENT_MIN_MAX(Extruder::current->advanceL,1,0,600);
break;
#endif
}
#if UI_AUTORETURN_TO_MENU_AFTER!=0
ui_autoreturn_time = HAL::timeInMilliseconds() + UI_AUTORETURN_TO_MENU_AFTER;
#endif
#endif
return true;
}
void UIDisplay::finishAction(int action)
{
}
// Actions are events from user input. Depending on the current state, each
// action can behave differently. Other actions do always the same like home, disable extruder etc.
int UIDisplay::executeAction(int action, bool allowMoves)
{
int ret = 0;
#if UI_HAS_KEYS == 1
bool skipBeep = false;
if(action & UI_ACTION_TOPMENU) // Go to start menu
{
action -= UI_ACTION_TOPMENU;
menuLevel = 0;
}
if(action >= 2000 && action < 3000)
{
setStatusP(ui_action);
}
else
switch(action)
{
case UI_ACTION_OK:
ret = okAction(allowMoves);
skipBeep = true; // Prevent double beep
break;
case UI_ACTION_BACK:
if(uid.isWizardActive()) break; // wizards can not exit before finished
popMenu(false);
break;
case UI_ACTION_NEXT:
if(!nextPreviousAction(1, allowMoves))
ret = UI_ACTION_NEXT;
break;
case UI_ACTION_PREVIOUS:
if(!nextPreviousAction(-1, allowMoves))
ret = UI_ACTION_PREVIOUS;
break;
case UI_ACTION_MENU_UP:
if(menuLevel > 0) menuLevel--;
break;
case UI_ACTION_TOP_MENU:
menuLevel = 0;
break;
case UI_ACTION_EMERGENCY_STOP:
Commands::emergencyStop();
break;
case UI_ACTION_HOME_ALL:
if(!allowMoves) return UI_ACTION_HOME_ALL;
Printer::homeAxis(true, true, true);
Commands::printCurrentPosition(PSTR("UI_ACTION_HOMEALL "));
break;
case UI_ACTION_HOME_X:
if(!allowMoves) return UI_ACTION_HOME_X;
Printer::homeAxis(true, false, false);
Commands::printCurrentPosition(PSTR("UI_ACTION_HOME_X "));
break;
case UI_ACTION_HOME_Y:
if(!allowMoves) return UI_ACTION_HOME_Y;
Printer::homeAxis(false, true, false);
Commands::printCurrentPosition(PSTR("UI_ACTION_HOME_Y "));
break;
case UI_ACTION_HOME_Z:
if(!allowMoves) return UI_ACTION_HOME_Z;
Printer::homeAxis(false, false, true);
Commands::printCurrentPosition(PSTR("UI_ACTION_HOME_Z "));
break;
case UI_ACTION_SET_ORIGIN:
if(!allowMoves) return UI_ACTION_SET_ORIGIN;
Printer::setOrigin(0, 0, 0);
break;
case UI_ACTION_DEBUG_ECHO:
Printer::debugLevel ^= 1;
break;
case UI_ACTION_DEBUG_INFO:
Printer::debugLevel ^= 2;
break;
case UI_ACTION_DEBUG_ERROR:
Printer::debugLevel ^= 4;
break;
case UI_ACTION_DEBUG_DRYRUN:
Printer::debugLevel ^= 8;
if(Printer::debugDryrun()) // simulate movements without printing
{
Extruder::setTemperatureForExtruder(0, 0);
#if NUM_EXTRUDER > 1
Extruder::setTemperatureForExtruder(0, 1);
#endif
#if NUM_EXTRUDER > 2
Extruder::setTemperatureForExtruder(0, 2);
#endif
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(0);
#endif
}
break;
case UI_ACTION_POWER:
#if PS_ON_PIN >= 0 // avoid compiler errors when the power supply pin is disabled
Commands::waitUntilEndOfAllMoves();
SET_OUTPUT(PS_ON_PIN); //GND
TOGGLE(PS_ON_PIN);
#endif
break;
#if CASE_LIGHTS_PIN >= 0
case UI_ACTION_LIGHTS_ONOFF:
TOGGLE(CASE_LIGHTS_PIN);
Printer::reportCaseLightStatus();
UI_STATUS(UI_TEXT_LIGHTS_ONOFF);
