splitting segments almost works

This commit is contained in:
Trammell hudson 2017-09-28 21:52:15 -04:00
parent 39dbd843f7
commit d321a1e86d
Failed to extract signature

View File

@ -40,12 +40,25 @@ typedef struct _tri_t tri_t;
struct _tri_t
{
v3_t p[3];
v3_t normal;
float area;
float depth;
float min[3];
float max[3];
tri_t * next;
tri_t ** prev;
};
// line segment has to track its source so that it knows which to not
// compare against in its occlusion checks.
typedef struct _seg_t seg_t;
struct _seg_t {
v3_t p[2];
v3_t src[2];
seg_t * next;
};
#if 0
typedef struct face face_t;
typedef struct poly poly_t;
@ -224,6 +237,7 @@ enqueue(
static poly_t * poly_root;
static float poly_min[2], poly_max[2];
#endif
static inline int
v2_eq(
@ -243,6 +257,17 @@ v2_eq(
return 0;
}
static inline int
v2_dist(
const float p0[],
const float p1[]
)
{
const float dx = p0[0] - p1[0];
const float dy = p0[1] - p1[1];
return sqrt(dx*dx + dy*dy);
}
// Returns 1 if the lines intersect, otherwise 0. In addition, if the lines
@ -274,7 +299,7 @@ get_line_intersection(
if (s > EPS && s < 1-EPS && t > EPS && t < 1-EPS)
{
if(debug) fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
if(0) fprintf(stderr, "collision: %f,%f->%f,%f %f,%f->%f,%f == %f,%f\n",
p0_x, p0_y,
p1_x, p1_y,
p2_x, p2_y,
@ -297,33 +322,32 @@ get_line_intersection(
int
intersect(
const float p00[],
const float p01[],
const float p10[],
const float p11[]
const v3_t * const p00,
const v3_t * const p01,
const v3_t * const p10,
const v3_t * const p11,
float *px,
float *py
)
{
// special case; if this is the same line, it does not intersect
if (v2_eq(p00, p10) && v2_eq(p01, p11))
if (v2_eq(p00->p, p10->p) && v2_eq(p01->p, p11->p))
return 0;
if (v2_eq(p01, p10) && v2_eq(p00, p11))
if (v2_eq(p01->p, p10->p) && v2_eq(p00->p, p11->p))
return 0;
return get_line_intersection(
p00[0],
p00[1],
p01[0],
p01[1],
p10[0],
p10[1],
p11[0],
p11[1],
NULL,
NULL
p00->p[0], p00->p[1],
p01->p[0], p01->p[1],
p10->p[0], p10->p[1],
p11->p[0], p11->p[1],
px,
py
);
}
#if 0
/** Check to see if two triangles overlap */
int
overlap_poly(
@ -733,36 +757,41 @@ where Area is the (signed) area of the triangle:
Area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);
Just evaluate s, t and 1-s-t. The point p is inside the triangle if and only if they are all positive.
*/
int inside_triangle(
const v3_t * const p,
const v3_t * const t0,
const v3_t * const t1,
const v3_t * const t2
int
tri_inside(
const tri_t * const t,
const v3_t * const p
)
{
const float p0x = t0->p[0];
const float p0y = t0->p[1];
const float p1x = t1->p[0];
const float p1y = t1->p[1];
const float p2x = t2->p[0];
const float p2y = t2->p[1];
const float p0x = t->p[0].p[0];
const float p0y = t->p[0].p[1];
const float p1x = t->p[1].p[0];
const float p1y = t->p[1].p[1];
const float p2x = t->p[2].p[0];
const float p2y = t->p[2].p[1];
const float px = p->p[0];
const float py = p->p[1];
const float s = p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py;
const float t = p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py;
const float u = p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py;
const float v = p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py;
if (s <= 0 || t <= 0)
if (u <= 0 || v <= 0)
return 0;
// maybe inside; check for sure
const float area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);
if (s + t <= 2 * area)
if (u + v >= 2 * t->area)
return 0;
// inside!
if(0) fprintf(stderr, "%p: %f,%f inside %f,%f %f,%f %f,%f\n",
t,
px, py,
p0x, p0y,
p1x, p1y,
p2x, p2y
);
return 1;
}
@ -788,11 +817,19 @@ tri_new(
t->area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);
// compute an average z-depth
// this isn't exactly right, but close enough
t->depth = (t->p[0].p[2] + t->p[1].p[2] + t->p[2].p[2]) / 3;
// precompute the normal
t->normal = v3_cross(
v3_sub(t->p[1], t->p[0]),
v3_sub(t->p[2], t->p[1])
);
// should we pre-compute the normal?
