/********************************************************************* This is a library for our Monochrome OLEDs based on SSD1306 drivers Pick one up today in the adafruit shop! ------> http://www.adafruit.com/category/63_98 These displays use SPI to communicate, 4 or 5 pins are required to interface Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit! Written by Limor Fried/Ladyada for Adafruit Industries. BSD license, check license.txt for more information All text above, and the splash screen below must be included in any redistribution *********************************************************************/ #ifdef __AVR__ #include #elif defined(ESP8266) #include #else #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #endif #if !defined(__ARM_ARCH) && !defined(ENERGIA) && !defined(ESP8266) #include #endif #include #include #include #include "Adafruit_GFX.h" #include "Adafruit_SSD1306.h" #include "syslog.h" // the memory buffer for the LCD static uint8_t buffer[SSD1306_LCDHEIGHT * SSD1306_LCDWIDTH / 8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0xC0, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xF8, 0xE0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00, 0xFF, #if (SSD1306_LCDHEIGHT * SSD1306_LCDWIDTH > 96*16) 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x80, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0xFF, 0xFF, 0x80, 0x80, 0x00, 0x80, 0x80, 0x00, 0x80, 0x80, 0x80, 0x80, 0x00, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x8C, 0x8E, 0x84, 0x00, 0x00, 0x80, 0xF8, 0xF8, 0xF8, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0xE0, 0xE0, 0xC0, 0x80, 0x00, 0xE0, 0xFC, 0xFE, 0xFF, 0xFF, 0xFF, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFE, 0xFF, 0xC7, 0x01, 0x01, 0x01, 0x01, 0x83, 0xFF, 0xFF, 0x00, 0x00, 0x7C, 0xFE, 0xC7, 0x01, 0x01, 0x01, 0x01, 0x83, 0xFF, 0xFF, 0xFF, 0x00, 0x38, 0xFE, 0xC7, 0x83, 0x01, 0x01, 0x01, 0x83, 0xC7, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0x01, 0x01, 0x00, 0xFF, 0xFF, 0x07, 0x01, 0x01, 0x01, 0x00, 0x00, 0x7F, 0xFF, 0x80, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x7F, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x0F, 0x3F, 0x7F, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xE7, 0xC7, 0xC7, 0x8F, 0x8F, 0x9F, 0xBF, 0xFF, 0xFF, 0xC3, 0xC0, 0xF0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0xFC, 0xFC, 0xFC, 0xFC, 0xFC, 0xFC, 0xFC, 0xF8, 0xF8, 0xF0, 0xF0, 0xE0, 0xC0, 0x00, 0x01, 0x03, 0x03, 0x03, 0x03, 0x03, 0x01, 0x03, 0x03, 0x00, 0x00, 0x00, 0x00, 0x01, 0x03, 0x03, 0x03, 0x03, 0x01, 0x01, 0x03, 0x01, 0x00, 0x00, 0x00, 0x01, 0x03, 0x03, 0x03, 0x03, 0x01, 0x01, 0x03, 0x03, 0x00, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x03, 0x03, 0x03, 0x03, 0x03, 0x01, 0x00, 0x00, 0x00, 0x01, 0x03, 0x01, 0x00, 0x00, 0x00, 0x03, 0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, #if (SSD1306_LCDHEIGHT == 64) 0x00, 0x00, 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3F, 0x1F, 0x0F, 0x87, 0xC7, 0xF7, 0xFF, 0xFF, 0x1F, 0x1F, 0x3D, 0xFC, 0xF8, 0xF8, 0xF8, 0xF8, 0x7C, 0x7D, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x3F, 0x0F, 0x07, 0x00, 0x30, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFE, 0xFE, 0xFC, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x7F, 0x3F, 0x1F, 0x0F, 0x07, 0x1F, 0x7F, 0xFF, 0xFF, 0xF8, 