hidden wireframe works, change v3 api a little bit
This commit is contained in:
parent
a356ac6490
commit
8ae1fbf612
78
camera.c
78
camera.c
@ -13,7 +13,7 @@ struct _camera_t
|
||||
{
|
||||
float near;
|
||||
float far;
|
||||
float r[4][4];
|
||||
m44_t r;
|
||||
};
|
||||
|
||||
|
||||
@ -53,7 +53,7 @@ camera_setup(
|
||||
// and the "up" normal
|
||||
v3_t v = v3_norm(v3_cross(w, u));
|
||||
|
||||
float cam[4][4] = {
|
||||
m44_t cam = {{
|
||||
#if 0
|
||||
{ u.p[0], v.p[0], w.p[0], 0 },
|
||||
{ u.p[1], v.p[1], w.p[1], 0 },
|
||||
@ -65,59 +65,62 @@ camera_setup(
|
||||
{ w.p[0], w.p[1], w.p[2], -v3_dot(w,eye) },
|
||||
{ 0, 0, 0, 1 },
|
||||
#endif
|
||||
};
|
||||
}};
|
||||
|
||||
|
||||
fprintf(stderr, "Camera:\n");
|
||||
for(int i = 0 ; i < 4 ; i++)
|
||||
{
|
||||
for(int j = 0 ; j < 4 ; j++)
|
||||
fprintf(stderr, " %+5.3f", cam[i][j]);
|
||||
fprintf(stderr, " %+5.3f", cam.m[i][j]);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
// now compute the perspective projection matrix
|
||||
if(0) {
|
||||
float s = 1.0 / tan(fov * M_PI / 180 / 2);
|
||||
c->near = 4.0;
|
||||
c->far = 200;
|
||||
c->near = 1;
|
||||
c->far = 2;
|
||||
float f1 = - c->far / (c->far - c->near);
|
||||
float f2 = - c->far * c->near / (c->far - c->near);
|
||||
|
||||
float pers[4][4] = {
|
||||
m44_t pers = {{
|
||||
{ s, 0, 0, 0 },
|
||||
{ 0, s, 0, 0 },
|
||||
{ 0, 0, f1, -1 },
|
||||
{ 0, 0, f2, 0 },
|
||||
};
|
||||
{ 0, 0, f2, -1 },
|
||||
{ 0, 0, f1, 0 },
|
||||
}};
|
||||
|
||||
fprintf(stderr, "Perspective:\n");
|
||||
for(int i = 0 ; i < 4 ; i++)
|
||||
{
|
||||
for(int j = 0 ; j < 4 ; j++)
|
||||
fprintf(stderr, " %+5.3f", pers[i][j]);
|
||||
fprintf(stderr, " %+5.3f", pers.m[i][j]);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
// and apply it to the camera matrix to generate transform
|
||||
for(int i = 0 ; i < 4 ; i++)
|
||||
{
|
||||
for(int j = 0 ; j < 4 ; j++)
|
||||
{
|
||||
float d = 0;
|
||||
for(int k = 0 ; k < 4 ; k++)
|
||||
d += pers[i][k] * cam[k][j];
|
||||
c->r[i][j] = d;
|
||||
}
|
||||
}
|
||||
m44_mult(&c->r, &cam, &pers);
|
||||
} else {
|
||||
// no perspective
|
||||
m44_t pers = {{
|
||||
{ 1, 0, 0, 0 },
|
||||
{ 0, 1, 0, 0 },
|
||||
{ 0, 0, 1, 0 },
|
||||
{ 0, 0, 0, 1 },
|
||||
}};
|
||||
// and apply it to the camera matrix to generate transform
|
||||
m44_mult(&c->r, &cam, &pers);
|
||||
}
|
||||
|
||||
|
||||
fprintf(stderr, "Cam*Pers\n");
|
||||
for(int i = 0 ; i < 4 ; i++)
|
||||
{
|
||||
for(int j = 0 ; j < 4 ; j++)
|
||||
fprintf(stderr, " %+5.3f", c->r[i][j]);
|
||||
fprintf(stderr, " %+5.3f", c->r.m[i][j]);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@ -133,32 +136,29 @@ camera_project(
|
||||
v3_t * const v_out
|
||||
)
|
||||
{
|
||||
float v[4] = { v_in->p[0], v_in->p[1], v_in->p[2], 1 };
|
||||
float p[4] = { 0, 0, 0, 0};
|
||||
v4_t v = {{ v_in->p[0], v_in->p[1], v_in->p[2], 1 }};
|
||||
v4_t p = m44_multv(&c->r, &v);
|
||||
|
||||
for (int i = 0 ; i < 4 ; i++)
|
||||
for (int j = 0 ; j < 4 ; j++)
|
||||
p[i] += c->r[i][j] * v[j];
|
||||
p.p[2] *= -1;
|
||||
|
||||
// what if p->p[4] == 0?
|
||||
// pz < 0 == The point is behind us; do not display?
