wireframe coplanar fixed is almost perfect; test3 fails
This commit is contained in:
parent
7dfd2d4c4e
commit
d10a21ac3b
296
wireframe.c
296
wireframe.c
@ -48,72 +48,8 @@ struct stl_vertex
|
||||
};
|
||||
|
||||
|
||||
typedef struct face face_t;
|
||||
typedef struct poly poly_t;
|
||||
|
||||
struct face
|
||||
{
|
||||
float sides[3];
|
||||
face_t * next[3];
|
||||
int next_edge[3];
|
||||
int coplanar[3];
|
||||
int used[3];
|
||||
};
|
||||
|
||||
// once this triangle has been used, it will be placed
|
||||
// in a polygon group and fixed in a position relative to that group
|
||||
struct poly
|
||||
{
|
||||
int start_edge;
|
||||
int printed;
|
||||
|
||||
// local coordinates of the triangle vertices
|
||||
float a;
|
||||
float x2;
|
||||
float y2;
|
||||
float rot;
|
||||
|
||||
// absolute coordintes of the triangle vertices
|
||||
float p[3][2];
|
||||
|
||||
// todo: make this const and add backtracking
|
||||
face_t * face;
|
||||
poly_t * next[3];
|
||||
|
||||
poly_t * work_next;
|
||||
};
|
||||
|
||||
|
||||
/* Compare two edges in two triangles.
|
||||
*
|
||||
* note that if the windings are all the same, the edges will
|
||||
* compare in the opposite order (for example, the edge from 0 to 1
|
||||
* compares to the edge from 2 to 1 in the other triangle).
|
||||
*/
|
||||
static int
|
||||
edge_eq2(
|
||||
const stl_face_t * const t0,
|
||||
const stl_face_t * const t1,
|
||||
int e0,
|
||||
int e1
|
||||
)
|
||||
{
|
||||
const v3_t * const v00 = &t0->p[e0];
|
||||
const v3_t * const v01 = &t0->p[(e0+1) % 3];
|
||||
|
||||
const v3_t * const v10 = &t1->p[e1];
|
||||
const v3_t * const v11 = &t1->p[(e1+1) % 3];
|
||||
|
||||
if (v3_eq(v00, v11) && v3_eq(v01, v10))
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Returns the 0 for coplanar, negative for mountain, positive for valley.
|
||||
* (approximates the angle between two triangles that share one edge).
|
||||
/* Returns 1 for ever edge in f1 that is shared with f2.
|
||||
*/
|
||||
int
|
||||
coplanar_check(
|
||||
@ -121,6 +57,28 @@ coplanar_check(
|
||||
const stl_face_t * const f2
|
||||
)
|
||||
{
|
||||
// Verify that there are three matching points
|
||||
int match[3] = {0,0,0};
|
||||
for (int i = 0 ; i < 3 ; i++)
|
||||
{
|
||||
for (int j = 0 ; j < 3 ; j++)
|
||||
if (v3_eq(&f1->p[i], &f2->p[j]))
|
||||
match[i] = 1;
|
||||
}
|
||||
|
||||
uint8_t mask = 0;
|
||||
|
||||
if (match[0] && match[1])
|
||||
mask = 1;
|
||||
if (match[1] && match[2])
|
||||
mask = 2;
|
||||
if (match[2] && match[0])
|
||||
mask = 4;
|
||||
|
||||
// otherwise they do not share enough points
|
||||
if (mask == 0)
|
||||
return 0;
|
||||
|
||||
// find the four distinct points
|
||||
v3_t x1 = f1->p[0];
|
||||
v3_t x2 = f1->p[1];
|
||||
@ -147,87 +105,17 @@ coplanar_check(
|
||||
float dot = v3_dot(dx31, cross);
|
||||
|
||||
int check = -EPS < dot && dot < +EPS;
|
||||
if (debug) fprintf( stderr, "%p %p %s: %f\n", f1, f2, check ? "yes" : "no", dot);
|
||||
return (int) dot;
|
||||
|
||||
// if the dot product is not close enough to zero, they
|
||||
// are not coplanar.
|
||||
if (!check)
|
||||
return 0;
|
||||
|
||||
// coplanar! return the shared edge mask
|
||||
return mask;
|
||||
}
|
||||
|
||||
|
||||
/** Translate a list of STL triangles into a connected graph of faces.