0xF8, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xF8, 0xE0, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFE, 0xFE, 0x00, 0x00, 0x00, 0xFC, 0xFE, 0xFC, 0x0C, 0x06, 0x06, 0x0E, 0xFC, 0xF8, 0x00, 0x00, 0xF0, 0xF8, 0x1C, 0x0E, 0x06, 0x06, 0x06, 0x0C, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0xFE, 0xFE, 0x00, 0x00, 0x00, 0x00, 0xFC, 0xFE, 0xFC, 0x00, 0x18, 0x3C, 0x7E, 0x66, 0xE6, 0xCE, 0x84, 0x00, 0x00, 0x06, 0xFF, 0xFF, 0x06, 0x06, 0xFC, 0xFE, 0xFC, 0x0C, 0x06, 0x06, 0x06, 0x00, 0x00, 0xFE, 0xFE, 0x00, 0x00, 0xC0, 0xF8, 0xFC, 0x4E, 0x46, 0x46, 0x46, 0x4E, 0x7C, 0x78, 0x40, 0x18, 0x3C, 0x76, 0xE6, 0xCE, 0xCC, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x07, 0x0F, 0x1F, 0x1F, 0x3F, 0x3F, 0x3F, 0x3F, 0x1F, 0x0F, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x00, 0x00, 0x03, 0x07, 0x0E, 0x0C, 0x18, 0x18, 0x0C, 0x06, 0x0F, 0x0F, 0x0F, 0x00, 0x00, 0x01, 0x0F, 0x0E, 0x0C, 0x18, 0x0C, 0x0F, 0x07, 0x01, 0x00, 0x04, 0x0E, 0x0C, 0x18, 0x0C, 0x0F, 0x07, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x00, 0x00, 0x0F, 0x0F, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x0F, 0x00, 0x00, 0x00, 0x07, 0x07, 0x0C, 0x0C, 0x18, 0x1C, 0x0C, 0x06, 0x06, 0x00, 0x04, 0x0E, 0x0C, 0x18, 0x0C, 0x0F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 #endif #endif }; #define ssd1306_swap(a, b) { int16_t t = a; a = b; b = t; } // the most basic function, set a single pixel void Adafruit_SSD1306::drawPixel(int16_t x, int16_t y, uint16_t color) { if ((x < 0) || (x >= width()) || (y < 0) || (y >= height())) return; // check rotation, move pixel around if necessary switch (getRotation()) { case 1: ssd1306_swap(x, y); x = WIDTH - x - 1; break; case 2: x = WIDTH - x - 1; y = HEIGHT - y - 1; break; case 3: ssd1306_swap(x, y); y = HEIGHT - y - 1; break; } // x is which column switch (color) { case WHITE: buffer[x+ (y/8)*SSD1306_LCDWIDTH] |= (1 << (y&7)); break; case BLACK: buffer[x+ (y/8)*SSD1306_LCDWIDTH] &= ~(1 << (y&7)); break; case INVERSE: buffer[x+ (y/8)*SSD1306_LCDWIDTH] ^= (1 << (y&7)); break; } } Adafruit_SSD1306::Adafruit_SSD1306(int8_t SID, int8_t SCLK, int8_t DC, int8_t RST, int8_t CS) : Adafruit_GFX(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT) { cs = CS; rst = RST; dc = DC; sclk = SCLK; sid = SID; hwSPI = false; } // constructor for hardware SPI - we indicate DataCommand, ChipSelect, Reset Adafruit_SSD1306::Adafruit_SSD1306(int8_t DC, int8_t RST, int8_t CS) : Adafruit_GFX(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT) { dc = DC; rst = RST; cs = CS; hwSPI = true; } // initializer for I2C - we only indicate the reset pin! Adafruit_SSD1306::Adafruit_SSD1306(int8_t reset) : Adafruit_GFX(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT) { sclk = dc = cs = sid = -1; rst = reset; } bool Adafruit_SSD1306::begin(uint8_t vccstate, uint8_t i2caddr, bool reset) { _vccstate = vccstate; _i2caddr = i2caddr; // set pin directions if (sid != -1){ pinMode(dc, OUTPUT); pinMode(cs, OUTPUT); #ifdef HAVE_PORTREG csport = portOutputRegister(digitalPinToPort(cs)); cspinmask = digitalPinToBitMask(cs); dcport = portOutputRegister(digitalPinToPort(dc)); dcpinmask = digitalPinToBitMask(dc); #endif if (!hwSPI){ // set pins for software-SPI pinMode(sid, OUTPUT); pinMode(sclk, OUTPUT); #ifdef HAVE_PORTREG clkport = portOutputRegister(digitalPinToPort(sclk)); clkpinmask = digitalPinToBitMask(sclk); mosiport = portOutputRegister(digitalPinToPort(sid)); mosipinmask = digitalPinToBitMask(sid); #endif } if (hwSPI){ SPI.begin(); #ifdef SPI_HAS_TRANSACTION SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE0)); #else SPI.setClockDivider (4); #endif } } else { // I2C Init Wire.begin(); #ifdef __SAM3X8E__ // Force 400 KHz I2C, rawr! (Uses pins 20, 21 for SDA, SCL) TWI1->TWI_CWGR = 0; TWI1->TWI_CWGR = ((VARIANT_MCK / (2 * 400000)) - 4) * 0x101; #endif } if ((reset) && (rst >= 0)) { // Setup reset pin direction (used by both SPI and I2C) pinMode(rst, OUTPUT); digitalWrite(rst, HIGH); // VDD (3.3V) goes high at start, lets just chill for a ms delay(1); // bring reset low digitalWrite(rst, LOW); // wait 10ms delay(10); // bring out of reset digitalWrite(rst, HIGH); // turn on VCC (9V?) } uint8_t ret; // Init sequence LOG("Sending LCD display off"); ret=ssd1306_command(SSD1306_DISPLAYOFF); // 0xAE LOG("Display off returned %d",ret); if (ret != 0) { return false; } ssd1306_command(SSD1306_SETDISPLAYCLOCKDIV); // 0xD5 ssd1306_command(0x80); // the suggested ratio 0x80 ssd1306_command(SSD1306_SETMULTIPLEX); // 0xA8 ssd1306_command(SSD1306_LCDHEIGHT - 1); ssd1306_command(SSD1306_SETDISPLAYOFFSET); // 0xD3 ssd1306_command(0x0); // no offset ssd1306_command(SSD1306_SETSTARTLINE | 0x0); // line #0 ssd1306_command(SSD1306_CHARGEPUMP); // 0x8D if (vccstate == SSD1306_EXTERNALVCC) { ssd1306_command(0x10); } else { ssd1306_command(0x14); } ssd1306_command(SSD1306_MEMORYMODE); // 0x20 ssd1306_command(0x00); // 0x0 act like ks0108 ssd1306_command(SSD1306_SEGREMAP | 0x1); ssd1306_command(SSD1306_COMSCANDEC); #if defined SSD1306_128_32 ssd1306_command(SSD1306_SETCOMPINS); // 0xDA ssd1306_command(0x02); ssd1306_command(SSD1306_SETCONTRAST); // 0x81 ssd1306_command(0x8F); #elif defined SSD1306_128_64 ssd1306_command(SSD1306_SETCOMPINS); // 0xDA ssd1306_command(0x12); ssd1306_command(SSD1306_SETCONTRAST); // 0x81 if (vccstate == SSD1306_EXTERNALVCC) { ssd1306_command(0x9F); } else { ssd1306_command(0xCF); } #elif defined SSD1306_96_16 ssd1306_command(SSD1306_SETCOMPINS); // 0xDA ssd1306_command(0x2); //ada x12 ssd1306_command(SSD1306_SETCONTRAST); // 0x81 if (vccstate == SSD1306_EXTERNALVCC) { ssd1306_command(0x10); } else { ssd1306_command(0xAF); } #endif ssd1306_command(SSD1306_SETPRECHARGE); // 0xd9 if (vccstate == SSD1306_EXTERNALVCC) { ssd1306_command(0x22); } else { ssd1306_command(0xF1); } ssd1306_command(SSD1306_SETVCOMDETECT); // 0xDB ssd1306_command(0x40); ssd1306_command(SSD1306_DISPLAYALLON_RESUME); // 0xA4 ssd1306_command(SSD1306_NORMALDISPLAY); // 0xA6 ssd1306_command(SSD1306_DEACTIVATE_SCROLL); ssd1306_command(SSD1306_DISPLAYON);//--turn on oled panel return true; } void Adafruit_SSD1306::invertDisplay(uint8_t i) { if (i) { ssd1306_command(SSD1306_INVERTDISPLAY); } else { ssd1306_command(SSD1306_NORMALDISPLAY); } } // Errors: // 0 : Success // 1 : Data too long // 2 : NACK on transmit of address // 3 : NACK on transmit of data // 4 : Other error uint8_t Adafruit_SSD1306::ssd1306_command(uint8_t c) { if (sid != -1) { // SPI #ifdef HAVE_PORTREG *csport |= cspinmask; *dcport &= ~dcpinmask; *csport &= ~cspinmask; #else digitalWrite(cs, HIGH); digitalWrite(dc, LOW); digitalWrite(cs, LOW); #endif fastSPIwrite(c); #ifdef HAVE_PORTREG *csport |= cspinmask; #else