|
||||
//if (p[2] < c->near || p[2] > c->far)
|
||||
if (p[2] < 0)
|
||||
if (p.p[2] <= 0)
|
||||
return 0;
|
||||
|
||||
for (int i = 0 ; i < 3 ; i++)
|
||||
p[i] /= p[3];
|
||||
|
||||
if(0) fprintf(stderr, "%.2f %.2f %.2f -> %.2f %.2f %.2f %.2f\n",
|
||||
v[0], v[1], v[2],
|
||||
p[0], p[1], p[2], p[3]
|
||||
);
|
||||
// shrink by the distance
|
||||
p.p[0] *= 1000 / p.p[2];
|
||||
p.p[1] *= 1000 / p.p[2];
|
||||
//p[2] /= 1000;
|
||||
|
||||
// Transform to screen coordinate frame,
|
||||
// and return it to the caller
|
||||
v_out->p[0] = p[0];
|
||||
v_out->p[1] = p[1];
|
||||
v_out->p[2] = p[2];
|
||||
v_out->p[0] = p.p[0];
|
||||
v_out->p[1] = p.p[1];
|
||||
v_out->p[2] = p.p[2];
|
||||
|
||||
v3_print(*v_out);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
35
hiddenwire.c
35
hiddenwire.c
@ -18,6 +18,7 @@ static int debug = 0;
|
||||
#include "v3.h"
|
||||
#include "tri.h"
|
||||
#include "camera.h"
|
||||
#include "svg.h"
|
||||
|
||||
|
||||
static const char usage[] =
|
||||
@ -77,25 +78,6 @@ stl_face_t;
|
||||
|
||||
|
||||
|
||||
void
|
||||
svg_line(
|
||||
const char * color,
|
||||
const float * p1,
|
||||
const float * p2,
|
||||
float thick
|
||||
)
|
||||
{
|
||||
// invert the sense of y
|
||||
printf("<line x1=\"%fpx\" y1=\"%fpx\" x2=\"%fpx\" y2=\"%fpx\" stroke=\"%s\" stroke-width=\"%.1fpx\"/>\n",
|
||||
p1[0],
|
||||
-p1[1],
|
||||
p2[0],
|
||||
-p2[1],
|
||||
color,
|
||||
thick
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
static inline int
|
||||
v2_eq(
|
||||
@ -302,11 +284,6 @@ int main(
|
||||
behind++;
|
||||
goto reject_early;
|
||||
}
|
||||
|
||||
// scale to the image size
|
||||
s[j].p[0] *= width;
|
||||
s[j].p[1] *= width;
|
||||
s[j].p[2] *= width;
|
||||
}
|
||||
|
||||
if(debug >= 2)
|
||||
@ -326,7 +303,7 @@ int main(
|
||||
tri_t * const tri = tri_new(s, stl->p);
|
||||
|
||||
// reject this face if any of the vertices are behind us
|
||||
if (tri->min[2] < 0)
|
||||
if (tri->min.p[2] < 0)
|
||||
{
|
||||
behind++;
|
||||
goto reject;
|
||||
@ -342,6 +319,7 @@ int main(
|
||||
}
|
||||
|
||||
// if it has any off-screen coords, reject it
|
||||
/*
|
||||
if (!onscreen(&tri->p[0], width, height)
|
||||
|| !onscreen(&tri->p[1], width, height)
|
||||
|| !onscreen(&tri->p[2], width, height))
|
||||
@ -350,6 +328,7 @@ tri_print(tri);
|
||||
offscreen++;
|
||||
goto reject;
|
||||
}
|
||||
*/
|
||||
|
||||
// prune the small triangles in the screen space
|
||||
if (tri_area_2d(tri) < prune)
|
||||
@ -378,6 +357,8 @@ reject:
|
||||
reject_early:
|
||||
continue;
|
||||
}
|
||||
for(tri_t * t = zlist ; t ; t = t->next)
|
||||
tri_print(t);
|
||||
|
||||
if (debug)
|
||||
fprintf(stderr, "Retained %d triangles, rejected %d behind, %d offscreen, %d backface, %d small\n", retained, behind, offscreen, backface, small_area);
|
||||
@ -385,6 +366,7 @@ reject_early:
|
||||
// drop any triangles that are totally occluded by another
|
||||
// triangle. this reduces the amount of work for later
|
||||
rejected = 0;
|
||||
#if 0
|
||||
for(tri_t * t = zlist ; t ; t = t->next)
|
||||
{
|
||||
tri_t * t2_next;
|
||||
@ -405,6 +387,7 @@ reject_early:
|
||||
}
|
||||
if (debug)
|
||||
fprintf(stderr, "Rejected %d fully occluded triangles\n", rejected);
|
||||
#endif
|
||||
|
||||
|
||||
// generate a list of segments, dropping any coplanar ones
|
||||
@ -469,7 +452,7 @@ reject_early:
|
||||
seg_t * s = slist;
|
||||
slist = s->next;
|
||||
|
||||
tri_seg_intersect(zlist, s, &slist_visible);
|
||||
tri_seg_hidden(zlist, s, &slist_visible);
|
||||
}
|
||||
} else {
|
||||
// don't do any intersection tests
|
||||
|
12
seg.h
12
seg.h
@ -34,15 +34,17 @@ seg_print(
|
||||
const seg_t * const s
|
||||
)
|
||||
{
|
||||
fprintf(stderr, "%.0f,%.0f -> %.0f,%.0f (was %.0f,%.0f -> %.0f,%.0f)\n",
|
||||
fprintf(stderr, "%+5.1f,%+5.1f,%5.1f -> %+5.1f,%+5.1f,%5.1f\n",
|
||||
s->p[0].p[0],
|
||||
s->p[0].p[1],
|
||||
s->p[0].p[2],
|
||||
s->p[1].p[0],
|
||||
s->p[1].p[1],
|
||||
s->src[0].p[0],
|
||||
s->src[0].p[1],
|
||||
s->src[1].p[0],
|
||||
s->src[1].p[1]
|
||||
s->p[1].p[2]
|
||||
//s->src[0].p[0],
|
||||
//s->src[0].p[1],
|
||||
//s->src[1].p[0],
|
||||
//s->src[1].p[1]
|
||||
);
|
||||
}
|
||||
|
||||
|
8
stl_3d.c
8
stl_3d.c
@ -38,7 +38,7 @@ stl_vertex_find(
|
||||
{
|
||||
stl_vertex_t * const v = &vertices[x];
|
||||
|
||||
if (v3_eq(&v->p, p))
|
||||
if (v3_eq(v->p, *p))
|
||||
return v;
|
||||
}
|
||||
|
||||
@ -95,11 +95,11 @@ stl_angle(
|
||||
for (int i = 0 ; i < 3 ; i++)
|
||||
{
|
||||
x4 = f2->vertex[i]->p;
|
||||
if (v3_eq(&x1, &x4))
|
||||
if (v3_eq(x1, x4))
|
||||
continue;
|
||||
if (v3_eq(&x2, &x4))
|
||||
if (v3_eq(x2, x4))
|
||||
continue;
|
||||
if (v3_eq(&x3, &x4))
|
||||
if (v3_eq(x3, x4))
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
|
41
svg.h
Normal file
41
svg.h
Normal file
@ -0,0 +1,41 @@
|
||||
#ifndef _svg_h_
|
||||
#define _svg_h_
|
||||
|
||||
static inline void
|
||||
svg_line(
|
||||
const char * color,
|
||||
const float * p1,
|
||||
