/** \file * Unfold an STL file into a set of laser-cutable polygons. * */ #include #include #include #include #include #include #include #include "v3.h" #ifndef M_PI #define M_PI 3.1415926535897932384 #endif typedef struct { char header[80]; uint32_t num_triangles; } __attribute__((__packed__)) stl_header_t; typedef struct { v3_t normal; v3_t p[3]; uint16_t attr; } __attribute__((__packed__)) stl_face_t; typedef struct face face_t; typedef struct poly poly_t; struct face { float sides[3]; face_t * next[3]; int next_edge[3]; int coplanar[3]; int used; }; // once this triangle has been used, it will be placed // in a polygon group and fixed in a position relative to that group struct poly { int start_edge; int printed; // local coordinates of the triangle vertices float a; float x2; float y2; float rot; // absolute coordintes of the triangle vertices float p[3][2]; face_t * face; poly_t * next[3]; poly_t * work_next; }; /* Compare two edges in two triangles. * * note that if the windings are all the same, the edges will * compare in the opposite order (for example, the edge from 0 to 1 * compares to the edge from 2 to 1 in the other triangle). */ static int edge_eq2( const stl_face_t * const t0, const stl_face_t * const t1, int e0, int e1 ) { const v3_t * const v00 = &t0->p[e0]; const v3_t * const v01 = &t0->p[(e0+1) % 3]; const v3_t * const v10 = &t1->p[e1]; const v3_t * const v11 = &t1->p[(e1+1) % 3]; if (v3_eq(v00, v11) && v3_eq(v01, v10)) return 1; return 0; } void svg_line( const char * color, float * p1, float * p2 ) { printf("\n", p1[0], p1[1], p2[0], p2[1], color ); } void rotate( float * p, const float * origin, float a, float x, float y ) { p[0] = cos(a) * x - sin(a) * y + origin[0]; p[1] = sin(a) * x + cos(a) * y + origin[1]; } /* Rotate and translate a triangle */ void poly_position( poly_t * const g, const poly_t * const g_src, float rot, float trans_x, float trans_y ) { face_t * const f = g->face; const int start_edge = g->start_edge; float a = f->sides[(start_edge + 0) % 3]; float c = f->sides[(start_edge + 1) % 3]; float b = f->sides[(start_edge + 2) % 3]; float x2 = (a*a + b*b - c*c) / (2*a); float y2 = sqrt(b*b - x2*x2); // translate by trans_x/trans_y in the original ref frame // to get the origin point float origin[2]; rotate(origin, g_src->p[0], g_src->rot, trans_x, trans_y); g->rot = g_src->rot + rot; g->a = a; g->x2 = x2; g->y2 = y2; fprintf(stderr, "%p %d %f %f %f %f => %f %f %f\n", f, start_edge, g->rot*180/M_PI, a, b, c, x2, y2, rot); rotate(g->p[0], origin, g->rot, 0, 0); rotate(g->p[1], origin, g->rot, a, 0); rotate(g->p[2], origin, g->rot, x2, y2); } static void enqueue( poly_t * g, poly_t * const new_g ) { while (g->work_next) g = g->work_next; g->work_next = new_g; } /** recursively try to fix up the triangles. * * returns the maximum number of triangles added */ int poly_build( poly_t * const g ) { face_t * const f = g->face; const int start_edge = g->start_edge; f->used = 1; fprintf(stderr, "%p: adding to poly\n", f); for(int pass = 0 ; pass < 2 ; pass++) { // for each edge, find the triangle that matches for (int i = 0 ; i < 3 ; i++) { const int edge = (i + start_edge) % 3; face_t * const f2 = f->next[edge]; assert(f2 != NULL); if (f2->used) continue; if (pass == 0 && !f->coplanar[edge]) continue; // create a group that translates and rotates // such that it lines up with this edge float trans_x, trans_y, rotate; if (i == 0) { trans_x = g->a; trans_y = 0; rotate = M_PI; } else if (i == 1) { trans_x = g->x2; trans_y = g->y2; rotate = -atan2(g->y2, g->a - g->x2); } else if (i == 2) { trans_x = 0; trans_y = 0; rotate = atan2(g->y2, g->x2); } else { errx(EXIT_FAILURE, "edge %d invalid?