|
||||
*
|
||||
* If there are any triangles that do not have three connected edges,
|
||||
* the first error will be reported and NULL will be returned.
|
||||
*/
|
||||
face_t *
|
||||
stl2faces(
|
||||
const stl_face_t * const stl_faces,
|
||||
const int num_triangles
|
||||
)
|
||||
{
|
||||
face_t * const faces = calloc(num_triangles, sizeof(*faces));
|
||||
|
||||
// convert the stl triangles into faces
|
||||
for (int i = 0 ; i < num_triangles ; i++)
|
||||
{
|
||||
const stl_face_t * const stl = &stl_faces[i];
|
||||
face_t * const f = &faces[i];
|
||||
|
||||
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
|
||||
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
|
||||
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
|
||||
if (debug) fprintf(stderr, "%p %f %f %f\n",
|
||||
f, f->sides[0], f->sides[1], f->sides[2]);
|
||||
}
|
||||
|
||||
// look to see if there is a matching point
|
||||
// in the faces that we've already built
|
||||
for (int i = 0 ; i < num_triangles ; i++)
|
||||
{
|
||||
const stl_face_t * const stl = &stl_faces[i];
|
||||
face_t * const f = &faces[i];
|
||||
|
||||
for (int j = 0 ; j < num_triangles ; j++)
|
||||
{
|
||||
if (i == j)
|
||||
continue;
|
||||
|
||||
const stl_face_t * const stl2 = &stl_faces[j];
|
||||
face_t * const f2 = &faces[j];
|
||||
|
||||
for (int edge = 0 ; edge < 3 ; edge++)
|
||||
{
|
||||
if (f->next[edge])
|
||||
continue;
|
||||
|
||||
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
|
||||
{
|
||||
if (f2->next[edge2])
|
||||
continue;
|
||||
|
||||
if (!edge_eq2(stl, stl2, edge, edge2))
|
||||
continue;
|
||||
|
||||
f->next[edge] = f2;
|
||||
f->next_edge[edge] = edge2;
|
||||
f2->next[edge2] = f;
|
||||
f2->next_edge[edge2] = edge;
|
||||
|
||||
f->coplanar[edge] =
|
||||
f2->coplanar[edge2] = coplanar_check(stl, stl2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// all three edges should be matched
|
||||
if (f->next[0] && f->next[1] && f->next[2])
|
||||
continue;
|
||||
fprintf(stderr, "%d missing edges?\n", i);
|
||||
free(faces);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return faces;
|
||||
}
|
||||
|
||||
static inline float
|
||||
sign(
|
||||
const float x
|
||||
@ -241,6 +129,33 @@ sign(
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Add a vector to the list of edges if it is not already present
|
||||
* and if it is not coplanar with other ones.
|
||||
* Note that if it is coplanar, but "outside" the other edges then it
|
||||
* will replace the inside one.
|
||||
*/
|
||||
void
|
||||
stl_edge_insert(
|
||||
stl_vertex_t * const v1,
|
||||
stl_vertex_t * const v2
|
||||
)
|
||||
{
|
||||
for (int i = 0 ; i < v1->num_edges ; i++)
|
||||
{
|
||||
const v3_t * const p0 = &v1->p;
|
||||
|
||||
// if v2 already exists in the edges, discard it
|
||||
if (v1->edges[i] == v2)
|
||||
return;
|
||||
}
|
||||
|
||||
// if we reach this point, we need to insert the edge
|
||||
v1->edges[v1->num_edges++] = v2;
|
||||
}
|
||||
|
||||
|
||||
stl_vertex_t *
|
||||
stl_vertex_find(
|
||||
stl_vertex_t ** const vertices,
|
||||
@ -272,6 +187,7 @@ stl_vertex_find(
|
||||
}
|
||||
|
||||
|
||||
|
||||
int main(void)
|
||||
{
|
||||
const size_t max_len = 1 << 20;
|
||||
@ -306,13 +222,35 @@ int main(void)
|
||||
vp[j] = stl_vertex_find(vertices, &num_vertex, p);
|
||||
}
|
||||
|
||||
// walk all of other triangles to figure out if
|
||||
// any of the triangles are coplanar and have shared
|
||||
// edges.