break;
#endif
case UI_ACTION_PREHEAT_PLA:
UI_STATUS(UI_TEXT_PREHEAT_PLA);
Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_PLA,0);
#if NUM_EXTRUDER > 1
Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_PLA,1);
#endif
#if NUM_EXTRUDER > 2
Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_PLA,2);
#endif
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(UI_SET_PRESET_HEATED_BED_TEMP_PLA);
#endif
break;
case UI_ACTION_PREHEAT_ABS:
UI_STATUS(UI_TEXT_PREHEAT_ABS);
Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_ABS,0);
#if NUM_EXTRUDER > 1
Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_ABS,1);
#endif
#if NUM_EXTRUDER > 2
Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_ABS,2);
#endif
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(UI_SET_PRESET_HEATED_BED_TEMP_ABS);
#endif
break;
case UI_ACTION_COOLDOWN:
UI_STATUS(UI_TEXT_COOLDOWN);
Extruder::setTemperatureForExtruder(0, 0);
#if NUM_EXTRUDER > 1
Extruder::setTemperatureForExtruder(0, 1);
#endif
#if NUM_EXTRUDER > 2
Extruder::setTemperatureForExtruder(0, 2);
#endif
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(0);
#endif
break;
case UI_ACTION_HEATED_BED_OFF:
#if HAVE_HEATED_BED
Extruder::setHeatedBedTemperature(0);
#endif
break;
case UI_ACTION_EXTRUDER0_OFF:
Extruder::setTemperatureForExtruder(0, 0);
break;
case UI_ACTION_EXTRUDER1_OFF:
#if NUM_EXTRUDER > 1
Extruder::setTemperatureForExtruder(0, 1);
#endif
break;
case UI_ACTION_EXTRUDER2_OFF:
#if NUM_EXTRUDER>2
Extruder::setTemperatureForExtruder(0, 2);
#endif
break;
case UI_ACTION_DISABLE_STEPPER:
Printer::kill(true);
break;
case UI_ACTION_RESET_EXTRUDER:
Printer::currentPositionSteps[E_AXIS] = 0;
break;
case UI_ACTION_EXTRUDER_RELATIVE:
Printer::relativeExtruderCoordinateMode=!Printer::relativeExtruderCoordinateMode;
break;
case UI_ACTION_SELECT_EXTRUDER0:
#if NUM_EXTRUDER > 0
if(!allowMoves) return UI_ACTION_SELECT_EXTRUDER0;
Extruder::selectExtruderById(0);
#endif
break;
case UI_ACTION_SELECT_EXTRUDER1:
#if NUM_EXTRUDER > 1
if(!allowMoves) return UI_ACTION_SELECT_EXTRUDER1;
Extruder::selectExtruderById(1);
#endif
break;
case UI_ACTION_SELECT_EXTRUDER2:
#if NUM_EXTRUDER > 2
if(!allowMoves) return UI_ACTION_SELECT_EXTRUDER2;
Extruder::selectExtruderById(2);
#endif
break;
#if EEPROM_MODE != 0
case UI_ACTION_STORE_EEPROM:
EEPROM::storeDataIntoEEPROM(false);
pushMenu(&ui_menu_eeprom_saved, false);
BEEP_LONG;
skipBeep = true;
break;
case UI_ACTION_LOAD_EEPROM:
EEPROM::readDataFromEEPROM();
Extruder::selectExtruderById(Extruder::current->id);
pushMenu(&ui_menu_eeprom_loaded, false);
BEEP_LONG;
skipBeep = true;
break;
#endif
#if SDSUPPORT
case UI_ACTION_SD_DELETE:
if(sd.sdactive)
{
pushMenu(&ui_menu_sd_fileselector, false);
}
else
{
UI_ERROR(UI_TEXT_NOSDCARD);
}
break;
case UI_ACTION_SD_PRINT:
if(sd.sdactive)
{
pushMenu(&ui_menu_sd_fileselector, false);
}
break;
case UI_ACTION_SD_PAUSE:
if(!allowMoves)
ret = UI_ACTION_SD_PAUSE;
else
sd.pausePrint(true);
break;
case UI_ACTION_SD_CONTINUE:
if(!allowMoves) ret = UI_ACTION_SD_CONTINUE;
