/********************************************************************** Copyright (C) 2018 MisfitTech LLC, All rights reserved. MisfitTech uses a dual license model that allows the software to be used under a standard GPL open source license, or a commercial license. The standard GPL license requires that all software statically linked with MisfitTec Code is also distributed under the same GPL V2 license terms. Details of both license options follow: - Open source licensing - MisfitTech is a free download and may be used, modified, evaluated and distributed without charge provided the user adheres to version two of the GNU General Public License (GPL) and does not remove the copyright notice or this text. The GPL V2 text is available on the gnu.org web site - Commercial licensing - Businesses and individuals that for commercial or other reasons cannot comply with the terms of the GPL V2 license must obtain a low cost commercial license before incorporating MisfitTech code into proprietary software for distribution in any form. Commercial licenses can be purchased from www.misfittech.net and do not require any source files to be changed. This code is distributed in the hope that it will be useful. You cannot use MisfitTech's code unless you agree that you use the software 'as is'. MisfitTech's code is provided WITHOUT ANY WARRANTY; without even the implied warranties of NON-INFRINGEMENT, MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. MisfitTech LLC disclaims all conditions and terms, be they implied, expressed, or statutory. Written by Trampas Stern for MisfitTech. Misfit Tech invests time and resources providing this open source code, please support MisfitTech and open-source hardware by purchasing products from MisfitTech, www.misifittech.net! *********************************************************************/ #include "A5995.h" #include "wiring_private.h" #include "syslog.h" #include "angle.h" #include "Arduino.h" #include "sine.h" static uint8_t pinState=0; #pragma GCC push_options #pragma GCC optimize ("-Ofast") #define DAC_MAX (0x01FFL) // Wait for synchronization of registers between the clock domains static __inline__ void syncTCC(Tcc* TCCx) __attribute__((always_inline, unused)); static void syncTCC(Tcc* TCCx) { //int32_t t0=1000; while (TCCx->SYNCBUSY.reg & TCC_SYNCBUSY_MASK) { // t0--; // if (t0==0) // { // break; // } // delay(1); } } static void setDAC(uint32_t DAC1, uint32_t DAC2) { TCC1->CC[1].reg = (uint32_t)DAC1; //D9 PA07 - VREF2 syncTCC(TCC1); TCC1->CC[0].reg = (uint32_t)DAC2; //D4 - VREF1 syncTCC(TCC1); } static void setupDAC(void) { Tcc* TCCx = TCC1 ; pinPeripheral(PIN_A5995_VREF1, PIO_TIMER_ALT); pinPeripheral(PIN_A5995_VREF2, PIO_TIMER); GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID( GCM_TCC0_TCC1 )) ; while ( GCLK->STATUS.bit.SYNCBUSY == 1 ) ; //ERROR("Setting TCC %d %d",ulValue,ulPin); TCCx->CTRLA.reg &= ~TCC_CTRLA_ENABLE; syncTCC(TCCx); // Set TCx as normal PWM TCCx->WAVE.reg |= TCC_WAVE_WAVEGEN_NPWM; syncTCC(TCCx); // Set TCx in waveform mode Normal PWM TCCx->CC[1].reg = (uint32_t)0; syncTCC(TCCx); TCCx->CC[0].reg = (uint32_t)0; syncTCC(TCCx); // Set PER to maximum counter value (resolution : 0xFFF = 12 bits) // =48e6/2^12=11kHz frequency TCCx->PER.reg = DAC_MAX; syncTCC(TCCx); // Enable TCCx TCCx->CTRLA.reg |= TCC_CTRLA_ENABLE ; syncTCC(TCCx); } void A5995::begin() { //setup the A5995 pins digitalWrite(PIN_A5995_ENABLE1,LOW); pinMode(PIN_A5995_ENABLE1,OUTPUT); digitalWrite(PIN_A5995_ENABLE2,LOW); pinMode(PIN_A5995_ENABLE2,OUTPUT); digitalWrite(PIN_A5995_MODE1,LOW); pinMode(PIN_A5995_MODE1,OUTPUT); digitalWrite(PIN_A5995_MODE2,LOW); pinMode(PIN_A5995_MODE2,OUTPUT); digitalWrite(PIN_A5995_PHASE1,LOW); pinMode(PIN_A5995_PHASE1,OUTPUT); digitalWrite(PIN_A5995_PHASE2,LOW); pinMode(PIN_A5995_PHASE2,OUTPUT); digitalWrite(PIN_A5995_SLEEPn,HIGH); pinMode(PIN_A5995_SLEEPn,OUTPUT); //setup