move inset into stl_3d
This commit is contained in:
parent
a6a08bf10a
commit
b5210c4d65
137
faces.c
137
faces.c
@ -57,141 +57,6 @@ svg_circle(
|
||||
}
|
||||
|
||||
|
||||
// Determines the intersection point of the line defined by points A and B with the
|
||||
// line defined by points C and D.
|
||||
//
|
||||
// Returns YES if the intersection point was found, and stores that point in X,Y.
|
||||
// Returns NO if there is no determinable intersection point, in which case X,Y will
|
||||
// be unmodified.
|
||||
|
||||
static int
|
||||
line_intersect(
|
||||
double Ax, double Ay,
|
||||
double Bx, double By,
|
||||
double Cx, double Cy,
|
||||
double Dx, double Dy,
|
||||
double *X, double *Y
|
||||
)
|
||||
{
|
||||
// Fail if either line is undefined.
|
||||
if ((Ax==Bx && Ay==By) || (Cx==Dx && Cy==Dy))
|
||||
return 0;
|
||||
|
||||
// (1) Translate the system so that point A is on the origin.
|
||||
Bx-=Ax; By-=Ay;
|
||||
Cx-=Ax; Cy-=Ay;
|
||||
Dx-=Ax; Dy-=Ay;
|
||||
|
||||
// Discover the length of segment A-B.
|
||||
const double distAB=sqrt(Bx*Bx+By*By);
|
||||
|
||||
// (2) Rotate the system so that point B is on the positive X axis.
|
||||
const double theCos=Bx/distAB;
|
||||
const double theSin=By/distAB;
|
||||
|
||||
double newX=Cx*theCos+Cy*theSin;
|
||||
Cy =Cy*theCos-Cx*theSin; Cx=newX;
|
||||
newX=Dx*theCos+Dy*theSin;
|
||||
Dy =Dy*theCos-Dx*theSin; Dx=newX;
|
||||
|
||||
// Fail if the lines are parallel.
|
||||
if (Cy==Dy) return 0;
|
||||
|
||||
// (3) Discover the position of the intersection point along line A-B.
|
||||
const double ABpos=Dx+(Cx-Dx)*Dy/(Dy-Cy);
|
||||
|
||||
// (4) Apply the discovered position to line A-B in the original coordinate system.
|
||||
*X=Ax+ABpos*theCos;
|
||||
*Y=Ay+ABpos*theSin;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Compute the inset coordinate.
|
||||
* http://alienryderflex.com/polygon_inset/
|
||||
// Given the sequentially connected points (a,b), (c,d), and (e,f), this
|
||||
// function returns, in (C,D), a bevel-inset replacement for point (c,d).
|
||||
//
|
||||
// Note: If vectors (a,b)->(c,d) and (c,d)->(e,f) are exactly 180° opposed,
|
||||
// or if either segment is zero-length, this function will do
|
||||
// nothing; i.e. point (C,D) will not be set.
|
||||
|
||||
*/
|
||||
void
|
||||
inset(
|
||||
const refframe_t * const ref,
|
||||
const double inset_dist,
|
||||
double * const x_out,
|
||||
double * const y_out,
|
||||
const v3_t p0, // previous point
|
||||
const v3_t p1, // current point to inset
|
||||
const v3_t p2 // next point
|
||||
)
|
||||
{
|
||||
double a, b, c, d, e, f;
|
||||
v3_project(ref, p0, &a, &b);
|
||||
v3_project(ref, p1, &c, &d);
|
||||
v3_project(ref, p2, &e, &f);
|
||||
|
||||
double c1 = c;
|
||||
double d1 = d;
|
||||
double c2 = c;
|
||||
double d2 = d;
|
||||
|
||||
// Calculate length of line segments.
|
||||
const double dx1 = c-a;
|
||||
const double dy1 = d-b;
|
||||
const double dist1 = sqrt(dx1*dx1+dy1*dy1);
|
||||
const double dx2 = e-c;
|
||||
const double dy2 = f-d;
|
||||
const double dist2 = sqrt(dx2*dx2+dy2*dy2);
|
||||
|
||||
// Exit if either segment is zero-length.