const float * p2,
|
||||
float thick
|
||||
)
|
||||
{
|
||||
// invert the sense of y
|
||||
printf("<line x1=\"%fpx\" y1=\"%fpx\" x2=\"%fpx\" y2=\"%fpx\" stroke=\"%s\" stroke-width=\"%.1fpx\"/>\n",
|
||||
p1[0],
|
||||
-p1[1],
|
||||
p2[0],
|
||||
-p2[1],
|
||||
color,
|
||||
thick
|
||||
);
|
||||
}
|
||||
|
||||
static inline void
|
||||
svg_circle(
|
||||
const char * color,
|
||||
const float p1,
|
||||
const float p2,
|
||||
float radius
|
||||
)
|
||||
{
|
||||
// invert the sense of y
|
||||
printf("<circle x=\"%fpx\" y=\"%fpx\" radius=\"%fpx\" stroke=\"%s\" stroke-width=\"%.1fpx\"/>\n",
|
||||
p1,
|
||||
-p2,
|
||||
radius,
|
||||
color,
|
||||
1.0
|
||||
);
|
||||
}
|
||||
|
||||
#endif
|
@ -1 +1,7 @@
|
||||
cube([10,20,30], center=true);
|
||||
render() difference()
|
||||
{
|
||||
cube([10,20,25], center=true);
|
||||
cube([20,15,20], center=true);
|
||||
}
|
||||
|
||||
translate([3,2,4]) cube([25,8,8], center=true);
|
||||
|
685
tri.c
685
tri.c
@ -34,11 +34,8 @@ tri_new(
|
||||
|
||||
|
||||
// compute the bounding box for the triangle in camera space
|
||||
for(int j = 0 ; j < 3 ; j++)
|
||||
{
|
||||
t->min[j] = min(min(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]);
|
||||
t->max[j] = max(max(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]);
|
||||
}
|
||||
t->min = v3_min(v3_min(t->p[0], t->p[1]), t->p[2]);
|
||||
t->max = v3_max(v3_max(t->p[0], t->p[1]), t->p[2]);
|
||||
|
||||
return t;
|
||||
}
|
||||
@ -59,7 +56,7 @@ tri_insert(
|
||||
|
||||
// check to see if our new triangle is closer than
|
||||
// the current triangle
|
||||
if(iter->min[2] > t->min[2])
|
||||
if(iter->min.p[2] > t->min.p[2])
|
||||
break;
|
||||
|
||||
zlist = &(iter->next);
|
||||
@ -110,7 +107,7 @@ tri_print(
|
||||
const tri_t * const t
|
||||
)
|
||||
{
|
||||
fprintf(stderr, "%.0f,%.0f,%.0f %.0f,%.0f,%.0f %.0f,%.0f,%.0f norm %.3f,%.3f,%.3f\n",
|
||||
fprintf(stderr, "{{{%+5.1f,%+5.1f,%5.1f }},{{%+5.1f,%+5.1f,%5.1f }},{{%+5.1f,%+5.1f,%5.1f }}}\n", // norm %.3f %.3f %.3f\n",
|
||||
t->p[0].p[0],
|
||||
t->p[0].p[1],
|
||||
t->p[0].p[2],
|
||||
@ -119,10 +116,10 @@ tri_print(
|
||||
t->p[1].p[2],
|
||||
t->p[2].p[0],
|
||||
t->p[2].p[1],
|
||||
t->p[2].p[2],
|
||||
t->normal.p[0],
|
||||
t->normal.p[1],
|
||||
t->normal.p[2]
|
||||
t->p[2].p[2]
|
||||
//t->normal.p[0],
|
||||
//t->normal.p[1],
|
||||
//t->normal.p[2]
|
||||
);
|
||||
}
|
||||
|
||||
@ -149,7 +146,7 @@ tri_coplanar(
|
||||
{
|
||||
for(int j = 0 ; j < 3 ; j++)
|
||||
{
|
||||
if (!v3_eq(&t0->p[i], &t1->p[j]))
|
||||
if (!v3_eq(t0->p[i], t1->p[j]))
|
||||
continue;
|
||||
matches |= 1 << i;
|
||||
break;
|
||||
@ -162,10 +159,14 @@ tri_coplanar(
|
||||
case 0x6: return 1;
|
||||
case 0x5: return 2;
|
||||
case 0x7:
|
||||
fprintf(stderr, "uh, three points match?\n");
|
||||
tri_print(t0);
|
||||
tri_print(t1);
|
||||
return -1;
|
||||
// these are likely small triangles that can be ignored
|
||||
if (tri_debug > 3)
|
||||
{
|
||||
fprintf(stderr, "uh, three points match?\n");
|
||||
tri_print(t0);
|
||||
tri_print(t1);
|
||||
}
|
||||
return 0;
|
||||
default:
|
||||
// no shared edge
|
||||
return -1;
|
||||
@ -212,6 +213,60 @@ tri_find_z(
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Find the barycentric coordinates for point of an XY coordinate in a triangle.
|
||||
*
|
||||
* p can be written as a combination of t01 and t02,
|
||||
* p - t0 = a * (t1 - t0) + b * (t2 - t0)
|
||||
* setting t0 to 0, this becomes:
|
||||
* p = a * t1 + b * t2
|
||||
* which is two equations with two unknowns
|
||||
*
|
||||
* The x and y coordinates are based on the two sides of the triangle
|
||||
* and the z coordinate is the screen coordinate z in the triangle.
|
||||
*/
|
||||
v3_t
|
||||
tri_bary_coord(
|
||||
const tri_t * const t,
|
||||
const v3_t * const p
|
||||
)
|
||||
{
|
||||
const float t1x = t->p[1].p[0] - t->p[0].p[0];
|
||||
const float t1y = t->p[1].p[1] - t->p[0].p[1];
|
||||
const float t1z = t->p[1].p[2] - t->p[0].p[2];
|
||||
const float t2x = t->p[2].p[0] - t->p[0].p[0];
|
||||
const float t2y = t->p[2].p[1] - t->p[0].p[1];
|
||||
const float t2z = t->p[2].p[2] - t->p[0].p[2];
|
||||
const float px = p->p[0] - t->p[0].p[0];
|
||||
const float py = p->p[1] - t->p[0].p[1];
|
||||
|
||||
float a = (px * t2y - py * t2x) / (t1x * t2y - t2x * t1y);
|
||||
float b = (px * t1y - py * t1x) / (t2x * t1y - t1x * t2y);
|
||||
v3_t v = {{
|
||||
a,
|
||||
b,
|
||||
t->p[0].p[2] + a * t1z + b * t2z,
|
||||
}};
|
||||
|
||||
//v.p[2] = 1.0 - v.p[0] - v.p[1];
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
// Returns true if the bary centry point is inside the triangle
|
||||
// which means that a and b are non-negative and sum to less than 1
|
||||
int
|
||||
tri_bary_inside(
|
||||
const v3_t p
|
||||
)
|
||||
{
|
||||
const float a = p.p[0];
|
||||
const float b = p.p[1];
|
||||
|
||||
return 0 <= a && 0 <= b && a + b <= 1;
|
||||
}
|
||||
|
||||
|
||||
/** Compute the points of intersection for two segments in 2d, and z points.
