lots of hacks, but it is starting to work
This commit is contained in:
parent
d321a1e86d
commit
ae46476d09
373
hiddenwire.c
373
hiddenwire.c
@ -49,12 +49,9 @@ struct _tri_t
|
||||
};
|
||||
|
||||
|
||||
// line segment has to track its source so that it knows which to not
|
||||
// compare against in its occlusion checks.
|
||||
typedef struct _seg_t seg_t;
|
||||
struct _seg_t {
|
||||
v3_t p[2];
|
||||
v3_t src[2];
|
||||
seg_t * next;
|
||||
};
|
||||
|
||||
@ -242,15 +239,16 @@ static float poly_min[2], poly_max[2];
|
||||
static inline int
|
||||
v2_eq(
|
||||
const float p0[],
|
||||
const float p1[]
|
||||
const float p1[],
|
||||
const float eps
|
||||
)
|
||||
{
|
||||
const float dx = p0[0] - p1[0];
|
||||
const float dy = p0[1] - p1[1];
|
||||
|
||||
// are the points within epsilon of each other?
|
||||
if (-EPS < dx && dx < EPS
|
||||
&& -EPS < dy && dy < EPS)
|
||||
if (-eps < dx && dx < eps
|
||||
&& -eps < dy && dy < eps)
|
||||
return 1;
|
||||
|
||||
// nope, not equal
|
||||
@ -299,7 +297,7 @@ get_line_intersection(
|
||||
|
||||
if (s > EPS && s < 1-EPS && t > EPS && t < 1-EPS)
|
||||
{
|
||||
if(0) fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
|
||||
if(1) fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
|
||||
p0_x, p0_y,
|
||||
p1_x, p1_y,
|
||||
p2_x, p2_y,
|
||||
@ -320,30 +318,96 @@ get_line_intersection(
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
intersect(
|
||||
const v3_t * const p00,
|
||||
const v3_t * const p01,
|
||||
const v3_t * const p10,
|
||||
const v3_t * const p11,
|
||||
float *px,
|
||||
float *py
|
||||
/** Compute the points of intersection for two segments in 2d, and z points.
|
||||
*
|
||||
* This is a specialized ray intersection algorithm for the
|
||||
* hidden wire-frame removal code that computes the intersection
|
||||
* points for two rays (in 2D, "orthographic") and then computes
|
||||
* the Z depth for the intersections along each of the segments.
|
||||
*
|
||||
* Returns -1 for non-intersecting, otherwise a ratio of how far
|
||||
* along the intersection is on the l0.
|
||||
*/
|
||||
float
|
||||
hidden_intersect(
|
||||
const v3_t * const p0,
|
||||
const v3_t * const p1,
|
||||
const v3_t * const p2,
|
||||
const v3_t * const p3,
|
||||
v3_t * const l0_int,
|
||||
v3_t * const l1_int
|
||||
)
|
||||
{
|
||||
// special case; if this is the same line, it does not intersect
|
||||
if (v2_eq(p00->p, p10->p) && v2_eq(p01->p, p11->p))
|
||||
return 0;
|
||||
if (v2_eq(p01->p, p10->p) && v2_eq(p00->p, p11->p))
|
||||
return 0;
|
||||
const float p0_x = p0->p[0];
|
||||
const float p0_y = p0->p[1];
|
||||
const float p0_z = p0->p[2];
|
||||
const float p1_x = p1->p[0];
|
||||
const float p1_y = p1->p[1];
|
||||
const float p1_z = p1->p[2];
|
||||
const float p2_x = p2->p[0];
|
||||
const float p2_y = p2->p[1];
|
||||
const float p2_z = p2->p[2];
|
||||