|
||||
if (dist1==0. || dist2==0.)
|
||||
{
|
||||
*x_out = *y_out = 0;
|
||||
fprintf(stderr, "inset fail\n");
|
||||
return;
|
||||
}
|
||||
|
||||
// Inset each of the two line segments.
|
||||
double insetX, insetY;
|
||||
|
||||
insetX = dy1/dist1 * inset_dist;
|
||||
a+=insetX;
|
||||
c1+=insetX;
|
||||
|
||||
insetY = -dx1/dist1 * inset_dist;
|
||||
b+=insetY;
|
||||
d1+=insetY;
|
||||
|
||||
insetX = dy2/dist2 * inset_dist;
|
||||
e+=insetX;
|
||||
c2+=insetX;
|
||||
|
||||
insetY = -dx2/dist2 * inset_dist;
|
||||
f+=insetY;
|
||||
d2+=insetY;
|
||||
|
||||
// If inset segments connect perfectly, return the connection point.
|
||||
if (c1==c2 && d1==d2)
|
||||
{
|
||||
*x_out = c1;
|
||||
*y_out = d1;
|
||||
return;
|
||||
}
|
||||
|
||||
// Return the intersection point of the two inset segments (if any).
|
||||
if (line_intersect(a,b,c1,d1,c2,d2,e,f, x_out, y_out))
|
||||
return;
|
||||
|
||||
*x_out = *y_out = 0;
|
||||
fprintf(stderr, "inset failed 2\n");
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
@ -247,7 +112,7 @@ main(void)
|
||||
for (int j = 0 ; j < vertex_count ; j++)
|
||||
{
|
||||
double x, y;
|
||||
inset(&ref, inset_distance, &x, &y,
|
||||
refframe_inset(&ref, inset_distance, &x, &y,
|
||||
vertex_list[(j+0) % vertex_count]->p,
|
||||
vertex_list[(j+1) % vertex_count]->p,
|
||||
vertex_list[(j+2) % vertex_count]->p
|
||||
|
133
stl_3d.c
133
stl_3d.c
@ -335,3 +335,136 @@ v3_project(
|
||||
}
|
||||
|
||||
|
||||
// Determines the intersection point of the line defined by points A and B with the
|
||||
// line defined by points C and D.
|
||||
//
|
||||
// Returns YES if the intersection point was found, and stores that point in X,Y.
|
||||
// Returns NO if there is no determinable intersection point, in which case X,Y will
|
||||
// be unmodified.
|
||||
|
||||
static int
|
||||
line_intersect(
|
||||
double Ax, double Ay,
|
||||
double Bx, double By,
|
||||
double Cx, double Cy,
|
||||
double Dx, double Dy,
|
||||
double *X, double *Y
|
||||
)
|
||||
{
|
||||
// Fail if either line is undefined.
|
||||
if ((Ax==Bx && Ay==By) || (Cx==Dx && Cy==Dy))
|
||||
return 0;
|
||||
|
||||
// (1) Translate the system so that point A is on the origin.
|
||||
Bx-=Ax; By-=Ay;
|
||||
Cx-=Ax; Cy-=Ay;
|
||||
Dx-=Ax; Dy-=Ay;
|
||||
|
||||
// Discover the length of segment A-B.
|
||||
const double distAB=sqrt(Bx*Bx+By*By);
|
||||
|
||||
// (2) Rotate the system so that point B is on the positive X axis.
|
||||
const double theCos=Bx/distAB;
|
||||
const double theSin=By/distAB;
|
||||
|
||||
double newX=Cx*theCos+Cy*theSin;
|
||||
Cy =Cy*theCos-Cx*theSin; Cx=newX;
|
||||
newX=Dx*theCos+Dy*theSin;
|
||||
Dy =Dy*theCos-Dx*theSin; Dx=newX;
|
||||
|
||||
// Fail if the lines are parallel.
|
||||
if (Cy==Dy) return 0;
|
||||
|
||||
// (3) Discover the position of the intersection point along line A-B.
|
||||
const double ABpos=Dx+(Cx-Dx)*Dy/(Dy-Cy);
|
||||
|
||||
// (4) Apply the discovered position to line A-B in the original coordinate system.