|
||||
*
|
||||
* This is a specialized ray intersection algorithm for the
|
||||
@ -235,18 +290,22 @@ hidden_intersect(
|
||||
const float p0_x = p0->p[0];
|
||||
const float p0_y = p0->p[1];
|
||||
const float p0_z = p0->p[2];
|
||||
|
||||
const float p1_x = p1->p[0];
|
||||
const float p1_y = p1->p[1];
|
||||
const float p1_z = p1->p[2];
|
||||
|
||||
const float p2_x = p2->p[0];
|
||||
const float p2_y = p2->p[1];
|
||||
const float p2_z = p2->p[2];
|
||||
|
||||
const float p3_x = p3->p[0];
|
||||
const float p3_y = p3->p[1];
|
||||
const float p3_z = p3->p[2];
|
||||
|
||||
const float s1_x = p1_x - p0_x;
|
||||
const float s1_y = p1_y - p0_y;
|
||||
|
||||
const float s2_x = p3_x - p2_x;
|
||||
const float s2_y = p3_y - p2_y;
|
||||
|
||||
@ -279,15 +338,12 @@ if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f-
|
||||
r1
|
||||
);
|
||||
|
||||
const float ix = p0_x + (r0 * s1_x);
|
||||
const float iy = p0_y + (r0 * s1_y);
|
||||
|
||||
// compute the z intercept for each on the two different coordinates
|
||||
if(l0_int)
|
||||
{
|
||||
*l0_int = (v3_t){{
|
||||
ix,
|
||||
iy,
|
||||
p0_x + r0 * s1_x,
|
||||
p0_y + r0 * s1_y,
|
||||
p0_z + r0 * (p1_z - p0_z)
|
||||
}};
|
||||
}
|
||||
@ -295,8 +351,8 @@ if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f-
|
||||
if(l1_int)
|
||||
{
|
||||
*l1_int = (v3_t){{
|
||||
ix,
|
||||
iy,
|
||||
p2_x + r1 * s2_x,
|
||||
p2_y + r1 * s2_y,
|
||||
p2_z + r1 * (p3_z - p2_z)
|
||||
}};
|
||||
}
|
||||
@ -305,270 +361,7 @@ if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f-
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Recursive algorithm:
|
||||
* Given a line segment and a list of triangles,
|
||||
* find if the line segment crosses any triangle.
|
||||
* If it crosses a triangle the segment will be shortened
|
||||
* and an additional one might be created.
|
||||
* Recusively try intersecting the new segment (starting at the same triangle)
|
||||
* and then continue trying the shortened segment.
|
||||
*/
|
||||
|
||||
void
|
||||
tri_seg_intersect(
|
||||
const tri_t * zlist,
|
||||
seg_t * s,
|
||||
seg_t ** slist_visible
|
||||
)
|
||||
{
|
||||
const float p0z = s->p[0].p[2];
|
||||
const float p1z = s->p[1].p[2];
|
||||
const float seg_max_z = max(p0z, p1z);
|
||||
|
||||
// avoid processing empty segments
|
||||
const float seg_len = v3_len(&s->p[0], &s->p[1]);
|
||||
if (seg_len < EPS)
|
||||
return;
|
||||
|
||||
static int recursive;
|
||||
recursive++;
|
||||
|
||||
//fprintf(stderr, "%d: processing segment ", recursive); seg_print(s);
|
||||
fprintf(stderr, "--- recursive %d\n", recursive);
|
||||
seg_print(s);
|
||||
|
||||
for( const tri_t * t = zlist ; t ; t = t->next )
|
||||
{
|
||||
// if the segment is closer than the triangle,
|
||||
// then we no longer have to check any further into
|
||||
// the zlist (it is sorted by depth).
|
||||
if (seg_max_z <= t->min[2])
|
||||
break;
|
||||
|
||||
#if 0
|
||||
// make sure that we're not comparing to our own triangle
|
||||
// or one that shares an edge with us (which might be in
|
||||
// a different order)
|
||||
if (v2_eq(s->src[0].p, t->p[0].p, 0.0005)
|
||||
&& v2_eq(s->src[1].p, t->p[1].p, 0.0005))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[1].p, 0.0005)
|
||||
&& v2_eq(s->src[1].p, t->p[2].p, 0.0005))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[2].p, 0.0005)
|
||||
&& v2_eq(s->src[1].p, t->p[0].p, 0.0005))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[1].p, 0.0005)
|
||||
&& v2_eq(s->src[1].p, t->p[0].p, 0.0005))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[2].p, 0.0005)
|
||||
&& v2_eq(s->src[1].p, t->p[1].p, 0.0005))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[0].p, 0.0005)
|
||||
&& v2_eq(s->src[1].p, t->p[2].p, 0.0005))
|
||||
continue;
|
||||
#endif
|
||||
|
||||
if (tri_debug >= 2)
|
||||
tri_print(t);
|
||||
/*
|
||||
// if the segment is co-linear to any of the
|
||||
// triangle edges, include it
|
||||
for(int i = 0 ; i < 3 ; i++)
|
||||
{
|
||||
if (parallel(
|
||||
&s->p[0], &s->p[1],
|
||||
&t->p[i], &t->p[(i+1)%3]
|
||||
))
|
||||
goto next_segment;
|
||||
}
|
||||
*/
|
||||
|
||||
float z0, z1;
|
||||
int inside0 = tri_find_z(t, &s->p[0], &z0);
|
||||
int inside1 = tri_find_z(t, &s->p[1], &z1);
|
||||
|
||||
if (tri_debug >= 2 && (inside0 || inside1))
|
||||
{
|
||||
fprintf(stderr, "inside %d %d\n", inside0, inside1);
|
||||
}
|
||||
|
||||
// if both are inside but the segment is infront of the
|
||||
// triangle, then we retain the segment.
|
||||
// otherwies we discard the segment
|
||||
if (inside0 && inside1)
|
||||
{
|
||||
if (s->p[0].p[2] <= z0
|
||||
&& s->p[1].p[2] <= z1)
|
||||
continue;
|
||||
if (tri_debug >= 2)
|
||||
fprintf(stderr, "BOTH INSIDE\n");
|
||||
recursive--;
|
||||
return;
|
||||
}
|
||||
|
||||
// split the segment for each intersection with the
|
||||
// triangle segments and add it to the work queue.