|
||||
|
||||
uint8_t coplanar_mask = 0;
|
||||
for (int j = 0 ; j < num_triangles ; j++)
|
||||
{
|
||||
if (j == i)
|
||||
continue;
|
||||
|
||||
coplanar_mask |= coplanar_check(
|
||||
&stl_faces[i], &stl_faces[j]);
|
||||
}
|
||||
|
||||
// all three vertices are mapped; generate the
|
||||
// connections
|
||||
for (int j = 0 ; j < 3 ; j++)
|
||||
{
|
||||
stl_vertex_t * const v = vp[j];
|
||||
stl_vertex_find(v->edges, &v->num_edges, &vp[(j+1) % 3]->p);
|
||||
stl_vertex_find(v->edges, &v->num_edges, &vp[(j+2) % 3]->p);
|
||||
|
||||
// if the edge from j to j+1 is not coplanar,
|
||||
// add it to the list
|
||||
if ((coplanar_mask & (1 << j)) == 0)
|
||||
stl_edge_insert(v, vp[(j+1) % 3]);
|
||||
|
||||
// if the edge from j+2 to j is not coplanar
|
||||
const uint8_t j2 = (j + 2) % 3;
|
||||
if ((coplanar_mask & (1 << j2)) == 0)
|
||||
stl_edge_insert(v, vp[j2]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -340,7 +278,7 @@ int main(void)
|
||||
printf("%%rotate([0,%f,%f]) cylinder(r=1, h=%f); // %p\n",
|
||||
b,
|
||||
c,
|
||||
len/3,
|
||||
len*.45,
|
||||
v2
|
||||
);
|
||||
}
|
||||
@ -348,71 +286,5 @@ int main(void)
|
||||
printf("}\n");
|
||||
}
|
||||
|
||||
#if 0
|
||||
|
||||
face_t * const faces = stl2faces(stl_faces, num_triangles);
|
||||
|
||||
for (int i = 0 ; i < num_triangles ; i++)
|
||||
{
|
||||
//if (i > 20) break;
|
||||
const stl_face_t * const raw = &stl_faces[i];
|
||||
face_t * const f = &faces[i];
|
||||
for (int j = 0 ; j < 3 ; j++)
|
||||
{
|
||||
// if this edge is coplanar with the other
|
||||
// triangle, do not output it.
|
||||
if (f->coplanar[j] == 0)
|
||||
continue;
|
||||
|
||||
// if we have already transited this edge
|
||||
if (f->used[j])
|
||||
continue;
|
||||
|
||||
// flag that we have used this vertex on the adjacent
|
||||
|
||||
f->used[j] = 1;
|
||||
|
||||
const v3_t * const p1 = &raw->p[(j+0) % 3];
|
||||
const v3_t * const p2 = &raw->p[(j+1) % 3];
|
||||
const float len = v3_len(p1,p2);
|
||||
const v3_t d = v3_sub(*p2, *p1);
|
||||
if (len == 0)
|
||||
continue;
|
||||
|
||||
printf("translate([%f,%f,%f]) sphere(r=%f);\n",
|
||||
p1->p[0], p1->p[1], p1->p[2],
|
||||
4*thick
|
||||
);
|
||||
|
||||
|
||||
const float b = acos(d.p[2] / len) * 180/M_PI;
|
||||
const float c = d.p[0] == 0 ? sign(d.p[1]) * 90 : atan2(d.p[1], d.p[0]) * 180/M_PI;
|
||||
//
|
||||
// generate a cube that goes from
|
||||
// p1 to p2.
|
||||
printf("%%translate([%f,%f,%f]) rotate([%f,%f,%f]) ",
|
||||
p1->p[0], p1->p[1], p1->p[2],
|
||||
0.0, b, c
|
||||
);
|
||||
|
||||
if (do_square)
|
||||
{
|
||||
printf("translate([0,0,%f]) cube([%f,%f,%f], center=true);\n",
|
||||
len/2,
|
||||
thick,
|
||||
thick,
|
||||
len
|
||||
);
|
||||
} else {
|
||||
printf("cylinder(r=%f, h=%f);\n",
|
||||
thick,
|
||||
len
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user