const float p3_x = p3->p[0];
|
||||
const float p3_y = p3->p[1];
|
||||
const float p3_z = p3->p[2];
|
||||
|
||||
return get_line_intersection(
|
||||
p00->p[0], p00->p[1],
|
||||
p01->p[0], p01->p[1],
|
||||
p10->p[0], p10->p[1],
|
||||
p11->p[0], p11->p[1],
|
||||
px,
|
||||
py
|
||||
const float s1_x = p1_x - p0_x;
|
||||
const float s1_y = p1_y - p0_y;
|
||||
const float s2_x = p3_x - p2_x;
|
||||
const float s2_y = p3_y - p2_y;
|
||||
|
||||
// compute r x s
|
||||
const float d = -s2_x * s1_y + s1_x * s2_y;
|
||||
|
||||
// if they are close to parallel, then we do not need to check
|
||||
// for intersection (we define that as "non-intersecting")
|
||||
if (-EPS < d && d < EPS)
|
||||
return -1;
|
||||
|
||||
// Compute how far along each line they would interesect
|
||||
const float r0 = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / d;
|
||||
const float r1 = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / d;
|
||||
|
||||
// if they are not within the ratio (0,1), then the intersecton occurs
|
||||
// outside of the segments and is not of concern
|
||||
if (r0 < 0 || r0 > 1)
|
||||
return -1;
|
||||
if (r1 < 0 || r1 > 1)
|
||||
return -1;
|
||||
|
||||
// Collision detected with the segments
|
||||
if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f->%.0f,%.0f,%.0f == %.3f,%.3f\n",
|
||||
p0_x, p0_y, p0_z,
|
||||
p1_x, p1_y, p1_z,
|
||||
p2_x, p2_y, p2_z,
|
||||
p3_x, p3_y, p2_z,
|
||||
r0,
|
||||
r1
|
||||
);
|
||||
|
||||
const float ix = p0_x + (r0 * s1_x);
|
||||
const float iy = p0_y + (r0 * s1_y);
|
||||
|
||||
// compute the z intercept for each on the two different coordinates
|
||||
if(l0_int)
|
||||
{
|
||||
*l0_int = (v3_t){{
|
||||
ix,
|
||||
iy,
|
||||
p0_z + r0 * (p1_z - p0_z)
|
||||
}};
|
||||
}
|
||||
|
||||
if(l1_int)
|
||||
{
|
||||
*l1_int = (v3_t){{
|
||||
ix,
|
||||
iy,
|
||||
p2_z + r1 * (p3_z - p2_z)
|
||||
}};
|
||||
}
|
||||
|
||||
return r0;
|
||||
}
|
||||
|
||||
|
||||
@ -924,14 +988,79 @@ seg_new(
|
||||
return NULL;
|
||||
s->p[0] = p0;
|
||||
s->p[1] = p1;
|
||||
s->src[0] = p0;
|
||||
s->src[1] = p1;
|
||||
s->next = NULL;
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
seg_print(
|
||||
const seg_t * const s
|
||||
)
|
||||
{
|
||||
fprintf(stderr, "%.0f,%.0f -> %.0f,%.0f\n",
|
||||
s->p[0].p[0],
|
||||
s->p[0].p[1],
|
||||
s->p[1].p[0],
|
||||
s->p[1].p[1]
|
||||
);
|
||||
}
|
||||
|
||||
void
|
||||
tri_print(
|
||||
const tri_t * const t
|
||||
)
|
||||
{
|
||||
fprintf(stderr, "%.0f,%.0f,%.0f %.0f,%.0f,%.0f %.0f,%.0f,%.0f\n",
|
||||
t->p[0].p[0],
|
||||
t->p[0].p[1],
|
||||
t->p[0].p[2],
|
||||
t->p[1].p[0],
|
||||
t->p[1].p[1],
|
||||
t->p[1].p[2],
|
||||
t->p[2].p[0],
|
||||
t->p[2].p[1],
|
||||
t->p[2].p[2]
|
||||
);
|
||||
}
|
||||
|
||||
/** Find the Z point of a given xy point along the segment from p0 to p1.
|
||||
*
|
||||
* Returns -1 if there is no known Z point.