|
||||
int intersections = 0;
|
||||
v3_t is[3] = {}; // 3d point of segment intercept
|
||||
v3_t it[3] = {}; // 3d point of triangle intercept
|
||||
|
||||
for(int j = 0 ; j < 3 ; j++)
|
||||
{
|
||||
float ratio = hidden_intersect(
|
||||
&s->p[0], &s->p[1],
|
||||
&t->p[j], &t->p[(j+1)%3],
|
||||
&is[intersections],
|
||||
&it[intersections]
|
||||
);
|
||||
|
||||
if (ratio < 0)
|
||||
continue;
|
||||
|
||||
if (tri_debug >= 2)
|
||||
fprintf(stderr, "%d ratio=%.2f\n", j, ratio);
|
||||
intersections++;
|
||||
}
|
||||
|
||||
|
||||
// if none of them intersect, we keep looking
|
||||
if (intersections == 0)
|
||||
continue;
|
||||
|
||||
if (tri_debug >= 2)
|
||||
fprintf(stderr, "%d intersections\n", intersections);
|
||||
|
||||
if (intersections == 3)
|
||||
{
|
||||
// this likely means that the triangle is very, very
|
||||
// small, so let's just ignore this triangle
|
||||
if (tri_debug >= 2)
|
||||
fprintf(stderr, "Three intersections\n");
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
if (intersections == 2)
|
||||
{
|
||||
// figure out how far it is to each of the intersections
|
||||
const float d00 = v3_len(&s->p[0], &is[0]);
|
||||
const float d01 = v3_len(&s->p[0], &is[1]);
|
||||
const float d10 = v3_len(&s->p[1], &is[0]);
|
||||
const float d11 = v3_len(&s->p[1], &is[1]);
|
||||
|
||||
if (tri_debug >= 2)
|
||||
fprintf(stderr, "Two intersections\n");
|
||||
|
||||
// discard segments that have two interesections that match
|
||||
// the segment exactly (distance from segment ends to
|
||||
// intersection point close enough to zero).
|
||||
if (d00 < EPS && d11 < EPS)
|
||||
{
|
||||
recursive--;
|
||||
return;
|
||||
}
|
||||
if (d01 < EPS && d10 < EPS)
|
||||
{
|
||||
recursive--;
|
||||
return;
|
||||
}
|
||||
|
||||
// if the segment intersection is closer than the triangle,
|
||||
// then we do nothing. degenerate cases are not handled
|
||||
if (d00 <= d01
|
||||
&& is[0].p[2] <= it[0].p[2]
|
||||
&& is[1].p[2] <= it[1].p[2])
|
||||
continue;
|
||||
if (d00 > d01
|
||||
&& is[1].p[2] <= it[0].p[2]
|
||||
&& is[0].p[2] <= it[1].p[2])
|
||||
continue;
|
||||
|
||||
// segment is behind the triangle,
|
||||
// we have to create a new segment
|
||||
// and shorten the existing segment
|
||||
// find the two intersections that we have
|
||||
// update the src field
|
||||
|
||||
// we need to create a new segment
|
||||
seg_t * news;
|
||||
if (d00 < d01)
|
||||
{
|
||||
// split from p0 to ix0
|
||||
news = seg_new(s->p[0], is[0]);
|
||||
news->src[0] = s->src[0];
|
||||
news->src[1] = s->src[1];
|
||||
s->p[0] = is[1];
|
||||
} else {
|
||||
// split from p0 to ix1
|
||||
news = seg_new(s->p[0], is[1]);
|
||||
news->src[0] = s->src[0];
|
||||
news->src[1] = s->src[1];
|
||||
s->p[0] = is[0];
|
||||
}
|
||||
|
||||
// recursively start splitting the new segment
|
||||
// starting at the next triangle down the z-depth
|
||||
tri_seg_intersect(zlist->next, news, slist_visible);
|
||||
|
||||
// continue splitting our current segment
|
||||
continue;
|
||||
}
|
||||
|
||||
if (intersections == 1)
|
||||
{
|
||||
// if there is an intersection, but the segment intercept
|
||||
// is closer than the triangle intercept, then no problem.
|
||||
// we do not bother with degenerate cases of intersecting
|
||||
// triangles
|
||||
if (is[0].p[2] <= it[0].p[2]
|
||||
&& is[1].p[2] <= it[0].p[2])
|
||||
{
|
||||
//svg_line("#00FF00", s->p[0].p, s->p[1].p, 10);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (inside0)
|
||||
{
|
||||
// shorten it on the 0 side
|
||||
s->p[0] = is[0];
|
||||
// huh? shouldn't we process this one?
|
||||
return;
|
||||
continue;
|
||||
} else
|
||||
if (inside1)
|
||||
{
|
||||
// shorten it on the 1 side
|
||||
s->p[1] = is[0];
|
||||
// huh? shouldn't we process this one?
|
||||
return;
|
||||
continue;
|
||||
} else {
|
||||
// both outside, but an intersection?
|
||||
// split at that point and hope for the best
|
||||
seg_t * const news = seg_new(s->p[0], is[0]);
|
||||
news->src[0] = s->src[0];
|
||||
news->src[1] = s->src[1];
|
||||
s->p[0] = is[0];
|
||||
|
||||
tri_seg_intersect(zlist->next, news, slist_visible);
|
||||
// continue splitting our current segment
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
next_segment:
|
||||
continue;
|
||||
}
|
||||
|
||||
// if we've reached here the segment is visible
|
||||
// and should be added to the visible list
|
||||
s->next = *slist_visible;
|
||||
*slist_visible = s;
|
||||
recursive--;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Fast check to see if t2 is entire occluded by t.
|
||||
@ -612,3 +405,323 @@ tri_behind(
|
||||
// they are all on the same side
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*
|
||||
tri_no_intersection, // nothing changed
|
||||
tri_infront, // segment is in front of the triangle
|
||||
tri_hidden, // segment is completely occluded
|
||||
tri_clipped, // segment is partially occluded on one end
|
||||
tri_split, // segment is partially occluded in the middle
|
||||
*/
|
||||
tri_intersect_t
|
||||
tri_seg_intersect(
|
||||
const tri_t * t,
|
||||
seg_t * s,
|
||||
seg_t ** new_seg // only if tri_split
|
||||
)
|
||||
{
|
||||
// avoid processing nearly empty segments
|
||||
const float seg_len = v3_len(&s->p[0], &s->p[1]);
|
||||
if (seg_len < EPS)
|
||||
return tri_hidden;
|
||||
|
||||
const v3_t p_max = v3_max(s->p[0], s->p[1]);
|
||||
const v3_t p_min = v3_min(s->p[0], s->p[1]);
|
||||
|
||||
// if the segment is closer than the triangle,
|
||||
// then we no longer have to check any further into
|
||||
// the zlist (it is sorted by depth).