digitalWrite(cs, HIGH); #endif } else { // I2C uint8_t control = 0x00; // Co = 0, D/C = 0 //LOG("wire begin"); Wire.beginTransmission(_i2caddr); //LOG("wire write"); Wire.write(control); //LOG("wire write c"); Wire.write(c); //LOG("wire end"); Wire.endTransmission(); //LOG("wire done"); } } // startscrollright // Activate a right handed scroll for rows start through stop // Hint, the display is 16 rows tall. To scroll the whole display, run: // display.scrollright(0x00, 0x0F) void Adafruit_SSD1306::startscrollright(uint8_t start, uint8_t stop){ ssd1306_command(SSD1306_RIGHT_HORIZONTAL_SCROLL); ssd1306_command(0X00); ssd1306_command(start); ssd1306_command(0X00); ssd1306_command(stop); ssd1306_command(0X00); ssd1306_command(0XFF); ssd1306_command(SSD1306_ACTIVATE_SCROLL); } // startscrollleft // Activate a right handed scroll for rows start through stop // Hint, the display is 16 rows tall. To scroll the whole display, run: // display.scrollright(0x00, 0x0F) void Adafruit_SSD1306::startscrollleft(uint8_t start, uint8_t stop){ ssd1306_command(SSD1306_LEFT_HORIZONTAL_SCROLL); ssd1306_command(0X00); ssd1306_command(start); ssd1306_command(0X00); ssd1306_command(stop); ssd1306_command(0X00); ssd1306_command(0XFF); ssd1306_command(SSD1306_ACTIVATE_SCROLL); } // startscrolldiagright // Activate a diagonal scroll for rows start through stop // Hint, the display is 16 rows tall. To scroll the whole display, run: // display.scrollright(0x00, 0x0F) void Adafruit_SSD1306::startscrolldiagright(uint8_t start, uint8_t stop){ ssd1306_command(SSD1306_SET_VERTICAL_SCROLL_AREA); ssd1306_command(0X00); ssd1306_command(SSD1306_LCDHEIGHT); ssd1306_command(SSD1306_VERTICAL_AND_RIGHT_HORIZONTAL_SCROLL); ssd1306_command(0X00); ssd1306_command(start); ssd1306_command(0X00); ssd1306_command(stop); ssd1306_command(0X01); ssd1306_command(SSD1306_ACTIVATE_SCROLL); } // startscrolldiagleft // Activate a diagonal scroll for rows start through stop // Hint, the display is 16 rows tall. To scroll the whole display, run: // display.scrollright(0x00, 0x0F) void Adafruit_SSD1306::startscrolldiagleft(uint8_t start, uint8_t stop){ ssd1306_command(SSD1306_SET_VERTICAL_SCROLL_AREA); ssd1306_command(0X00); ssd1306_command(SSD1306_LCDHEIGHT); ssd1306_command(SSD1306_VERTICAL_AND_LEFT_HORIZONTAL_SCROLL); ssd1306_command(0X00); ssd1306_command(start); ssd1306_command(0X00); ssd1306_command(stop); ssd1306_command(0X01); ssd1306_command(SSD1306_ACTIVATE_SCROLL); } void Adafruit_SSD1306::stopscroll(void){ ssd1306_command(SSD1306_DEACTIVATE_SCROLL); } // Dim the display // dim = true: display is dimmed // dim = false: display is normal void Adafruit_SSD1306::dim(boolean dim) { uint8_t contrast; if (dim) { contrast = 0; // Dimmed display } else { if (_vccstate == SSD1306_EXTERNALVCC) { contrast = 0x9F; } else { contrast = 0xCF; } } // the range of contrast to too small to be really useful // it is useful to dim the display ssd1306_command(SSD1306_SETCONTRAST); ssd1306_command(contrast); } void Adafruit_SSD1306::display(void) { ssd1306_command(SSD1306_COLUMNADDR); ssd1306_command(0); // Column start address (0 = reset) ssd1306_command(SSD1306_LCDWIDTH-1); // Column end address (127 = reset) ssd1306_command(SSD1306_PAGEADDR); ssd1306_command(0); // Page start address (0 = reset) #if SSD1306_LCDHEIGHT == 64 ssd1306_command(7); // Page end