else sd.continuePrint(true);
break;
case UI_ACTION_SD_STOP:
if(!allowMoves) ret = UI_ACTION_SD_STOP;
else sd.stopPrint();
break;
case UI_ACTION_SD_UNMOUNT:
sd.unmount();
break;
case UI_ACTION_SD_MOUNT:
sd.mount();
break;
case UI_ACTION_MENU_SDCARD:
pushMenu(&ui_menu_sd, false);
break;
#endif
#if FAN_PIN>-1 && FEATURE_FAN_CONTROL
case UI_ACTION_FAN_OFF:
Commands::setFanSpeed(0, false);
break;
case UI_ACTION_FAN_25:
Commands::setFanSpeed(64, false);
break;
case UI_ACTION_FAN_50:
Commands::setFanSpeed(128, false);
break;
case UI_ACTION_FAN_75:
Commands::setFanSpeed(192, false);
break;
case UI_ACTION_FAN_FULL:
Commands::setFanSpeed(255, false);
break;
#endif
case UI_ACTION_MENU_XPOS:
pushMenu(&ui_menu_xpos, false);
break;
case UI_ACTION_MENU_YPOS:
pushMenu(&ui_menu_ypos, false);
break;
case UI_ACTION_MENU_ZPOS:
pushMenu(&ui_menu_zpos, false);
break;
case UI_ACTION_MENU_XPOSFAST:
pushMenu(&ui_menu_xpos_fast, false);
break;
case UI_ACTION_MENU_YPOSFAST:
pushMenu(&ui_menu_ypos_fast, false);
break;
case UI_ACTION_MENU_ZPOSFAST:
pushMenu(&ui_menu_zpos_fast, false);
break;
case UI_ACTION_MENU_QUICKSETTINGS:
pushMenu(&ui_menu_quick, false);
break;
case UI_ACTION_MENU_EXTRUDER:
pushMenu(&ui_menu_extruder, false);
break;
case UI_ACTION_MENU_POSITIONS:
pushMenu(&ui_menu_positions, false);
break;
#ifdef UI_USERMENU1
case UI_ACTION_SHOW_USERMENU1:
pushMenu(&UI_USERMENU1, false);
break;
#endif
#ifdef UI_USERMENU2
case UI_ACTION_SHOW_USERMENU2:
pushMenu(&UI_USERMENU2, false);
break;
#endif
#ifdef UI_USERMENU3
case UI_ACTION_SHOW_USERMENU3:
pushMenu(&UI_USERMENU3, false);
break;
#endif
#ifdef UI_USERMENU4
case UI_ACTION_SHOW_USERMENU4:
pushMenu(&UI_USERMENU4, false);
break;
#endif
#ifdef UI_USERMENU5
case UI_ACTION_SHOW_USERMENU5:
pushMenu(&UI_USERMENU5, false);
break;
#endif
#ifdef UI_USERMENU6
case UI_ACTION_SHOW_USERMENU6:
pushMenu(&UI_USERMENU6, false);
break;
#endif
#ifdef UI_USERMENU7
case UI_ACTION_SHOW_USERMENU7:
pushMenu(&UI_USERMENU7, false);
break;
#endif
#ifdef UI_USERMENU8
case UI_ACTION_SHOW_USERMENU8:
pushMenu(&UI_USERMENU8, false);
break;
#endif
#ifdef UI_USERMENU9
case UI_ACTION_SHOW_USERMENU9:
pushMenu(&UI_USERMENU9, false);
break;
#endif
#ifdef UI_USERMENU10
case UI_ACTION_SHOW_USERMENU10:
pushMenu(&UI_USERMENU10, false);
break;
#endif
#if FEATURE_RETRACTION
case UI_ACTION_WIZARD_FILAMENTCHANGE:
{
Printer::setBlockingReceive(true);
pushMenu(&ui_wiz_filamentchange, true);
Printer::resetWizardStack();
Printer::pushWizardVar(Printer::currentPositionSteps[E_AXIS]);
Printer::MemoryPosition();
Extruder::current->retractDistance(FILAMENTCHANGE_SHORTRETRACT);
float newZ = FILAMENTCHANGE_Z_ADD + Printer::currentPosition[Z_AXIS];
Printer::currentPositionSteps[E_AXIS] = 0;
Printer::moveToReal(Printer::currentPosition[X_AXIS], Printer::currentPosition[Y_AXIS], newZ, 0, Printer::homingFeedrate[Z_AXIS]);
Printer::moveToReal(FILAMENTCHANGE_X_POS, FILAMENTCHANGE_Y_POS, newZ, 0, Printer::homingFeedrate[X_AXIS]);
Extruder::current->retractDistance(FILAMENTCHANGE_LONGRETRACT);