|
||||
if (p_max.p[2] <= t->min.p[2])
|
||||
return tri_infront;
|
||||
|
||||
// check for four quadrant outside the bounding box
|
||||
// of the triangle min/max, which would have no chance
|
||||
// of intersecting with the triangle
|
||||
if (p_min.p[0] < t->min.p[0]
|
||||
&& p_max.p[0] < t->min.p[0])
|
||||
return tri_no_intersection;
|
||||
if (p_min.p[1] < t->min.p[1]
|
||||
&& p_max.p[1] < t->min.p[1])
|
||||
return tri_no_intersection;
|
||||
if (p_min.p[0] > t->max.p[0]
|
||||
&& p_max.p[0] > t->max.p[0])
|
||||
return tri_no_intersection;
|
||||
if (p_min.p[1] > t->max.p[1]
|
||||
&& p_max.p[1] > t->max.p[1])
|
||||
return tri_no_intersection;
|
||||
|
||||
// there is a possibility that this line crosses the triangle
|
||||
// compute the coordinates in triangle space
|
||||
const v3_t tp0 = tri_bary_coord(t, &s->p[0]);
|
||||
const v3_t tp1 = tri_bary_coord(t, &s->p[1]);
|
||||
|
||||
// if both are inside and not both on the same edge of
|
||||
// the triangle, then the segment is totally hidden.
|
||||
if (tri_bary_inside(tp0) && tri_bary_inside(tp1))
|
||||
{
|
||||
// if the segment z is closer than the triangle z
|
||||
// then the segment is in front of the triangle
|
||||
if (s->p[0].p[2] < tp0.p[2] && s->p[1].p[2] < tp1.p[2])
|
||||
return tri_no_intersection;
|
||||
|
||||
// if the barycentric coord is 0 for the same edge
|
||||
// for both points, then it is on the original line
|
||||
if (tp0.p[0] < EPS && tp1.p[0] < EPS)
|
||||
return tri_no_intersection;
|
||||
if (tp0.p[1] < EPS && tp1.p[1] < EPS)
|
||||
return tri_no_intersection;
|
||||
|
||||
// compute the third barycentric coordinate and check
|
||||
float c0 = 1.0 - tp0.p[0] - tp0.p[1];
|
||||
float c1 = 1.0 - tp1.p[0] - tp1.p[1];
|
||||
if (c0 < EPS && c1 < EPS)
|
||||
return tri_no_intersection;
|
||||
|
||||
// it is not on an edge and not infront of the triangle
|
||||
// so the segment is totally occluded
|
||||
return tri_hidden;
|
||||
}
|
||||
|
||||
// find the intersection point for each of the three
|
||||
// sides of the triangle
|
||||
v3_t is[3] = {}; // 3d point of segment intercept
|
||||
v3_t it[3] = {}; // 3d point of triangle intercept
|
||||
float ratio[3] = {}; // length along the line
|
||||
int intersections = 0;
|
||||
|
||||
for(int j = 0 ; j < 3 ; j++)
|
||||
{
|
||||
ratio[intersections] = hidden_intersect(
|
||||
&s->p[0], &s->p[1],
|
||||
&t->p[j], &t->p[(j+1)%3],
|
||||
&is[intersections],
|
||||
&it[intersections]
|
||||
);
|
||||
|
||||
if (ratio[intersections] < 0)
|
||||
continue;
|
||||
|
||||
// if the segment intersection is closer than the
|
||||
// triangle intersection, this does not count as
|
||||
// an intersection and we can ignore it.
|
||||
if (is[intersections].p[2] < it[intersections].p[2])
|
||||
continue;
|
||||
|
||||
if (tri_debug >= 2)
|
||||
{
|
||||
fprintf(stderr, "%d ratio=%.2f %+6.1f", j, ratio[intersections], it[intersections].p[2]);
|
||||
v3_print(is[intersections]);
|
||||
}
|
||||
intersections++;
|
||||
}
|
||||
|
||||
// check for duplicate intersections, which happens if
|
||||
// the lines go through at precisely the corners
|
||||
// this might mean that we hit exactly at one
|
||||
// point and two of the points are the same
|
||||
if (intersections == 3)
|
||||
{
|
||||
if (v3_eq(is[0], is[2]))
|
||||
intersections--;
|
||||
else
|
||||
if (v3_eq(is[1], is[2]))
|
||||
intersections--;
|
||||
else
|
||||
if (v3_eq(is[0], is[1]))
|
||||
{
|
||||
intersections--;
|
||||
is[1] = is[2];
|
||||
it[1] = it[2];
|
||||
}
|
||||
}
|
||||
|
||||
if (intersections == 2 && v3_eq(is[0], is[1]))
|
||||
intersections--;
|
||||
|
||||
// no intersections? there is nothing to do
|
||||
if (intersections == 0)
|
||||
return tri_no_intersection;
|
||||
|
||||
// three intersections? maybe a very small triangle
|
||||
if (intersections == 3)
|
||||
{
|
||||
fprintf(stderr, "THREE INTERSECTIONS?\n");
|
||||
fprintf(stderr, "is0="); v3_print(is[0]);
|
||||
fprintf(stderr, "is1="); v3_print(is[1]);
|
||||
fprintf(stderr, "is2="); v3_print(is[2]);
|
||||
svg_line("#0000FF", s->p[0].p, s->p[1].p, 8);
|
||||
return tri_no_intersection;
|
||||
}
|
||||
|
||||
if (intersections == 1)
|
||||
{
|
||||
if (tri_bary_inside(tp0))
|
||||
{
|
||||
// if the intercept point on the segment is
|
||||
// closer than the intercept point on the triangle edge,
|
||||
// then there is no occlusion
|
||||
if (is[0].p[2] <= it[0].p[2])
|
||||
return tri_no_intersection;
|
||||
|
||||
// clipped from intersection to p1
|
||||
s->p[0] = is[0];
|
||||
return tri_clipped;
|
||||
}
|
||||
|
||||
if (tri_bary_inside(tp1))
|
||||
{
|
||||
// if the intercept point on the segment is
|
||||
// closer than the intercept point on the triangle edge,
|
||||
// then there is no occlusion
|
||||
if (is[0].p[2] < it[0].p[2])
|
||||
return tri_no_intersection;
|
||||
|
||||
// clipped from p0 to intersection
|
||||
s->p[1] = is[0];
|
||||
return tri_clipped;
|
||||
}
|
||||
|
||||
// something isn't right. maybe we have a small triangle?
