/** \file * Unfold an STL file into a set of laser-cutable polygons. * */ #include #include #include #include #include #ifndef M_PI #define M_PI 3.1415926535897932384 #endif #define EPS 0.0001 typedef struct { char header[80]; uint32_t num_triangles; } __attribute__((__packed__)) stl_header_t; typedef struct { float p[3]; } v3_t; typedef struct { v3_t normal; v3_t p[3]; uint16_t attr; } __attribute__((__packed__)) stl_face_t; typedef struct face face_t; struct face { float sides[3]; face_t * next[3]; int next_edge[3]; int coplanar[3]; int used; }; static int v3_eq( const v3_t * v1, const v3_t * v2 ) { float dx = v1->p[0] - v2->p[0]; float dy = v1->p[1] - v2->p[1]; float dz = v1->p[2] - v2->p[2]; if (-EPS < dx && dx < EPS && -EPS < dy && dy < EPS && -EPS < dz && dz < EPS) return 1; return 0; } static int edge_eq( const stl_face_t * const t0, const stl_face_t * const t1, int e0, int e1 ) { const v3_t * const v0 = &t0->p[e0]; const v3_t * const v1 = &t0->p[e1]; if (v3_eq(v0, &t1->p[0]) && v3_eq(v1, &t1->p[1])) return 1; if (v3_eq(v0, &t1->p[1]) && v3_eq(v1, &t1->p[0])) return 1; if (v3_eq(v0, &t1->p[0]) && v3_eq(v1, &t1->p[2])) return 1; if (v3_eq(v0, &t1->p[2]) && v3_eq(v1, &t1->p[0])) return 1; if (v3_eq(v0, &t1->p[1]) && v3_eq(v1, &t1->p[2])) return 1; if (v3_eq(v0, &t1->p[2]) && v3_eq(v1, &t1->p[1])) return 1; return 0; } /* Compare two edges in two triangles. * * note that if the windings are all the same, the edges will * compare in the opposite order (for example, the edge from 0 to 1 * compares to the edge from 2 to 1 in the other triangle). */ static int edge_eq2( const stl_face_t * const t0, const stl_face_t * const t1, int e0, int e1 ) { const v3_t * const v00 = &t0->p[e0]; const v3_t * const v01 = &t0->p[(e0+1) % 3]; const v3_t * const v10 = &t1->p[e1]; const v3_t * const v11 = &t1->p[(e1+1) % 3]; if (v3_eq(v00, v11) && v3_eq(v01, v10)) return 1; return 0; } double v3_len( const v3_t * const v0, const v3_t * const v1 ) { float dx = v0->p[0] - v1->p[0]; float dy = v0->p[1] - v1->p[1]; float dz = v0->p[2] - v1->p[2]; return sqrt(dx*dx + dy*dy + dz*dz); } /** recursively try to fix up the triangles. * * returns 0 if this should be unwound, 1 if was successful */ int recurse( face_t * const f, int start_edge ) { static int depth; depth++; // flag that we are looking into this one f->used = 1; // print out a svg group for this triangle, starting with // the incoming edge float a = f->sides[(start_edge + 0) % 3]; float c = f->sides[(start_edge + 1) % 3]; float b = f->sides[(start_edge + 2) % 3]; float x2 = (a*a + b*b - c*c) / (2*a); float y2 = sqrt(b*b - x2*x2); printf("\n", a, x2, y2 ); //printf("%p %d %f %f %f\n", f, start_edge, f->sides[0], f->sides[1], f->sides[2]); // for each edge, find the triangle that matches for (int edge = 0 ; edge < 3 ; edge++) { face_t * const f2 = f->next[(edge+start_edge) % 3]; if (f2->used) continue; // create a group that translates and rotates // such that it lines up with this edge float trans_x, trans_y, rotate; if (edge == 0) { trans_x = a; trans_y = 0; rotate = 180; } else if (edge == 1) { trans_x = x2; trans_y = y2; rotate = atan2(y2, a-x2) * 180 / M_PI; } else if (edge == 2) { trans_x = 0; trans_y = 0; rotate = atan2(y2, x2) * 180 / M_PI; } printf("\n", edge, trans_x, trans_y, rotate ); recurse(f2, f->next_edge[edge]); printf("\n"); } // no success return 0; } int coplanar_check( const stl_face_t * const f1, const stl_face_t * const f2 ) { // no, for now return 0; } int main(void) { const size_t max_len = 1 << 20; uint8_t * const buf = calloc(max_len, 1); ssize_t rc = read(0, buf, max_len); if (rc == -1) return EXIT_FAILURE; const stl_header_t * const hdr = (const void*) buf; const stl_face_t * const stl_faces = (const void*)(hdr+1); const int num_triangles = hdr->num_triangles; fprintf(stderr, "header: '%s'\n", hdr->header); fprintf(stderr, "num: %d\n", num_triangles); face_t * const faces = calloc(num_triangles, sizeof(*faces)); // convert the stl triangles into faces for (int i = 0 ; i < num_triangles ; i++) { const stl_face_t * const stl = &stl_faces[i]; face_t * const f = &faces[i]; f->sides[0] = v3_len(&stl->p[0], &stl->p[1]); f->sides[1] = v3_len(&stl->p[1], &stl->p[2]); f->sides[2] = v3_len(&stl->p[2], &stl->p[0]); } // look to see if there is a matching point // in the faces that we've already built for (int i = 0 ; i < num_triangles ; i++) { const stl_face_t * const stl = &stl_faces[i]; face_t * const f = &faces[i]; for (int j = 0 ; j < num_triangles ; j++) { if (i == j) continue; const stl_face_t * const stl2 = &stl_faces[j]; face_t * const f2 = &faces[j]; for (int edge = 0 ; edge < 3 ; edge++) { if (f->next[edge]) continue; for (int edge2 = 0 ; edge2 < 3 ; edge2++) { if (f2->next[edge2]) continue; if (!edge_eq2(stl, stl2, edge, edge2)) continue; f->next[edge] = f2; f->next_edge[edge] = edge2; f2->next[edge2] = f; f2->next_edge[edge2] = edge; f->coplanar[edge] = f2->coplanar[edge2] = coplanar_check(stl, stl2); } } } // all three edges should be matched if (f->next[0] && f->next[1] && f->next[2]) continue; fprintf(stderr, "%d: missing edges?\n", i); } // we now have a graph that shows the connection between // all of the faces and their sizes. start converting them printf("\n"); //for (int i = 0 ; i < num_triangles ; i++) recurse(&faces[0], 0); printf("\n"); return 0; }