rework to collect things into polygons

This commit is contained in:
Trammell Hudson 2014-12-14 22:18:34 -05:00
parent 5f7c406716
commit d4454c67bd
1 changed files with 191 additions and 163 deletions

354
unfold.c
View File

@ -8,13 +8,13 @@
#include <unistd.h>
#include <math.h>
#include <err.h>
#include <assert.h>
#include "v3.h"
#ifndef M_PI
#define M_PI 3.1415926535897932384
#endif
#define EPS 0.0001
typedef struct
{
char header[80];
@ -22,10 +22,6 @@ typedef struct
} __attribute__((__packed__))
stl_header_t;
typedef struct
{
float p[3];
} v3_t;
typedef struct
{
@ -37,6 +33,7 @@ stl_face_t;
typedef struct face face_t;
typedef struct poly poly_t;
struct face
{
@ -47,54 +44,25 @@ struct face
int used;
};
static int
v3_eq(
const v3_t * v1,
const v3_t * v2
)
// once this triangle has been used, it will be placed
// in a polygon group and fixed in a position relative to that group
struct poly
{
float dx = v1->p[0] - v2->p[0];
float dy = v1->p[1] - v2->p[1];
float dz = v1->p[2] - v2->p[2];
int start_edge;
int printed;
if (-EPS < dx && dx < EPS
&& -EPS < dy && dy < EPS
&& -EPS < dz && dz < EPS)
return 1;
// local coordinates of the triangle vertices
float a;
float x2;
float y2;
float rot;
return 0;
}
// absolute coordintes of the triangle vertices
float p[3][2];
static int
edge_eq(
const stl_face_t * const t0,
const stl_face_t * const t1,
int e0,
int e1
)
{
const v3_t * const v0 = &t0->p[e0];
const v3_t * const v1 = &t0->p[e1];
if (v3_eq(v0, &t1->p[0]) && v3_eq(v1, &t1->p[1]))
return 1;
if (v3_eq(v0, &t1->p[1]) && v3_eq(v1, &t1->p[0]))
return 1;
if (v3_eq(v0, &t1->p[0]) && v3_eq(v1, &t1->p[2]))
return 1;
if (v3_eq(v0, &t1->p[2]) && v3_eq(v1, &t1->p[0]))
return 1;
if (v3_eq(v0, &t1->p[1]) && v3_eq(v1, &t1->p[2]))
return 1;
if (v3_eq(v0, &t1->p[2]) && v3_eq(v1, &t1->p[1]))
return 1;
return 0;
}
face_t * face;
poly_t * next[3];
};
/* Compare two edges in two triangles.
@ -124,157 +92,185 @@ edge_eq2(
}
double
v3_len(
const v3_t * const v0,
const v3_t * const v1
)
{
float dx = v0->p[0] - v1->p[0];
float dy = v0->p[1] - v1->p[1];
float dz = v0->p[2] - v1->p[2];
return sqrt(dx*dx + dy*dy + dz*dz);
}
void
svg_line(
float x1,
float y1,
float x2,
float y2
const char * color,
float * p1,
float * p2
)
{
printf("<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" style=\"stroke:rgb(255,255,0);\"/>\n",
x1,
y1,
x2,
y2
printf("<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" stroke=\"%s\"/>\n",
p1[0],
p1[1],
p2[0],
p2[1],
color
);
}
/** recursively try to fix up the triangles.
*
* returns 0 if this should be unwound, 1 if was successful
*/
int
recurse(
face_t * const f,
int start_edge
void
rotate(
float * p,
float a,
float x,
float y
)
{
static int depth;
p[0] = cos(a) * x - sin(a) * y;
p[1] = sin(a) * x + cos(a) * y;
}
depth++;
// flag that we are looking into this one
f->used = 1;
/* Rotate and translate a triangle */
void
poly_position(
poly_t * const g,
float trans_x,
float trans_y,
float rot
)
{
face_t * const f = g->face;
const int start_edge = g->start_edge;
// print out a svg group for this triangle, starting with
// the incoming edge
float a = f->sides[(start_edge + 0) % 3];
float c = f->sides[(start_edge + 1) % 3];
float b = f->sides[(start_edge + 2) % 3];
float x2 = (a*a + b*b - c*c) / (2*a);
float y2 = sqrt(b*b - x2*x2);
// before drawing the triangle, check to see if any of the
// edges are coplanar and if so, don't draw the edge
if (!f->coplanar[(0+start_edge) % 3])
svg_line(0, 0, a, 0);
if (!f->coplanar[(1+start_edge) % 3])
svg_line(a, 0, x2, y2);
if (!f->coplanar[(2+start_edge) % 3])
svg_line(x2, y2, 0, 0);
g->rot = rot;
g->a = a;
g->x2 = x2;
g->y2 = y2;
//printf("%p %d %f %f %f\n", f, start_edge, f->sides[0], f->sides[1], f->sides[2]);
rotate(g->p[0], rot, trans_x + 0, trans_y + 0);
rotate(g->p[1], rot, trans_x + a, trans_y + 0);
rotate(g->p[2], rot, trans_x + x2, trans_y + y2);
}
/** recursively try to fix up the triangles.
*
* returns the maximum number of triangles added
*/
int
poly_build(
poly_t * const g
)
{
face_t * const f = g->face;
const int start_edge = g->start_edge;
f->used = 1;
fprintf(stderr, "%p: adding to poly\n", f);
for(int pass = 0 ; pass < 2 ; pass++)
{
// for each edge, find the triangle that matches
for (int edge = 0 ; edge < 3 ; edge++)
for (int i = 0 ; i < 3 ; i++)
{
face_t * const f2 = f->next[(edge+start_edge) % 3];
const int edge = (i + start_edge) % 3;