|
||||
fprintf(stderr, "ONE INTERSECTION?");
|
||||
/*
|
||||
svg_line("#FFFF00", s->p[0].p, s->p[1].p, 20);
|
||||
svg_line("#000080", t->p[0].p, t->p[1].p, 8);
|
||||
svg_line("#000080", t->p[1].p, t->p[2].p, 8);
|
||||
svg_line("#000080", t->p[2].p, t->p[0].p, 8);
|
||||
*/
|
||||
seg_print(s);
|
||||
v3_print(tp0);
|
||||
v3_print(tp1);
|
||||
tri_print(t);
|
||||
*new_seg = seg_new(is[0], s->p[1]);
|
||||
s->p[1] = is[0];
|
||||
return tri_split;
|
||||
}
|
||||
|
||||
// two intersections: find the one that is closer to p0
|
||||
// modify the existing segment and create a new segment
|
||||
const float d00 = v3_mag2(v3_sub(is[0], s->p[0]));
|
||||
const float d01 = v3_mag2(v3_sub(is[1], s->p[0]));
|
||||
const float d10 = v3_mag2(v3_sub(is[0], s->p[1]));
|
||||
const float d11 = v3_mag2(v3_sub(is[1], s->p[1]));
|
||||
|
||||
// if any of the intersections points are zero from an
|
||||
// end point on the segment, then skip that part
|
||||
if (tri_debug > 4)
|
||||
{
|
||||
seg_print(s);
|
||||
tri_print(t);
|
||||
fprintf(stderr, "d: %f %f %f %f\n", d00, d01, d10, d11);
|
||||
}
|
||||
|
||||
if (d00 < EPS && d11 < EPS)
|
||||
return tri_hidden;
|
||||
if (d01 < EPS && d10 < EPS)
|
||||
return tri_hidden;
|
||||
|
||||
if (d00 < EPS)
|
||||
{
|
||||
s->p[0] = is[1];
|
||||
return tri_clipped;
|
||||
} else
|
||||
if (d01 < EPS)
|
||||
{
|
||||
s->p[0] = is[0];
|
||||
return tri_clipped;
|
||||
} else
|
||||
if (d10 < EPS)
|
||||
{
|
||||
s->p[1] = is[1];
|
||||
return tri_clipped;
|
||||
} else
|
||||
if (d11 < EPS)
|
||||
{
|
||||
s->p[1] = is[0];
|
||||
return tri_clipped;
|
||||
}
|
||||
|
||||
// neither end points match, so create a new segment
|
||||
// that excludes the space covered by the triangle.
|
||||
// determine which is closer to point is[0]
|
||||
if (d00 < d01)
|
||||
{
|
||||
// p0 is closer to is0, so new segment is is1 to p1
|
||||
*new_seg = seg_new(is[1], s->p[1]);
|
||||
s->p[1] = is[0];
|
||||
} else {
|
||||
// p0 is closer to is1, so new segment is is0 to p1
|
||||
*new_seg = seg_new(is[0], s->p[1]);
|
||||
s->p[1] = is[1];
|
||||
}
|
||||
|
||||
fprintf(stderr, "SPLIT: ");
|
||||
seg_print(*new_seg);
|
||||
return tri_split;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
tri_seg_hidden(
|
||||
const tri_t * zlist,
|
||||
seg_t * s,
|
||||
seg_t ** slist_visible
|
||||
)
|
||||
{
|
||||
int count = 0;
|
||||
fprintf(stderr, "TEST: ");
|
||||
seg_print(s);
|
||||
|
||||
for( const tri_t * t = zlist ; t ; t = t->next )
|
||||
{
|
||||
seg_t * new_seg = NULL;
|
||||
//tri_print(t);
|
||||
tri_intersect_t type = tri_seg_intersect(t, s, &new_seg);
|
||||
//fprintf(stderr, "rc=%d\n", type);
|
||||
|
||||
// if there is no intersection or if the segment has
|
||||
// been clipped on one side, keep looking
|
||||
if (type == tri_no_intersection)
|
||||
continue;
|
||||
if (type == tri_clipped)
|
||||
{
|
||||
//fprintf(stderr, "CLIP: ");
|
||||
seg_print(s);
|
||||
continue;
|
||||
}
|
||||
|
||||
// if this segment is infront of this triangle then we can
|
||||
// stop searching
|
||||
if (type == tri_infront)
|
||||
break;
|
||||
|
||||
// if this segment is totally occluded, we're done
|
||||
if (type == tri_hidden)
|
||||
return count;
|
||||
|
||||
// if this line has been split into two, process the
|
||||
// new segment starting at the next triangle since it
|
||||
// has already intersected this one
|
||||
if (type == tri_split)
|
||||
{
|
||||
static int recursive;
|
||||
if (tri_debug > 4) fprintf(stderr, "RECURSIVE %d\n", recursive++);
|
||||
int new_count = tri_seg_hidden(t->next, new_seg, slist_visible);
|
||||
if (tri_debug > 4) fprintf(stderr, "END %d: %d segments\n", --recursive, new_count);
|
||||
if (tri_debug > 4) fprintf(stderr, "CLIP: ");
|
||||
if (tri_debug > 4) seg_print(s);
|
||||
count += new_count;
|
||||
continue;
|
||||
}
|
||||
|
||||
fprintf(stderr, "unknown type %d\n", type);
|
||||
return -1;
|
||||
}
|
||||
|
||||
// we've reached the end and it is still visible
|
||||
s->next = *slist_visible;
|
||||
*slist_visible = s;
|
||||
return ++count;
|
||||
}
|
||||
|
40
tri.h
40
tri.h
@ -6,6 +6,7 @@
|
||||
|
||||
#include "v3.h"
|
||||
#include "seg.h"
|
||||
#include "svg.h"
|
||||
|
||||
extern int tri_debug;
|
||||
|
||||
@ -15,8 +16,8 @@ struct _tri_t
|
||||
v3_t p[3]; // camera space
|
||||
v3_t normal; // camera space
|
||||
v3_t normal_xyz; // original xyz space
|
||||
float min[3]; // camera space
|
||||
float max[3]; // camera space
|
||||
v3_t min; // camera space
|
||||
v3_t max; // camera space
|
||||
tri_t * next;
|
||||
tri_t ** prev;
|
||||
};
|
||||
@ -108,17 +109,18 @@ hidden_intersect(
|
||||
|
||||
|
||||
/*
|
||||
* Recursive algorithm:
|
||||
* Given a line segment and a list of triangles,
|
||||
* find if the line segment crosses any triangle.
|
||||
* If it crosses a triangle the segment will be shortened
|
||||
* and an additional one might be created.
|
||||
* Recusively try intersecting the new segment (starting at the same triangle)
|
||||
* and then continue trying the shortened segment.
|
||||
*
|
||||
* Line segments will be added to the visible list.
|
||||
* Returns the number of new elements created
|
||||
*/
|
||||
|
||||
void
|
||||
tri_seg_intersect(
|
||||
int
|
||||
tri_seg_hidden(
|
||||
const tri_t * zlist,
|
||||
seg_t * s,
|
||||
seg_t ** slist_visible
|
||||
@ -134,4 +136,30 @@ tri_behind(
|
||||
const tri_t * const t2
|
||||
);
|
||||
|
||||
|
||||
/*
|
||||
* There are four possible line/triangle intersections.