// compute the bounding box for the triangle
for(int j = 0 ; j < 3 ; j++)
{
t->min[j] = min(min(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]);
t->max[j] = max(max(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]);
}
return t;
}
@ -811,7 +848,9 @@ tri_insert(
if (!iter)
break;
if(iter->depth > t->depth)
// check to see if our new triangle is closer than
// the current triangle
if(iter->min[2] > t->min[2])
break;
zlist = &(iter->next);
@ -819,7 +858,6 @@ tri_insert(
// either we reached the end of the list,
// or we have found where our new triangle is sorted
t->next = *zlist;
*zlist = t;
if (t->next)
@ -832,11 +870,272 @@ tri_delete(tri_t * t)
{
if (t->next)
t->next->prev = t->prev;
if (t->prev)
*(t->prev) = t->next;
t->next = NULL;
t->prev = NULL;
free(t);
}
int
tri_occluded(
const tri_t * zlist,
const tri_t * t
)
{
for( const tri_t * t2 = zlist ; t2 ; t2 = t2->next )
{
if (t2 == t)
continue;
// if any of the points of t are outside of t2,
// then t2 does not totally occlude t
if (!tri_inside(t2, &t->p[0]))
continue;
if (!tri_inside(t2, &t->p[1]))
continue;
if (!tri_inside(t2, &t->p[2]))
continue;
// if any point of t2 is behind t, then it does not occlude
// (might intersect, but we don't handle that)
if (t2->min[2] > t->min[2])
continue;
// looks like we might be occluded
return 1;
}
// probably not occluded
return 0;
}
seg_t *
seg_new(
const v3_t p0,
const v3_t p1
)
{
seg_t * const s = calloc(1, sizeof(*s));
if (!s)
return NULL;
s->p[0] = p0;
s->p[1] = p1;
s->src[0] = p0;
s->src[1] = p1;
s->next = NULL;
return s;
}
/*
int
tri_line_intersect(
const tri_t * zlist,
const tri_t * t
)
{
for( const tri_t * t2 = zlist ; t2 ; t2 = t2->next )
{
if (t2 == t)
continue;
for(int j = 0 ; j < 3 ; j++)
{
const v3_t * const p0 = &t->p[j].p;
const v3_t * const p1 = &t->p[(j+1) % 3].p;
*/
/*
* Recursive algorithm:
* Given a line segment and a list of triangles,
* find if the line segment crosses any triangle.
* If it crosses a triangle the segment will be shortened
* and an additional one might be created.
* Recusively try intersecting the new segment (starting at the same triangle)
* and then continue trying the shortened segment.
*/
void
tri_seg_intersect(
const tri_t * zlist,
seg_t * s,
seg_t ** slist_visible
)
{
const float p0x = s->p[0].p[0];
const float p0y = s->p[0].p[1];
const float p0z = s->p[0].p[2];
const float p1x = s->p[1].p[0];
const float p1y = s->p[1].p[1];
const float p1z = s->p[1].p[2];
for( const tri_t * t = zlist ; t ; t = t->next )
{
// if the segment is closer than the triangle,
// then we no longer have to check any further into
// the zlist (it is sorted by depth).