face_t * const f2 = f->next[edge];
assert(f2 != NULL);
if (f2->used)
continue;
if (pass == 0 && !f->coplanar[(edge+start_edge) % 3])
if (pass == 0 && !f->coplanar[edge])
continue;
// create a group that translates and rotates
// such that it lines up with this edge
float trans_x, trans_y, rotate;
if (edge == 0)
if (i == 0)
{
trans_x = a;
trans_x = g->a;
trans_y = 0;
rotate = 180;
} else
if (edge == 1)
if (i == 1)
{
trans_x = x2;
trans_y = y2;
rotate = -atan2(y2, a-x2) * 180 / M_PI;
trans_x = g->x2;
trans_y = g->y2;
rotate = -atan2(g->y2, g->a - g->x2);
} else
if (edge == 2)
if (i == 2)
{
trans_x = 0;
trans_y = 0;
rotate = atan2(y2, x2) * 180 / M_PI;
rotate = atan2(g->y2, g->x2);
} else {
errx(EXIT_FAILURE, "edge %d invalid?\n", edge);
errx(EXIT_FAILURE, "edge %d invalid?\n", i);
}
printf("<!-- edge %d --><g transform=\"translate(%f,%f) rotate(%f)\">\n",
edge,
trans_x,
trans_y,
rotate
// position this one translated and rotated
poly_t * const g2 = calloc(1, sizeof(*g2));
g2->face = f2;
g2->start_edge = f->next_edge[edge];
g->next[edge] = g2;
g2->next[g2->start_edge] = g;
poly_position(
g2,
g->rot + rotate,
g->p[0][0] + trans_x,
g->p[0][1] + trans_y
);
recurse(f2, f->next_edge[(edge+start_edge) % 3]);
// \todo: CHECK FOR OVERLAP!
printf("</g>\n");
poly_build(g2);
}
}
// no success
return 0;
}
v3_t v3_sub(v3_t a, v3_t b)
void
poly_print(
poly_t * const g
)
{
v3_t c = { .p = {
a.p[0] - b.p[0],
a.p[1] - b.p[1],
a.p[2] - b.p[2],
} };
return c;
}
face_t * const f = g->face;
const int start_edge = g->start_edge;
float v3_dot(v3_t a, v3_t b)
{
return a.p[0]*b.p[0] + a.p[1]*b.p[1] + a.p[2]*b.p[2];
}
g->printed = 1;
v3_t v3_cross(v3_t u, v3_t v)
{
float u1 = u.p[0];
float u2 = u.p[1];
float u3 = u.p[2];
// draw this triangle;
// if the edge is an outside, which means that the group
// has no next element, draw a cut line. If there is an
// adjacent neighbor and it is not coplanar, draw a score line
printf("<g>\n");
for (int i = 0 ; i < 3 ; i++)
{
poly_t * const next = g->next[i];
float v1 = v.p[0];
float v2 = v.p[1];
float v3 = v.p[2];
if (!next)
{
// draw a cut line
svg_line("#FF0000", g->p[i], g->p[(i+1) % 3]);
continue;
}
v3_t c = { .p = {
u2*v3 - u3*v2,
u3*v1 - u1*v3,
u1*v2 - u2*v1,
}};
//if (next->printed)
//continue;
return c;
if (!f->coplanar[(0+start_edge) % 3])
{
// draw a score line since they are not coplanar
svg_line("#00FF00", g->p[i], g->p[(i+1) % 3]);
}
}
printf("</g>\n");
for (int i = 0 ; i < 3 ; i++)
{
poly_t * const next = g->next[i];
if (!next || next->printed)
continue;
poly_print(next);
}
}
@ -315,23 +311,17 @@ coplanar_check(
}
int main(void)
/** Translate a list of STL triangles into a connected graph of faces.
*
* If there are any triangles that do not have three connected edges,
* the first error will be reported and NULL will be returned.
*/
face_t *
stl2faces(
const stl_face_t * const stl_faces,
const int num_triangles
)
{
const size_t max_len = 1 << 20;
uint8_t * const buf = calloc(max_len, 1);
ssize_t rc = read(0, buf, max_len);
if (rc == -1)
return EXIT_FAILURE;
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
face_t * const faces = calloc(num_triangles, sizeof(*faces));
// convert the stl triangles into faces
@ -387,15 +377,53 @@ int main(void)
// all three edges should be matched
if (f->next[0] && f->next[1] && f->next[2])
continue;
errx(EXIT_FAILURE, "%d missing edges?\n", i);
fprintf(stderr, "%d missing edges?\n", i);
free(faces);
return NULL;
}
// we now have a graph that shows the connection between
// all of the faces and their sizes. start converting them
return faces;
}
int main(void)
{
const size_t max_len = 1 << 20;
uint8_t * const buf = calloc(max_len, 1);
ssize_t rc = read(0, buf, max_len);
if (rc == -1)
return EXIT_FAILURE;
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
face_t * const faces = stl2faces(stl_faces, num_triangles);
// we now have a graph that shows the connection between
// all of the faces and their sizes. start trying to build
// non-overlapping groups of them
printf("<svg xmlns=\"http://www.w3.org/2000/svg\">\n");
//for (int i = 0 ; i < num_triangles ; i++)
recurse(&faces[0], 0);
for (int i = 0 ; i < num_triangles ; i++)
{
face_t * const f = &faces[i];
if (f->used)
continue;
poly_t g;
g.face = f;
poly_position(&g, 0, 0, 0);
poly_build(&g);
printf("<g>\n");
poly_print(&g);
printf("</g>\n");
}
printf("</svg>\n");