|
||||
*/
|
||||
typedef enum {
|
||||
tri_no_intersection, // nothing changed
|
||||
tri_infront, // segment is in front of the triangle
|
||||
tri_hidden, // segment is completely occluded
|
||||
tri_clipped, // segment is partially occluded on one end
|
||||
tri_split, // segment is partially occluded in the middle
|
||||
} tri_intersect_t;
|
||||
|
||||
|
||||
tri_intersect_t
|
||||
tri_seg_intersect(
|
||||
const tri_t * tri,
|
||||
seg_t * s,
|
||||
seg_t ** new_seg // only if tri_split
|
||||
);
|
||||
|
||||
v3_t
|
||||
tri_bary_coord(
|
||||
const tri_t * const t,
|
||||
const v3_t * const p
|
||||
);
|
||||
|
||||
#endif
|
||||
|
8
unfold.c
8
unfold.c
@ -92,7 +92,7 @@ edge_eq2(
|
||||
const v3_t * const v10 = &t1->p[e1];
|
||||
const v3_t * const v11 = &t1->p[(e1+1) % 3];
|
||||
|
||||
if (v3_eq(v00, v11) && v3_eq(v01, v10))
|
||||
if (v3_eq(*v00, *v11) && v3_eq(*v01, *v10))
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
@ -613,11 +613,11 @@ coplanar_check(
|
||||
for (int i = 0 ; i < 3 ; i++)
|
||||
{
|
||||
x4 = f2->p[i];
|
||||
if (v3_eq(&x1, &x4))
|
||||
if (v3_eq(x1, x4))
|
||||
continue;
|
||||
if (v3_eq(&x2, &x4))
|
||||
if (v3_eq(x2, x4))
|
||||
continue;
|
||||
if (v3_eq(&x3, &x4))
|
||||
if (v3_eq(x3, x4))
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
|
96
v3.h
96
v3.h
@ -5,9 +5,10 @@
|
||||
#define _papercraft_v3_h_
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define EPS 0.001
|
||||
#define EPS 0.00001
|
||||
|
||||
#ifndef M_PI
|
||||
#define M_PI 3.1415926535897932384
|
||||
@ -52,13 +53,13 @@ typedef struct
|
||||
|
||||
static inline int
|
||||
v3_eq(
|
||||
const v3_t * v1,
|
||||
const v3_t * v2
|
||||
const v3_t v1,
|
||||
const v3_t v2
|
||||
)
|
||||
{
|
||||
float dx = v1->p[0] - v2->p[0];
|
||||
float dy = v1->p[1] - v2->p[1];
|
||||
float dz = v1->p[2] - v2->p[2];
|
||||
float dx = v1.p[0] - v2.p[0];
|
||||
float dy = v1.p[1] - v2.p[1];
|
||||
float dz = v1.p[2] - v2.p[2];
|
||||
|
||||
if (-EPS < dx && dx < EPS
|
||||
&& -EPS < dy && dy < EPS
|
||||
@ -209,6 +210,36 @@ v3_cross(
|
||||
}
|
||||
|
||||
|
||||
static inline v3_t
|
||||
v3_min(
|
||||
const v3_t a,
|
||||
const v3_t b
|
||||
)
|
||||
{
|
||||
v3_t c = { {
|
||||
min(a.p[0], b.p[0]),
|
||||
min(a.p[1], b.p[1]),
|
||||
min(a.p[2], b.p[2]),
|
||||
}};
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
static inline v3_t
|
||||
v3_max(
|
||||
const v3_t a,
|
||||
const v3_t b
|
||||
)
|
||||
{
|
||||
v3_t c = { {
|
||||
max(a.p[0], b.p[0]),
|
||||
max(a.p[1], b.p[1]),
|
||||
max(a.p[2], b.p[2]),
|
||||
}};
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
// Compute the length of a line in screen space, ignoring Z
|
||||
static inline float
|
||||
v3_dist_2d(
|
||||
@ -223,4 +254,57 @@ v3_dist_2d(
|
||||
}
|
||||
|
||||
|
||||
static inline void
|
||||
v3_print(const v3_t p)
|
||||
{
|
||||
fprintf(stderr, "%+6.1f %+6.1f %+6.1f\n",
|
||||
p.p[0],
|
||||
p.p[1],
|
||||
p.p[2]
|
||||
);
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
float p[4];
|
||||
} v4_t;
|
||||
|
||||
typedef struct {
|
||||
float m[4][4];
|
||||
} m44_t;
|
||||
|
||||
|
||||
static inline void
|
||||
m44_mult(
|
||||
m44_t * r,
|
||||
const m44_t * a,
|
||||
const m44_t * b
|
||||
)
|
||||
{
|
||||
for(int i = 0 ; i < 4 ; i++)
|
||||
{
|
||||
for(int j = 0 ; j < 4 ; j++)
|
||||
{
|
||||
float d = 0;
|
||||
for(int k = 0 ; k < 4 ; k++)
|
||||
d += a->m[i][k] * b->m[k][j];
|
||||
r->m[i][j] = d;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static inline v4_t
|
||||
m44_multv(
|
||||
const m44_t * const m,
|
||||
const v4_t * const v
|
||||
)
|
||||
{
|
||||
v4_t p = {};
|
||||
for (int i = 0 ; i < 4 ; i++)
|
||||
for (int j = 0 ; j < 4 ; j++)
|
||||
p.p[i] += m->m[i][j] * v->p[j];
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -62,7 +62,7 @@ coplanar_check(
|
||||
for (int i = 0 ; i < 3 ; i++)
|
||||
{
|
||||
for (int j = 0 ; j < 3 ; j++)
|
||||
if (v3_eq(&f1->p[i], &f2->p[j]))
|
||||
if (v3_eq(f1->p[i], f2->p[j]))
|
||||
match[i] = 1;
|
||||
}
|
||||
|
||||
@ -132,7 +132,7 @@ coplanar_check(
|
||||
return mask;
|
||||
#else
|
||||
// if the normals are close enough, then it is coplanner
|
||||
if (v3_eq(&f1->normal, &f2->normal))
|
||||
if (v3_eq(f1->normal, f2->normal))
|
||||
return mask;
|
||||
else
|
||||
return 0;
|
||||
@ -184,7 +184,7 @@ stl_vertex_find(
|
||||
{
|
||||
stl_vertex_t * const v = vertices[x];
|
||||
|
||||
if (v3_eq(&v->p, p))
|
||||
if (v3_eq(v->p, *p))
|
||||
return v;
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user