the PWM for current on the A4954, set for low current digitalWrite(PIN_A5995_VREF1,LOW); digitalWrite(PIN_A5995_VREF2,LOW); pinMode(PIN_A5995_VREF1, OUTPUT); pinMode(PIN_A5995_VREF2, OUTPUT); enabled=true; lastStepMicros=0; forwardRotation=true; setupDAC(); // // GPIO_HIGH(PIN_A5995_ENABLE1); // GPIO_HIGH(PIN_A5995_ENABLE2); // GPIO_LOW(PIN_A5995_MODE1); // GPIO_LOW(PIN_A5995_MODE2); // GPIO_HIGH(PIN_A5995_PHASE1); // GPIO_HIGH(PIN_A5995_PHASE2); // int i=0;; // while (1) // { // int32_t x; // WARNING("MA %d",i); // x=(int32_t)((int64_t)i*(DAC_MAX))/3300; // setDAC(x,x); // delay(1000); // i=i+10; // if (i>1000) // { // i=0; // } // // } return; } void A5995::enable(bool enable) { enabled=enable; if (enabled == false) { WARNING("A4954 disabled"); setDAC(0,0); //turn current off GPIO_LOW(PIN_A5995_ENABLE1); GPIO_LOW(PIN_A5995_ENABLE2); GPIO_LOW(PIN_A5995_MODE1); GPIO_LOW(PIN_A5995_MODE2); GPIO_LOW(PIN_A5995_PHASE1); GPIO_LOW(PIN_A5995_PHASE2); } } //this is precise move and modulo of A4954_NUM_MICROSTEPS is a full step. // stepAngle is in A4954_NUM_MICROSTEPS units.. // The A4954 has no idea where the motor is, so the calling function has to // to tell the A4954 what phase to drive motor coils. // A4954_NUM_MICROSTEPS is 256 by default so stepAngle of 1024 is 360 degrees // Note you can only move up to +/-A4954_NUM_MICROSTEPS from where you // currently are. int32_t A5995::move(int32_t stepAngle, uint32_t mA) { uint16_t angle; int32_t cos,sin; int32_t dacSin,dacCos; static int32_t lastSin=0,lastCos=0; static int i=1; if (enabled == false) { WARNING("A4954 disabled"); setDAC(0,0); //turn current off GPIO_LOW(PIN_A5995_ENABLE1); GPIO_LOW(PIN_A5995_ENABLE2); GPIO_LOW(PIN_A5995_MODE1); GPIO_LOW(PIN_A5995_MODE2); GPIO_LOW(PIN_A5995_PHASE1); GPIO_LOW(PIN_A5995_PHASE2); return stepAngle; } //WARNING("move %d %d",stepAngle,mA); stepAngle=(stepAngle) % SINE_STEPS; //figure out our sine Angle // note our SINE_STEPS is 4x of microsteps for a reason //angle=(stepAngle+(SINE_STEPS/8)) % SINE_STEPS; angle=stepAngle; if (i==0) { WARNING("angle %d ",angle); } //calculate the sine and cosine of our angle sin=sine(angle); cos=cosine(angle); //if we are reverse swap the sign of one of the angels if (false == forwardRotation) { cos=-cos; } //scale sine result by current(mA) dacSin=((int32_t)mA*(int64_t)(sin))/SINE_MAX; if (i==0) { WARNING("dacsine %d ",dacSin); } // if ((lastSin-dacSin)>100) //decreasing current // { // GPIO_LOW(PIN_A5995_MODE2); //fast decay // } else // { // GPIO_HIGH(PIN_A5995_MODE2); //slow decay // } lastSin=dacSin; //convert value into DAC scaled to 3300mA max dacSin=(int32_t)((int64_t)abs(dacSin)*(DAC_MAX))/3300; //scale cosine result by current(mA) dacCos=((int32_t)mA*(int64_t)(cos))/SINE_MAX; if (i==0) { WARNING("daccos %d ",dacCos); } // if ((lastCos-dacCos)>100) //decreasing current // { // GPIO_LOW(PIN_A5995_MODE1); //fast decay // } else // { // GPIO_HIGH(PIN_A5995_MODE1); //slow decay // } lastCos=dacCos; //convert value into DAC scaled to 3300mA max dacCos=(int32_t)((int64_t)abs(dacCos)*(DAC_MAX))/3300; if (i==0) { WARNING("dacs are %d %d",dacSin,dacCos); } setDAC(dacSin,dacCos); GPIO_HIGH(PIN_A5995_ENABLE1); GPIO_HIGH(PIN_A5995_ENABLE2); GPIO_LOW(PIN_A5995_MODE1); GPIO_LOW(PIN_A5995_MODE2); if (i==0) { WARNING("sins are %d %d",sin,cos); } if (sin>0) { GPIO_HIGH(PIN_A5995_PHASE2); }else { GPIO_LOW(PIN_A5995_PHASE2); } if (cos>0) { GPIO_HIGH(PIN_A5995_PHASE1); }else { GPIO_LOW(PIN_A5995_PHASE1); } // i++; // if (i>3000) i=0; // YELLOW_LED(led); // led=(led+1) & 0x01; lastStepMicros=micros(); return stepAngle; } #pragma GCC pop_options