Extruder::current->disableCurrentExtruderMotor();
}
break;
#endif
case UI_ACTION_X_UP:
if(!allowMoves) return UI_ACTION_X_UP;
PrintLine::moveRelativeDistanceInStepsReal(Printer::axisStepsPerMM[X_AXIS], 0, 0, 0, Printer::homingFeedrate[X_AXIS], false);
break;
case UI_ACTION_X_DOWN:
if(!allowMoves) return UI_ACTION_X_DOWN;
PrintLine::moveRelativeDistanceInStepsReal(-Printer::axisStepsPerMM[X_AXIS], 0, 0, 0, Printer::homingFeedrate[X_AXIS], false);
break;
case UI_ACTION_Y_UP:
if(!allowMoves) return UI_ACTION_Y_UP;
PrintLine::moveRelativeDistanceInStepsReal(0, Printer::axisStepsPerMM[Y_AXIS], 0, 0, Printer::homingFeedrate[Y_AXIS], false);
break;
case UI_ACTION_Y_DOWN:
if(!allowMoves) return UI_ACTION_Y_DOWN;
PrintLine::moveRelativeDistanceInStepsReal(0, -Printer::axisStepsPerMM[Y_AXIS], 0, 0, Printer::homingFeedrate[Y_AXIS], false);
break;
case UI_ACTION_Z_UP:
if(!allowMoves) return UI_ACTION_Z_UP;
PrintLine::moveRelativeDistanceInStepsReal(0, 0, Printer::axisStepsPerMM[Z_AXIS], 0, Printer::homingFeedrate[Z_AXIS], false);
break;
case UI_ACTION_Z_DOWN:
if(!allowMoves) return UI_ACTION_Z_DOWN;
PrintLine::moveRelativeDistanceInStepsReal(0, 0, -Printer::axisStepsPerMM[Z_AXIS], 0, Printer::homingFeedrate[Z_AXIS], false);
break;
case UI_ACTION_EXTRUDER_UP:
if(!allowMoves) return UI_ACTION_EXTRUDER_UP;
PrintLine::moveRelativeDistanceInStepsReal(0, 0, 0, Printer::axisStepsPerMM[E_AXIS],UI_SET_EXTRUDER_FEEDRATE, false);
break;
case UI_ACTION_EXTRUDER_DOWN:
if(!allowMoves) return UI_ACTION_EXTRUDER_DOWN;
PrintLine::moveRelativeDistanceInStepsReal(0, 0, 0, -Printer::axisStepsPerMM[E_AXIS], UI_SET_EXTRUDER_FEEDRATE, false);
break;
case UI_ACTION_EXTRUDER_TEMP_UP:
{
int tmp = (int)(Extruder::current->tempControl.targetTemperatureC) + 1;
if(tmp == 1) tmp = UI_SET_MIN_EXTRUDER_TEMP;
else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP;
Extruder::setTemperatureForExtruder(tmp, Extruder::current->id);
}
break;
case UI_ACTION_EXTRUDER_TEMP_DOWN:
{
int tmp = (int)(Extruder::current->tempControl.targetTemperatureC) - 1;
if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0;
Extruder::setTemperatureForExtruder(tmp, Extruder::current->id);
}
break;
case UI_ACTION_HEATED_BED_UP:
#if HAVE_HEATED_BED
{
int tmp = (int)heatedBedController.targetTemperatureC + 1;
if(tmp == 1) tmp = UI_SET_MIN_HEATED_BED_TEMP;
else if(tmp > UI_SET_MAX_HEATED_BED_TEMP) tmp = UI_SET_MAX_HEATED_BED_TEMP;
Extruder::setHeatedBedTemperature(tmp);
}
#endif
break;
#if MAX_HARDWARE_ENDSTOP_Z
case UI_ACTION_SET_MEASURED_ORIGIN:
{
Printer::updateCurrentPosition();
Printer::zLength -= Printer::currentPosition[Z_AXIS];
Printer::currentPositionSteps[Z_AXIS] = 0;
Printer::updateDerivedParameter();
#if NONLINEAR_SYSTEM
transformCartesianStepsToDeltaSteps(Printer::currentPositionSteps, Printer::currentDeltaPositionSteps);
#endif
Printer::updateCurrentPosition(true);
Com::printFLN(Com::tZProbePrinterHeight, Printer::zLength);
#if EEPROM_MODE != 0
EEPROM::storeDataIntoEEPROM(false);