address #endif #if SSD1306_LCDHEIGHT == 32 ssd1306_command(3); // Page end address #endif #if SSD1306_LCDHEIGHT == 16 ssd1306_command(1); // Page end address #endif if (sid != -1) { // SPI #ifdef HAVE_PORTREG *csport |= cspinmask; *dcport |= dcpinmask; *csport &= ~cspinmask; #else digitalWrite(cs, HIGH); digitalWrite(dc, HIGH); digitalWrite(cs, LOW); #endif for (uint16_t i=0; i<(SSD1306_LCDWIDTH*SSD1306_LCDHEIGHT/8); i++) { fastSPIwrite(buffer[i]); } #ifdef HAVE_PORTREG *csport |= cspinmask; #else digitalWrite(cs, HIGH); #endif } else { // save I2C bitrate #ifdef TWBR uint8_t twbrbackup = TWBR; TWBR = 12; // upgrade to 400KHz! #endif //Serial.println(TWBR, DEC); //Serial.println(TWSR & 0x3, DEC); // I2C for (uint16_t i=0; i<(SSD1306_LCDWIDTH*SSD1306_LCDHEIGHT/8); i++) { // send a bunch of data in one xmission Wire.beginTransmission(_i2caddr); WIRE_WRITE(0x40); for (uint8_t x=0; x<16; x++) { WIRE_WRITE(buffer[i]); i++; } i--; Wire.endTransmission(); } #ifdef TWBR TWBR = twbrbackup; #endif } } // clear everything void Adafruit_SSD1306::clearDisplay(void) { memset(buffer, 0, (SSD1306_LCDWIDTH*SSD1306_LCDHEIGHT/8)); } inline void Adafruit_SSD1306::fastSPIwrite(uint8_t d) { if(hwSPI) { (void)SPI.transfer(d); } else { for(uint8_t bit = 0x80; bit; bit >>= 1) { #ifdef HAVE_PORTREG *clkport &= ~clkpinmask; if(d & bit) *mosiport |= mosipinmask; else *mosiport &= ~mosipinmask; *clkport |= clkpinmask; #else digitalWrite(sclk, LOW); if(d & bit) digitalWrite(sid, HIGH); else digitalWrite(sid, LOW); digitalWrite(sclk, HIGH); #endif } } } void Adafruit_SSD1306::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { boolean bSwap = false; switch(rotation) { case 0: // 0 degree rotation, do nothing break; case 1: // 90 degree rotation, swap x & y for rotation, then invert x bSwap = true; ssd1306_swap(x, y); x = WIDTH - x - 1; break; case 2: // 180 degree rotation, invert x and y - then shift y around for height. x = WIDTH - x - 1; y = HEIGHT - y - 1; x -= (w-1); break; case 3: // 270 degree rotation, swap x & y for rotation, then invert y and adjust y for w (not to become h) bSwap = true; ssd1306_swap(x, y); y = HEIGHT - y - 1; y -= (w-1); break; } if(bSwap) { drawFastVLineInternal(x, y, w, color); } else { drawFastHLineInternal(x, y, w, color); } } void Adafruit_SSD1306::drawFastHLineInternal(int16_t x, int16_t y, int16_t w, uint16_t color) { // Do bounds/limit checks if(y < 0 || y >= HEIGHT) { return; } // make sure we don't try to draw below 0 if(x < 0) { w += x; x = 0; } // make sure we don't go off the edge of the display if( (x + w) > WIDTH) { w = (WIDTH - x); } // if our width is now negative, punt if(w <= 0) { return; } // set up the pointer for movement through the buffer register uint8_t *pBuf = buffer; // adjust the buffer pointer for the current row pBuf += ((y/8) * SSD1306_LCDWIDTH); // and offset x columns in pBuf += x; register uint8_t mask = 1 << (y&7); switch (color) { case WHITE: while(w--) { *pBuf++ |= mask; }; break; case BLACK: mask = ~mask; while(w--) { *pBuf++ &= mask; }; break; case INVERSE: while(w--) { *pBuf++ ^= mask; }; break; } } void Adafruit_SSD1306::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { bool bSwap = false; switch(rotation) { case 0: break; case 1: // 90 degree rotation, swap x & y for rotation, then invert x and adjust x for h (now to become