|
||||
*/
|
||||
float
|
||||
find_z(
|
||||
const v3_t * const p0,
|
||||
const v3_t * const p1,
|
||||
const float x,
|
||||
const float y
|
||||
)
|
||||
{
|
||||
const float dx = p1->p[0] - p0->p[0];
|
||||
const float dy = p1->p[1] - p0->p[1];
|
||||
const float dz = p1->p[2] - p0->p[2];
|
||||
|
||||
// find the z value of the intersection point
|
||||
// on the segment. we don't care about the triangle
|
||||
float ratio = 0;
|
||||
if (dx != 0)
|
||||
{
|
||||
ratio = (x - p0->p[0]) / dx;
|
||||
} else
|
||||
if (dy != 0)
|
||||
{
|
||||
ratio = (y - p0->p[1]) / dy;
|
||||
} else {
|
||||
fprintf(stderr, "uh, dx and dy both zero?\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return p0->p[2] + dz * ratio;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
int
|
||||
tri_line_intersect(
|
||||
@ -967,22 +1096,41 @@ tri_seg_intersect(
|
||||
seg_t ** slist_visible
|
||||
)
|
||||
{
|
||||
const float p0x = s->p[0].p[0];
|
||||
const float p0y = s->p[0].p[1];
|
||||
const float p0z = s->p[0].p[2];
|
||||
const float p1x = s->p[1].p[0];
|
||||
const float p1y = s->p[1].p[1];
|
||||
const float p1z = s->p[1].p[2];
|
||||
const float seg_max_z = max(p0z, p1z);
|
||||
|
||||
for( const tri_t * t = zlist ; t ; t = t->next )
|
||||
{
|
||||
// if the segment is closer than the triangle,
|
||||
// then we no longer have to check any further into
|
||||
// the zlist (it is sorted by depth).
|
||||
if (p0z < t->min[2] && p1z < t->min[2])
|
||||
if (seg_max_z <= t->min[2])
|
||||
break;
|
||||
|
||||
|
||||
#if 0
|
||||
// make sure that we're not comparing to our own triangle
|
||||
// or one that shares an edge with us (which might be in
|
||||
// a different order)
|
||||
if (v2_eq(s->src[0].p, t->p[0].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[1].p, 0.1))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[1].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[2].p, 0.1))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[2].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[0].p, 0.1))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[1].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[0].p, 0.1))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[2].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[1].p, 0.1))
|
||||
continue;
|
||||
if (v2_eq(s->src[0].p, t->p[0].p, 0.1)
|
||||
&& v2_eq(s->src[1].p, t->p[2].p, 0.1))
|
||||
continue;
|
||||
// do a quick test of does this segment even comes
|
||||
// close to this triangle
|
||||
if (p0x < t->min[0] && p1x < t->min[0]
|
||||
@ -1012,27 +1160,49 @@ tri_seg_intersect(
|
||||
|
||||
// if both are inside we discard this segment
|
||||
if (inside0 && inside1)
|
||||
{
|
||||
//svg_line("#0000FF", s->p[0].p, s->p[1].p, 0);
|
||||
//svg_line("#00FF00", t->p[0].p, t->p[1].p, 0);
|
||||
//svg_line("#00FF00", t->p[1].p, t->p[2].p, 0);
|
||||
//svg_line("#00FF00", t->p[2].p, t->p[0].p, 0);
|
||||
fprintf(stderr, "BOTH INSIDE\n");
|
||||
tri_print(t);
|
||||
seg_print(s);
|
||||
return;
|
||||
}
|
||||
|
||||
// split the segment for each intersection with the
|
||||
// triangle segments and add it to the work queue.