if (p0z < t->min[2] && p1z < t->min[2])
break;
#if 0
// do a quick test of does this segment even comes
// close to this triangle
if (p0x < t->min[0] && p1x < t->min[0]
&& p0y < t->min[1] && p1y < t->min[1])
continue;
if (p0x > t->max[0] && p1x > t->max[0]
&& p0y > t->max[2] && p1y > t->max[2])
continue;
if (p0x < t->min[0] && p1x < t->min[0]
&& p0y > t->max[2] && p1y > t->max[2])
continue;
if (p0x > t->max[0] && p1x > t->max[0]
&& p0y < t->min[1] && p1y < t->min[1])
continue;
// make sure this isn't the same actual line
if (v3_eq(&s->src[0], &t->p[0]) || v3_eq(&s->src[1], &t->p[1]))
continue;
if (v3_eq(&s->src[0], &t->p[1]) || v3_eq(&s->src[1], &t->p[2]))
continue;
if (v3_eq(&s->src[0], &t->p[2]) || v3_eq(&s->src[1], &t->p[0]))
continue;
#endif
int inside0 = tri_inside(t, &s->p[0]);
int inside1 = tri_inside(t, &s->p[1]);
// if both are inside we discard this segment
if (inside0 && inside1)
return;
// split the segment for each intersection with the
// triangle segments and add it to the work queue.
int intersections = 0;
v3_t ix[3] = {};
const float max_z = max(s->p[0].p[2], s->p[1].p[2]);
for(int j = 0 ; j < 3 ; j++)
{
ix[j].p[2] = max_z;
int rc = intersect(
&s->p[0], &s->p[1],
&t->p[j], &t->p[(j+1)%3],
&ix[intersections].p[0], &ix[intersections].p[1]
);
if (!rc)
continue;
intersections++;
}
// if none of them intersect, we keep looking
if (intersections == 0)
continue;
fprintf(stderr, "split %d %d inter %d\n", inside0 , inside1, intersections);
if (intersections == 3)
{
fprintf(stderr, "uh, three intersections?\n");
return;
}
if (intersections == 2)
{
if (inside0 || inside1)
{
fprintf(stderr, "uh, inside but two intersections?\n");
return;
}
// we have to create a new segment
// and shorten the existing segment
// find the two intersections that we have
// update the src field
fprintf(stderr, "two intersections\n");
const float d0 = v2_dist(s->p[0].p, ix[0].p);
const float d1 = v2_dist(s->p[1].p, ix[0].p);
seg_t * news;
if (d0 < d1)
{
// split from p0 to ix0
news = seg_new(s->p[0], ix[0]);
news->src[1] = s->p[1];
s->p[1] = ix[1];
} else {
// split from p0 to ix1
news = seg_new(s->p[0], ix[1]);
news->src[1] = s->p[1];
s->p[1] = ix[0];
}
// recursively start splitting the new segment
// starting at our current z-depth
tri_seg_intersect(zlist, news, slist_visible);
// continue splitting our current segment
continue;
}
if (intersections == 1)
{
fprintf(stderr, "split %d %d\n", inside0, inside1);
if (inside0)
{
// shorten it on the 0 side
s->p[0] = ix[0];
} else
if (inside1)
{
// shorten it on the 1 side
s->p[1] = ix[0];
} else {
fprintf(stderr, "uh, both outside but one intersection?\n");
return;
}
}
if(0) fprintf(stderr, "check: %.0f,%.0f -> %.0f,%.0f %.0f,%.0f %.0f,%.0f %.0f,%.0f\n",
s->p[0].p[0],
s->p[0].p[1],
s->p[1].p[0],
s->p[1].p[1],
t->p[0].p[0],
t->p[0].p[1],
t->p[1].p[0],
t->p[1].p[1],
t->p[2].p[0],
t->p[2].p[1]
);
//return;
}
// if we've reached here the segment is visible
// and should be added to the visible list
if(0) fprintf(stderr, "good: %.0f,%.0f,%.0f-> %.0f,%.0f,%.0f\n",
s->p[0].p[0],
s->p[0].p[1],
s->p[0].p[2],
s->p[1].p[0],
s->p[1].p[1],
s->p[1].p[2]
);
s->next = *slist_visible;
*slist_visible = s;
}
int main(
int argc,
char ** argv
@ -876,8 +1175,11 @@ int main(
int rejected = 0;
tri_t * zlist = NULL;
seg_t * slist = NULL;
seg_t * slist_visible = NULL;
// transform the stl in place by the camera projection
// transform the stl by the camera projection and generate