|
||||
*X=Ax+ABpos*theCos;
|
||||
*Y=Ay+ABpos*theSin;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** Compute the inset coordinate.
|
||||
* http://alienryderflex.com/polygon_inset/
|
||||
// Given the sequentially connected points (a,b), (c,d), and (e,f), this
|
||||
// function returns, in (C,D), a bevel-inset replacement for point (c,d).
|
||||
//
|
||||
// Note: If vectors (a,b)->(c,d) and (c,d)->(e,f) are exactly 180° opposed,
|
||||
// or if either segment is zero-length, this function will do
|
||||
// nothing; i.e. point (C,D) will not be set.
|
||||
|
||||
*/
|
||||
void
|
||||
refframe_inset(
|
||||
const refframe_t * const ref,
|
||||
const double inset_dist,
|
||||
double * const x_out,
|
||||
double * const y_out,
|
||||
const v3_t p0, // previous point
|
||||
const v3_t p1, // current point to inset
|
||||
const v3_t p2 // next point
|
||||
)
|
||||
{
|
||||
double a, b, c, d, e, f;
|
||||
v3_project(ref, p0, &a, &b);
|
||||
v3_project(ref, p1, &c, &d);
|
||||
v3_project(ref, p2, &e, &f);
|
||||
|
||||
double c1 = c;
|
||||
double d1 = d;
|
||||
double c2 = c;
|
||||
double d2 = d;
|
||||
|
||||
// Calculate length of line segments.
|
||||
const double dx1 = c-a;
|
||||
const double dy1 = d-b;
|
||||
const double dist1 = sqrt(dx1*dx1+dy1*dy1);
|
||||
const double dx2 = e-c;
|
||||
const double dy2 = f-d;
|
||||
const double dist2 = sqrt(dx2*dx2+dy2*dy2);
|
||||
|
||||
// Exit if either segment is zero-length.
|
||||
if (dist1==0. || dist2==0.)
|
||||
{
|
||||
*x_out = *y_out = 0;
|
||||
fprintf(stderr, "inset fail\n");
|
||||
return;
|
||||
}
|
||||
|
||||
// Inset each of the two line segments.
|
||||
double insetX, insetY;
|
||||
|
||||
insetX = dy1/dist1 * inset_dist;
|
||||
a+=insetX;
|
||||
c1+=insetX;
|
||||
|
||||
insetY = -dx1/dist1 * inset_dist;
|
||||
b+=insetY;
|
||||
d1+=insetY;
|
||||
|
||||
insetX = dy2/dist2 * inset_dist;
|
||||
e+=insetX;
|
||||
c2+=insetX;
|
||||
|
||||
insetY = -dx2/dist2 * inset_dist;
|
||||
f+=insetY;
|
||||
d2+=insetY;
|
||||
|
||||
// If inset segments connect perfectly, return the connection point.
|
||||
if (c1==c2 && d1==d2)
|
||||
{
|
||||
*x_out = c1;
|
||||
*y_out = d1;
|
||||
return;
|
||||
}
|
||||
|
||||
// Return the intersection point of the two inset segments (if any).
|
||||
if (line_intersect(a,b,c1,d1,c2,d2,e,f, x_out, y_out))
|
||||
return;
|
||||
|
||||
*x_out = *y_out = 0;
|
||||
fprintf(stderr, "inset failed 2\n");
|
||||
}
|
||||
|
11
stl_3d.h
11
stl_3d.h
@ -82,6 +82,17 @@ refframe_init(
|
||||
);
|
||||
|
||||
|
||||
void
|
||||
refframe_inset(
|
||||
const refframe_t * const ref,
|
||||
const double inset_dist,
|
||||
double * const x_out,
|
||||
double * const y_out,
|
||||
const v3_t p0, // previous point
|
||||
const v3_t p1, // current point to inset
|
||||
const v3_t p2 // next point
|
||||
);
|
||||
|
||||
/** Project a 3D point onto a 2D space */
|
||||
void
|
||||
v3_project(
|
||||
|
Loading…
Reference in New Issue
Block a user