|
||||
int intersections = 0;
|
||||
v3_t ix[3] = {};
|
||||
const float max_z = max(s->p[0].p[2], s->p[1].p[2]);
|
||||
v3_t is[3] = {}; // 3d point of segment intercept
|
||||
v3_t it[3] = {}; // 3d point of triangle intercept
|
||||
|
||||
for(int j = 0 ; j < 3 ; j++)
|
||||
{
|
||||
ix[j].p[2] = max_z;
|
||||
int rc = intersect(
|
||||
float ratio = hidden_intersect(
|
||||
&s->p[0], &s->p[1],
|
||||
&t->p[j], &t->p[(j+1)%3],
|
||||
&ix[intersections].p[0], &ix[intersections].p[1]
|
||||
&is[intersections],
|
||||
&it[intersections]
|
||||
);
|
||||
|
||||
if (!rc)
|
||||
if (ratio < 0)
|
||||
continue;
|
||||
|
||||
intersections++;
|
||||
// deal with corner cases where the segment
|
||||
// exactly lines up with the triangle edge
|
||||
// we do not treat this as an intersection
|
||||
if (-EPS < ratio && ratio < EPS)
|
||||
{
|
||||
inside0 = 0;
|
||||
} else
|
||||
if (1-EPS < ratio && ratio < 1+EPS)
|
||||
{
|
||||
inside1 = 0;
|
||||
} else {
|
||||
// this is a real intersection
|
||||
intersections++;
|
||||
}
|
||||
}
|
||||
|
||||
// if none of them intersect, we keep looking
|
||||
@ -1051,31 +1221,46 @@ fprintf(stderr, "split %d %d inter %d\n", inside0 , inside1, intersections);
|
||||
if (inside0 || inside1)
|
||||
{
|
||||
fprintf(stderr, "uh, inside but two intersections?\n");
|
||||
return;
|
||||
//return;
|
||||
}
|
||||
|
||||
// if the segment intersection is closer than the triangle,
|
||||
// then we do nothing. degenerate cases are not handled
|
||||
if (is[0].p[2] <= it[0].p[2]
|
||||
|| is[1].p[2] <= it[1].p[2])
|
||||
{
|
||||
fprintf(stderr, "ignoring collision since z %f < %f || %f < %f\n",
|
||||
is[0].p[2], it[0].p[2],
|
||||
is[1].p[2], it[1].p[2]);
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// segment is behind the triangle,
|
||||
// we have to create a new segment
|
||||
// and shorten the existing segment
|
||||
// find the two intersections that we have
|
||||
// update the src field
|
||||
|
||||
|
||||
fprintf(stderr, "two intersections\n");
|
||||
const float d0 = v2_dist(s->p[0].p, ix[0].p);
|
||||
const float d1 = v2_dist(s->p[1].p, ix[0].p);
|
||||
const float d0 = v3_len(&s->p[0], &is[0]);
|
||||
const float d1 = v3_len(&s->p[0], &is[1]);
|
||||
fprintf(stderr, "two intersections %.0f %.0f\n", d0, d1);
|
||||
seg_t * news;
|
||||
if (d0 < d1)
|
||||
{
|
||||
// split from p0 to ix0
|
||||
news = seg_new(s->p[0], ix[0]);
|
||||
news->src[1] = s->p[1];
|
||||
s->p[1] = ix[1];
|
||||
news = seg_new(s->p[0], is[0]);
|
||||
s->p[0] = is[1];
|
||||
} else {
|
||||
// split from p0 to ix1
|
||||
news = seg_new(s->p[0], ix[1]);
|
||||
news->src[1] = s->p[1];
|
||||
s->p[1] = ix[0];
|
||||
news = seg_new(s->p[0], is[1]);
|
||||
s->p[0] = is[0];
|
||||
}
|
||||
fprintf(stderr, "old segment:" );
|
||||
seg_print(s);
|
||||
fprintf(stderr, "new segment:" );
|
||||
seg_print(news);
|
||||
|
||||
// recursively start splitting the new segment
|
||||
// starting at our current z-depth
|
||||
@ -1087,36 +1272,47 @@ fprintf(stderr, "split %d %d inter %d\n", inside0 , inside1, intersections);
|
||||
|
||||
if (intersections == 1)
|
||||
{
|
||||
fprintf(stderr, "split %d %d\n", inside0, inside1);
|
||||
// if there is an intersection, but the segment intercept
|
||||
// is close than the triangle intercept, then no problem.