w) bSwap = true; ssd1306_swap(x, y); x = WIDTH - x - 1; x -= (h-1); break; case 2: // 180 degree rotation, invert x and y - then shift y around for height. x = WIDTH - x - 1; y = HEIGHT - y - 1; y -= (h-1); break; case 3: // 270 degree rotation, swap x & y for rotation, then invert y bSwap = true; ssd1306_swap(x, y); y = HEIGHT - y - 1; break; } if(bSwap) { drawFastHLineInternal(x, y, h, color); } else { drawFastVLineInternal(x, y, h, color); } } void Adafruit_SSD1306::drawFastVLineInternal(int16_t x, int16_t __y, int16_t __h, uint16_t color) { // do nothing if we're off the left or right side of the screen if(x < 0 || x >= WIDTH) { return; } // make sure we don't try to draw below 0 if(__y < 0) { // __y is negative, this will subtract enough from __h to account for __y being 0 __h += __y; __y = 0; } // make sure we don't go past the height of the display if( (__y + __h) > HEIGHT) { __h = (HEIGHT - __y); } // if our height is now negative, punt if(__h <= 0) { return; } // this display doesn't need ints for coordinates, use local byte registers for faster juggling register uint8_t y = __y; register uint8_t h = __h; // set up the pointer for fast movement through the buffer register uint8_t *pBuf = buffer; // adjust the buffer pointer for the current row pBuf += ((y/8) * SSD1306_LCDWIDTH); // and offset x columns in pBuf += x; // do the first partial byte, if necessary - this requires some masking register uint8_t mod = (y&7); if(mod) { // mask off the high n bits we want to set mod = 8-mod; // note - lookup table results in a nearly 10% performance improvement in fill* functions // register uint8_t mask = ~(0xFF >> (mod)); static uint8_t premask[8] = {0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE }; register uint8_t mask = premask[mod]; // adjust the mask if we're not going to reach the end of this byte if( h < mod) { mask &= (0XFF >> (mod-h)); } switch (color) { case WHITE: *pBuf |= mask; break; case BLACK: *pBuf &= ~mask; break; case INVERSE: *pBuf ^= mask; break; } // fast exit if we're done here! if(h= 8) { if (color == INVERSE) { // separate copy of the code so we don't impact performance of the black/white write version with an extra comparison per loop do { *pBuf=~(*pBuf); // adjust the buffer forward 8 rows worth of data pBuf += SSD1306_LCDWIDTH; // adjust h & y (there's got to be a faster way for me to do this, but this should still help a fair bit for now) h -= 8; } while(h >= 8); } else { // store a local value to work with register uint8_t val = (color == WHITE) ? 255 : 0; do { // write our value in *pBuf = val; // adjust the buffer forward 8 rows worth of data pBuf += SSD1306_LCDWIDTH; // adjust h & y (there's got to be a faster way for me to do this, but this should still help a fair bit for now) h -= 8; } while(h >= 8); } } // now do the final partial byte, if necessary if(h) { mod = h & 7; // this time we want to mask the low bits of the byte, vs the high bits we did above // register uint8_t mask = (1 << mod) - 1; // note - lookup table results in a nearly 10% performance improvement in fill* functions static uint8_t postmask[8] = {0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F }; register uint8_t mask = postmask[mod]; switch (color) { case WHITE: *pBuf |= mask; break; case BLACK: *pBuf &= ~mask; break; case INVERSE: *pBuf ^= mask; break; } } }