// a z-sorted list of triangles
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
@ -887,28 +1189,33 @@ int main(
for(int j = 0 ; j < 3 ; j++)
camera_project(cam, &stl->p[j], &s[j]);
// reject this face if any of them are behind us
for(int j = 0 ; j < 3 ; j++)
if (s[j].p[2] <= 0)
tri_t * const tri = tri_new(s);
// reject this face if any of the vertices are behind us
if (tri->min[2] < 0)
goto reject;
// do a back-face cull to determine if this triangle
// is not facing us. we have to determine the orientation
// from the winding of the new projection
v3_t normal = v3_cross(
v3_sub(s[1], s[0]),
v3_sub(s[2], s[1])
);
if (normal.p[2] <= 0)
if (tri->normal.p[2] <= 0)
goto reject;
// it passes the first tests, so insert it into the list
tri_t * const tri = tri_new(s);
// it passes the first tests, so insert the triangle
// into the list and the three line segments
tri_insert(&zlist, tri);
for(int j = 0 ; j < 3 ; j++)
{
seg_t * s = seg_new(tri->p[j], tri->p[(j+1) % 3]);
s->next = slist;
slist = s;
}
continue;
reject:
tri_delete(tri);
rejected++;
}
@ -916,94 +1223,27 @@ reject:
fprintf(stderr, "Rejected %d triangles\n", rejected);
// we now have a z-sorted list of triangles
rejected = 0;
for( tri_t * t = zlist ; t ; t = t->next )
// work on each segment, intersecting it with all of the triangles
while(slist)
{
// check to see if this triangle is entirely occluded
// by another triangle
seg_t * s = slist;
slist = s->next;
tri_seg_intersect(zlist, s, &slist_visible);
// draw each of the three lines
for(int j = 0 ; j < 3 ; j++)
svg_line("#FF0000", t->p[j].p, t->p[(j+1) % 3].p, 0);
}
#if 0
face_t * const faces = stl2faces(stl_faces, num_triangles);
// we now have a graph that shows the connection between
// all of the faces and their sizes. start trying to build
// non-overlapping groups of them
poly_t origin = { };
float last_x = 0;
float last_y = 0;
srand48(getpid());
int offset;
const char * const poly_offset = getenv("POLY");
if (poly_offset)
offset = atoi(poly_offset);
else
offset = lrand48();
fprintf(stderr, "Starting at poly %d\n", offset % num_triangles);
int group_count = 0;
for (int i = 0 ; i < num_triangles ; i++)
// display all of the visible segments
for(seg_t * s = slist_visible ; s ; s = s->next)
{
face_t * const f = &faces[(i+offset) % num_triangles];
if (f->used)
continue;
poly_t g = {
.face = f,
.start_edge = 0,
};
poly_position(&g, &origin, 0, 0, 0);
// set the root of the new group
poly_root = &g;
poly_min[0] = poly_min[1] = 0;
poly_max[0] = poly_max[1] = 0;
poly_t * iter = &g;
int poly_count = 0;
group_count++;
if (debug) fprintf(stderr, "****** %d: New group %p\n",
group_count, poly_root);
while (iter)
{
poly_build(iter);
iter = iter->work_next;
poly_count++;
svg_line("#FF0000", s->p[0].p, s->p[1].p, 0);
}
fprintf(stderr, "group %d: %d triangles\n",
group_count, poly_count);
if (debug)
fprintf(stderr, "Occluded %d triangles\n", rejected);
// todo: walk the generated polygon and attempt to add tabs
// to edges where they fit
// offset the poly so that it doesn't overlap the ones
// we've already generated. only shift in Y.
float off_x = last_x - poly_min[0];
float off_y = last_y - poly_min[1];
last_y = off_y + poly_max[1];
// \todo: generate lots of poly sets before we print
// to find a minimal set. perhaps vary the search rules?
printf("<g transform=\"translate(%f %f)\">\n", off_x, off_y);
poly_print(&g);
printf("</g>\n");
}
#endif
printf("</g>\n");
printf("</svg>\n");