|
||||
// we do not bother with degenerate cases of intersecting
|
||||
// triangles
|
||||
if (is[0].p[2] <= it[0].p[2])
|
||||
continue;
|
||||
|
||||
// segment is behind the triangle, so it needs to be
|
||||
// cut into pieces
|
||||
if (inside0)
|
||||
{
|
||||
// shorten it on the 0 side
|
||||
s->p[0] = ix[0];
|
||||
s->p[0] = is[0];
|
||||
continue;
|
||||
} else
|
||||
if (inside1)
|
||||
{
|
||||
// shorten it on the 1 side
|
||||
s->p[1] = ix[0];
|
||||
s->p[1] = is[0];
|
||||
continue;
|
||||
} else
|
||||
if (v2_eq(s->p[0].p, is[0].p, 0.1))
|
||||
{
|
||||
// the 0 side is on the triangle, don't bother
|
||||
continue;
|
||||
} else
|
||||
if (v2_eq(s->p[1].p, is[0].p, 0.1))
|
||||
{
|
||||
// the 1 side is on the triangle, don't bother
|
||||
continue;
|
||||
} else {
|
||||
fprintf(stderr, "uh, both outside but one intersection?\n");
|
||||
return;
|
||||
fprintf(stderr, "uh, both outside but one intersection? %.3f,%.3f\n",
|
||||
is[0].p[0],
|
||||
is[0].p[1]
|
||||
);
|
||||
seg_print(s);
|
||||
tri_print(t);
|
||||
//svg_line("#00FF00", s->p[0].p, s->p[1].p, 0);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if(0) fprintf(stderr, "check: %.0f,%.0f -> %.0f,%.0f %.0f,%.0f %.0f,%.0f %.0f,%.0f\n",
|
||||
s->p[0].p[0],
|
||||
s->p[0].p[1],
|
||||
s->p[1].p[0],
|
||||
s->p[1].p[1],
|
||||
t->p[0].p[0],
|
||||
t->p[0].p[1],
|
||||
t->p[1].p[0],
|
||||
t->p[1].p[1],
|
||||
t->p[2].p[0],
|
||||
t->p[2].p[1]
|
||||
);
|
||||
//return;
|
||||
}
|
||||
|
||||
// if we've reached here the segment is visible
|
||||
@ -1141,6 +1337,13 @@ int main(
|
||||
char ** argv
|
||||
)
|
||||
{
|
||||
v3_t p0 = {{ 0, 0, 0 }};
|
||||
v3_t p1 = {{ 100, 100, 100 }};
|
||||
v3_t p2 = {{ 200, -100, 0 }};
|
||||
v3_t p3 = {{ 0, 100, 200 }};
|
||||
v3_t is, it;
|
||||
hidden_intersect(&p0, &p1, &p2, &p3, &is, &it);
|
||||
|
||||
const size_t max_len = 32 << 20;
|
||||
uint8_t * const buf = calloc(max_len, 1);
|
||||
|
||||
@ -1178,6 +1381,8 @@ int main(
|
||||
seg_t * slist = NULL;
|
||||
seg_t * slist_visible = NULL;
|
||||
|
||||
int retained = 0;
|
||||
|
||||
// transform the stl by the camera projection and generate
|
||||
// a z-sorted list of triangles
|
||||
for (int i = 0 ; i < num_triangles ; i++)
|
||||
@ -1212,6 +1417,10 @@ int main(
|
||||
slist = s;
|
||||
}
|
||||
|
||||
retained++;
|
||||
if( retained > 3)
|
||||
break;
|
||||
|
||||
continue;
|
||||
|
||||
reject:
|
||||
@ -1220,19 +1429,29 @@ reject:
|
||||
}
|
||||
|
||||
if (debug)
|
||||
fprintf(stderr, "Rejected %d triangles\n", rejected);
|
||||
fprintf(stderr, "Retained %d, rejected %d triangles\n", retained, rejected);
|
||||
|
||||
for( const tri_t * t = zlist ; t ; t = t->next )
|
||||
tri_print(t);
|
||||
|
||||
// we now have a z-sorted list of triangles
|
||||
rejected = 0;
|
||||
|
||||
// work on each segment, intersecting it with all of the triangles
|
||||
while(slist)
|
||||
if(1)
|
||||
{
|
||||
seg_t * s = slist;
|
||||
slist = s->next;
|
||||
// work on each segment, intersecting it with all of the triangles
|
||||
while(slist)
|
||||
{
|
||||
seg_t * s = slist;
|
||||
slist = s->next;
|
||||
|
||||
tri_seg_intersect(zlist, s, &slist_visible);
|
||||
tri_seg_intersect(zlist, s, &slist_visible);
|
||||
|
||||
}
|
||||
} else {
|
||||
// don't do any intersection tests
|
||||
slist_visible = slist;
|
||||
slist = NULL;
|
||||
}
|
||||
|
||||
// display all of the visible segments
|
||||
|
Loading…
Reference in New Issue
Block a user