Com::printFLN(Com::tEEPROMUpdated);
#endif
Commands::printCurrentPosition(PSTR("UI_ACTION_SET_MEASURED_ORIGIN "));
}
break;
#endif
case UI_ACTION_CLEAN_BED1:
break;
case UI_ACTION_CLEAN_BED2:
break;
// ##################################################################################################################
// ############ HERES WHERE THE MACHINE SPECIFIC PROBING CODE FOR HE280/ACCEL HOTENDS IS ADAPTED ####################
// ##################################################################################################################
case UI_ACTION_AUTOLEVEL_FULL:
#if SDSUPPORT == 1
menuLevel = 0;
if(sd.sdactive){
sd.startWrite("g29cal.gcode");
sd.file.write("G29", strlen("G29"));
sd.finishWrite();
if(sd.selectFile("g29cal.gcode", true)){
sd.startPrint();
}else{
GCode::executeFString(PSTR("M117 SD CARD ERROR"));
}
}else{
GCode::executeFString(PSTR("M117 INSERT SD CARD"));
}
#endif
break;
// ################# END OF MACHINE SPECIFIC PROBING CODES
case UI_ACTION_SET_ADVANCED: // Set menu to Advanced (Full) Menu
{
EEPROM::setIsAdvanced(1);
menuLevel = 0;
}
break;
case UI_ACTION_SET_SIMPLE: // Set menu to Simple Menu
{
EEPROM::setIsAdvanced(0);
menuLevel = 0;
}
break;
case UI_ACTION_SET_P1:
#if SOFTWARE_LEVELING
for (uint8_t i = 0; i < 3; i++)
{
Printer::levelingP1[i] = Printer::currentPositionSteps[i];
}
#endif
break;
case UI_ACTION_SET_P2:
#if SOFTWARE_LEVELING
for (uint8_t i = 0; i < 3; i++)
{
Printer::levelingP2[i] = Printer::currentPositionSteps[i];
}
#endif
break;
case UI_ACTION_SET_P3:
#if SOFTWARE_LEVELING
for (uint8_t i = 0; i < 3; i++)
{
Printer::levelingP3[i] = Printer::currentPositionSteps[i];
}
#endif
break;
case UI_ACTION_CALC_LEVEL:
#if SOFTWARE_LEVELING
int32_t factors[4];
PrintLine::calculatePlane(factors, Printer::levelingP1, Printer::levelingP2, Printer::levelingP3);
Com::printFLN(Com::tLevelingCalc);
Com::printFLN(Com::tTower1, PrintLine::calcZOffset(factors, Printer::deltaAPosXSteps, Printer::deltaAPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]);
Com::printFLN(Com::tTower2, PrintLine::calcZOffset(factors, Printer::deltaBPosXSteps, Printer::deltaBPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]);
Com::printFLN(Com::tTower3, PrintLine::calcZOffset(factors, Printer::deltaCPosXSteps, Printer::deltaCPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]);
#endif
break;
case UI_ACTION_HEATED_BED_DOWN:
#if HAVE_HEATED_BED
{
int tmp = (int)heatedBedController.targetTemperatureC - 1;
if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0;
Extruder::setHeatedBedTemperature(tmp);
}
#endif
break;
case UI_ACTION_FAN_UP:
Commands::setFanSpeed(Printer::getFanSpeed() + 32,false);
break;
case UI_ACTION_FAN_DOWN:
Commands::setFanSpeed(Printer::getFanSpeed() - 32,false);
break;
case UI_ACTION_KILL:
Commands::emergencyStop();
break;
case UI_ACTION_RESET:
HAL::resetHardware();
break;
case UI_ACTION_PAUSE:
Com::printFLN(PSTR("RequestPause:"));
break;
#ifdef DEBUG_PRINT
case UI_ACTION_WRITE_DEBUG:
Com::printF(PSTR("Buf. Read Idx:"),(int)GCode::bufferReadIndex);
Com::printF(PSTR(" Buf. Write Idx:"),(int)GCode::bufferWriteIndex);
Com::printF(PSTR(" Comment:"),(int)GCode::commentDetected);
Com::printF(PSTR(" Buf. Len:"),(int)GCode::bufferLength);
Com::printF(PSTR(" Wait resend:"),(int)GCode::waitingForResend);
Com::printFLN(PSTR(" Recv. Write Pos:"),(int)GCode::commandsReceivingWritePosition);
Com::printF(PSTR("Min. XY Speed:"),Printer::minimumSpeed);
Com::printF(PSTR(" Min. Z Speed:"),Printer::minimumZSpeed);
Com::printF(PSTR(" Buffer:"),PrintLine::linesCount);
Com::printF(PSTR(" Lines pos:"),(int)PrintLine::linesPos);
Com::printFLN(PSTR(" Write Pos:"),(int)PrintLine::linesWritePos);
Com::printFLN(PSTR("Wait loop:"),debugWaitLoop);
Com::printF(PSTR("sd mode:"),(int)sd.sdmode);
Com::printF(PSTR(" pos:"),sd.sdpos);
Com::printFLN(PSTR(" of "),sd.filesize);
break;
#endif
case UI_ACTION_TEMP_DEFECT:
Printer::setAnyTempsensorDefect();
break;
}
refreshPage();
if(!skipBeep)
BEEP_SHORT
#if UI_AUTORETURN_TO_MENU_AFTER!=0
ui_autoreturn_time = HAL::timeInMilliseconds() + UI_AUTORETURN_TO_MENU_AFTER;
#endif
#endif
return ret;
}
void UIDisplay::mediumAction()
{
#if UI_HAS_I2C_ENCODER>0
uiCheckSlowEncoder();
#endif
}
// Gets calles from main tread
void UIDisplay::slowAction(bool allowMoves)
{
unsigned long time = HAL::timeInMilliseconds();
uint8_t refresh = 0;
#if UI_HAS_KEYS==1
// delayed action open?
if(allowMoves && delayedAction != 0)
{
executeAction(delayedAction, true);
delayedAction = 0;
}
// Update key buffer
InterruptProtectedBlock noInts;
if((flags & (UI_FLAG_FAST_KEY_ACTION + UI_FLAG_KEY_TEST_RUNNING)) == 0)
{
flags |= UI_FLAG_KEY_TEST_RUNNING;
noInts.unprotect();
#if defined(UI_I2C_HOTEND_LED) || defined(UI_I2C_HEATBED_LED) || defined(UI_I2C_FAN_LED)
{
// check temps and set appropriate leds
int led = 0;
#if NUM_EXTRUDER>0 && defined(UI_I2C_HOTEND_LED)
led |= (tempController[Extruder::current->id]->targetTemperatureC > 0 ? UI_I2C_HOTEND_LED : 0);
#endif
#if HAVE_HEATED_BED && defined(UI_I2C_HEATBED_LED)
led |= (heatedBedController.targetTemperatureC > 0 ? UI_I2C_HEATBED_LED : 0);
#endif
#if FAN_PIN>=0 && defined(UI_I2C_FAN_LED)
led |= (Printer::getFanSpeed() > 0 ? UI_I2C_FAN_LED : 0);
#endif
// update the leds
uid.outputMask= ~led & (UI_I2C_HEATBED_LED | UI_I2C_HOTEND_LED | UI_I2C_FAN_LED);
}
#endif
int nextAction = 0;
uiCheckSlowKeys(nextAction);
if(lastButtonAction != nextAction)
{
lastButtonStart = time;
lastButtonAction = nextAction;
noInts.protect();
flags |= UI_FLAG_SLOW_KEY_ACTION; // Mark slow action
}
noInts.protect();
flags &= ~UI_FLAG_KEY_TEST_RUNNING;
}
noInts.protect();
if((flags & UI_FLAG_SLOW_ACTION_RUNNING) == 0)
{
flags |= UI_FLAG_SLOW_ACTION_RUNNING;
// Reset click encoder
noInts.protect();
int8_t encodeChange = encoderPos;
encoderPos = 0;
noInts.unprotect();
int newAction;
if(encodeChange) // encoder changed
{
nextPreviousAction(encodeChange, allowMoves);
//BEEP_SHORT //Disabled to not beep when scrolling through menus
refresh = 1;
}