\n", i); } // position this one translated and rotated poly_t * const g2 = calloc(1, sizeof(*g2)); g2->face = f2; g2->start_edge = f->next_edge[edge]; poly_position( g2, g, rotate, trans_x, trans_y ); // \todo: CHECK FOR OVERLAP! g->next[i] = g2; g2->next[0] = g; f2->used = 1; enqueue(g, g2); } } return 0; } void poly_print( poly_t * const g ) { face_t * const f = g->face; const int start_edge = g->start_edge; g->printed = 1; // draw this triangle; // if the edge is an outside, which means that the group // has no next element, draw a cut line. If there is an // adjacent neighbor and it is not coplanar, draw a score line printf("\n", f, g->start_edge, g->rot * 180/M_PI, f->sides[0], f->next[0], f->sides[1], f->next[1], f->sides[2], f->next[2] ); for (int i = 0 ; i < 3 ; i++) { const int edge = (start_edge + i) % 3; poly_t * const next = g->next[i]; if (!next) { // draw a cut line svg_line("#FF0000", g->p[i], g->p[(i+1) % 3]); continue; } if (next->printed) continue; if (f->coplanar[edge]) { // draw a shadow line since they are coplanar svg_line("#F0F0F0", g->p[i], g->p[(i+1) % 3]); } else { // draw a score line since they are not coplanar svg_line("#0000FF", g->p[i], g->p[(i+1) % 3]); } } printf("\n"); for (int i = 0 ; i < 3 ; i++) { poly_t * const next = g->next[i]; if (!next || next->printed) continue; poly_print(next); } } int coplanar_check( const stl_face_t * const f1, const stl_face_t * const f2 ) { // find the four distinct points v3_t x1 = f1->p[0]; v3_t x2 = f1->p[1]; v3_t x3 = f1->p[2]; v3_t x4; for (int i = 0 ; i < 3 ; i++) { x4 = f2->p[i]; if (v3_eq(&x1, &x4)) continue; if (v3_eq(&x2, &x4)) continue; if (v3_eq(&x3, &x4)) continue; break; } // (x3-x1) . ((x2-x1) X (x4-x3)) == 0 v3_t dx31 = v3_sub(x3, x1); v3_t dx21 = v3_sub(x2, x1); v3_t dx43 = v3_sub(x4, x3); v3_t cross = v3_cross(dx21, dx43); float dot = v3_dot(dx31, cross); int check = -EPS < dot && dot < +EPS; //fprintf( stderr, "%p %p %s\n", f1, f2, check ? "yes" : "no"); return check; } /** Translate a list of STL triangles into a connected graph of faces. * * If there are any triangles that do not have three connected edges, * the first error will be reported and NULL will be returned. */ face_t * stl2faces( const stl_face_t * const stl_faces, const int num_triangles ) { face_t * const faces = calloc(num_triangles, sizeof(*faces)); // convert the stl triangles into faces for (int i = 0 ; i < num_triangles ; i++) { const stl_face_t * const stl = &stl_faces[i]; face_t * const f = &faces[i]; f->sides[0] = v3_len(&stl->p[0], &stl->p[1]); f->sides[1] = v3_len(&stl->p[1], &stl->p[2]); f->sides[2] = v3_len(&stl->p[2], &stl->p[0]); fprintf(stderr, "%p %f %f %f\n", f, f->sides[0], f->sides[1], f->sides[2]); } // look to see if there is a matching point // in the faces that we've already built for (int i = 0 ; i < num_triangles ; i++) { const stl_face_t * const stl = &stl_faces[i]; face_t * const f = &faces[i]; for (int j = 0 ; j < num_triangles ; j++) { if (i == j) continue; const stl_face_t * const stl2 = &stl_faces[j]; face_t * const f2 = &faces[j]; for (int edge = 0 ; edge < 3 ; edge++) { if (f->next[edge]) continue; for (int edge2 = 0 ; edge2 < 3 ; edge2++) { if (f2->next[edge2]) continue; if (!edge_eq2(stl, stl2, edge, edge2)) continue; f->next[edge] = f2; f->next_edge[edge] = edge2; f2->next[edge2] = f; f2->next_edge[edge2] = edge; f->coplanar[edge] = f2->coplanar[edge2] = coplanar_check(stl, stl2); } } } // all three edges should be matched if (f->next[0] && f->next[1] && f->next[2]) continue; fprintf(stderr, "%d missing edges?\n", i); free(faces); return NULL; } return faces; } int main(void) { const size_t max_len = 1 << 20; uint8_t * const buf = calloc(max_len, 1); ssize_t rc = read(0, buf, max_len); if (rc == -1) return EXIT_FAILURE; const stl_header_t * const hdr = (const void*) buf; const stl_face_t * const stl_faces = (const void*)(hdr+1); const int num_triangles = hdr->num_triangles; fprintf(stderr, "header: '%s'\n", hdr->header); fprintf(stderr, "num: %d\n", num_triangles); face_t * const faces = stl2faces(stl_faces, num_triangles); // we now have a graph that shows the connection between // all of the faces and their sizes. start trying to build // non-overlapping groups of them printf("\n"); poly_t origin = { }; for (int i = 0 ; i < num_triangles ; i++) { face_t * const f = &faces[i]; if (f->used) continue; poly_t g = { .face = f, .start_edge = 0, }; poly_position(&g, &origin, 0, 0, 0); poly_t * iter = &g; while (iter) { poly_build(iter); iter = iter->work_next; } printf("\n"); poly_print(&g); printf("\n"); } printf("\n"); return 0; }