if(lastAction != lastButtonAction)
{
if(lastButtonAction == 0)
{
if(lastAction >= 2000 && lastAction < 3000)
statusMsg[0] = 0;
lastAction = 0;
noInts.protect();
flags &= ~(UI_FLAG_FAST_KEY_ACTION + UI_FLAG_SLOW_KEY_ACTION);
}
else if(time - lastButtonStart > UI_KEY_BOUNCETIME) // New key pressed
{
lastAction = lastButtonAction;
if((newAction = executeAction(lastAction, allowMoves)) == 0)
{
nextRepeat = time + UI_KEY_FIRST_REPEAT;
repeatDuration = UI_KEY_FIRST_REPEAT;
}
else
{
if(delayedAction == 0)
delayedAction = newAction;
}
}
}
else if(lastAction < 1000 && lastAction) // Repeatable key
{
if(time - nextRepeat < 10000)
{
if(delayedAction == 0)
delayedAction = executeAction(lastAction, allowMoves);
else
executeAction(lastAction, allowMoves);
repeatDuration -= UI_KEY_REDUCE_REPEAT;
if(repeatDuration < UI_KEY_MIN_REPEAT) repeatDuration = UI_KEY_MIN_REPEAT;
nextRepeat = time + repeatDuration;
}
}
noInts.protect();
flags &= ~UI_FLAG_SLOW_ACTION_RUNNING;
}
noInts.unprotect();
#endif
#if UI_AUTORETURN_TO_MENU_AFTER != 0
if(menuLevel > 0 && ui_autoreturn_time < time && !uid.isWizardActive()) // Go to top menu after x seoonds
{
lastSwitch = time;
menuLevel = 0;
activeAction = 0;
}
#endif
if(menuLevel == 0 && time > 4000) // Top menu refresh/switch
{
if(time - lastSwitch > UI_PAGES_DURATION)
{
lastSwitch = time;
#if !defined(UI_DISABLE_AUTO_PAGESWITCH) || !UI_DISABLE_AUTO_PAGESWITCH
menuPos[0]++;
if(menuPos[0] >= UI_NUM_PAGES)
menuPos[0] = 0;
#endif
refresh = 1;
}
else if(time - lastRefresh >= 1000) refresh = 1;
}
else if(time - lastRefresh >= 800)
{
UIMenu *men = (UIMenu*)menu[menuLevel];
uint8_t mtype = pgm_read_byte((void*)&(men->menuType));
//if(mtype!=1)
refresh = 1;
}
if(refresh) // does lcd need a refresh?
{
if (menuLevel > 1 || Printer::isAutomount())
{
shift++;
if(shift + UI_COLS > MAX_COLS + 1)
shift = -2;
}
else
shift = -2;
refreshPage();
lastRefresh = time;
}
}
// Gets called from inside an interrupt with interrupts allowed!
void UIDisplay::fastAction()
{
#if UI_HAS_KEYS == 1
// Check keys
InterruptProtectedBlock noInts;
if((flags & (UI_FLAG_KEY_TEST_RUNNING + UI_FLAG_SLOW_KEY_ACTION)) == 0)
{
flags |= UI_FLAG_KEY_TEST_RUNNING;
int nextAction = 0;
uiCheckKeys(nextAction);
if(lastButtonAction != nextAction)
{
lastButtonStart = HAL::timeInMilliseconds();
lastButtonAction = nextAction;
flags |= UI_FLAG_FAST_KEY_ACTION;
}
flags &= ~UI_FLAG_KEY_TEST_RUNNING;
}
#endif
}
#if UI_ENCODER_SPEED==0
const int8_t encoder_table[16] PROGMEM = {0,1,-1,0,-1,0,0,1,1,0,0,-1,0,-1,1,0}; // Full speed
#elif UI_ENCODER_SPEED==1
const int8_t encoder_table[16] PROGMEM = {0,0,-1,0,0,0,0,1,1,0,0,0,0,-1,0,0}; // Half speed
#else
//const int8_t encoder_table[16] PROGMEM = {0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0}; // Quart speed
//const int8_t encoder_table[16] PROGMEM = {0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0}; // Quart speed
const int8_t encoder_table[16] PROGMEM = {0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0}; // Quart speed
#endif
#endif