/** \file * Generate an OpenSCAD with connectors for each face. * * This imports the original STL file and then slices the corners * off from it. * Options are inside only (with face flush on outside) * or with a slot for the face (like a corner cap) */ #include #include #include #include #include #include #include #include #include #include #include #include "v3.h" #include "stl_3d.h" static v3_t avg_x, avg_y, avg_z; static void print_multmatrix( const refframe_t * const ref, const int transpose ) { printf("multmatrix(m=[" "[%f,%f,%f,0]," "[%f,%f,%f,0]," "[%f,%f,%f,0]," "[ 0, 0, 0,1]])\n", transpose ? ref->x.p[0] : ref->x.p[0], transpose ? ref->x.p[1] : ref->y.p[0], transpose ? ref->x.p[2] : ref->z.p[0], transpose ? ref->y.p[0] : ref->x.p[1], transpose ? ref->y.p[1] : ref->y.p[1], transpose ? ref->y.p[2] : ref->z.p[1], transpose ? ref->z.p[0] : ref->x.p[2], transpose ? ref->z.p[1] : ref->y.p[2], transpose ? ref->z.p[2] : ref->z.p[2] ); } static void print_normal( const v3_t * normal, int flip ) { const float x = normal->p[0]; const float y = normal->p[1]; const float z = normal->p[2]; const double length = sqrt(x*x+y*y+z*z); const double b = acos(z / length); const double c = x == 0 ? sign(y)*90 : atan2(y,x); if (flip) { printf("rotate([0,%f,0])", -b*180/M_PI); printf("rotate([0,0,%f])", -c*180/M_PI); } else { printf("rotate([%f,%f,%f])\n", 0.0, b * 180 / M_PI, c * 180 / M_PI); } } static void find_normal( const stl_3d_t * const stl, const stl_vertex_t * const v, const float inset_dist, v3_t * const avg ) { int * const face_used = calloc(sizeof(*face_used), stl->num_face); // generate all of the coplanar polygons at this vertex const stl_vertex_t ** const vertex_list = calloc(sizeof(**vertex_list), stl->num_vertex); for (int j = 0 ; j < v->num_face; j++) { // generate the polygon face for this vertex const stl_face_t * const f = v->face[j]; if (face_used[f - stl->face]) continue; //ref.origin.p[0] = 0; //ref.origin.p[1] = 0; //ref.origin.p[2] = 0; const int start_vertex = v->face_num[j]; const int vertex_count = stl_trace_face( stl, f, vertex_list, face_used, start_vertex ); // find this vertex in the vertex list // and compute the vector that subdivides the // two outbound edges for (int k = 0 ; k < vertex_count ; k++) { if (vertex_list[k] != v) continue; v3_t p1 = vertex_list[(k+vertex_count-1) % vertex_count]->p; v3_t p2 = vertex_list[k % vertex_count]->p; v3_t p3 = vertex_list[(k+1) % vertex_count]->p; refframe_t ref; refframe_init( &ref, p2, p3, p1 ); double x, y; refframe_inset(&ref, inset_dist, &x, &y, p1, p2, p3); v3_t hole = refframe_project(&ref, (v3_t){{x,y,0}}); //hole = refframe_project(&ref, (v3_t){{10,0,0}}); //hole.p[0] = 10*ref.x.p[0]; // + ref.origin.p[0]; //hole.p[1] = 10*ref.x.p[1]; // + ref.origin.p[1]; //hole.p[2] = 10*ref.x.p[2]; // + ref.origin.p[2]; fprintf(stderr, "**** %p [%f,%f]=>%f,%f,%f\n", v, x, y, hole.p[0], hole.p[1], hole.p[2] ); #if 0 printf("color(\"green\") translate([%f,%f,%f]) sphere(r=1);\n", hole.p[0], hole.p[1], hole.p[2] ); hole = refframe_project(&ref, (v3_t){10,0,0}); //v3_t hole = refframe_project(&ref, (v3_t){5,5,0}); printf("translate([%f,%f,%f]) sphere(r=1);\n", hole.p[0], hole.p[1], hole.p[2] ); /* hole = refframe_project(&ref, (v3_t){0,10,0}); //v3_t hole = refframe_project(&ref, (v3_t){5,5,0}); printf("%%translate([%f,%f,%f]) sphere(r=1);\n", hole.p[0], hole.p[1], hole.p[2] ); */ #endif //*avg = v3_add(*avg, ref.z); *avg = v3_add(*avg, v3_norm(v3_sub(ref.origin, hole))); //*avg = v3_add(*avg, (v3_sub(hole, ref.origin))); } } #if 0 // use the transpose of the rotation matrix, // which will rotate from (x,y) to the correct // orientation relative to this connector node. print_multmatrix(&ref, 1); printf("{\n"); // generate the polygon plane if (thickness != 0) { printf("translate([0,0,%f]) linear_extrude(height=%f) polygon(points=[\n", translate, thickness ); for(int k=0 ; k < vertex_count ; k++) { double x, y; refframe_inset(&ref, inset_dist, &x, &y, vertex_list[(k+0) % vertex_count]->p, vertex_list[(k+1) % vertex_count]->p, vertex_list[(k+2) % vertex_count]->p ); printf("[%f,%f],", x, y); } printf("\n]);\n"); } // generate the mounting holes/pins if (hole_rad != 0) { for(int k=0 ; k < vertex_count ; k++) { double x, y; refframe_inset(&ref, inset_dist+hole_dist, &x, &y, vertex_list[(k+0) % vertex_count]->p, vertex_list[(k+1) % vertex_count]->p, vertex_list[(k+2) % vertex_count]->p ); printf("translate([%f,%f,%f]) cylinder(r=%f,h=%f, $fs=1);\n", x, y, -hole_height/2, hole_rad, hole_height ); } } printf("}\n"); } #endif free(face_used); free(vertex_list); } int main( int argc, char ** argv ) { if (argc <= 1) { fprintf(stderr, "Usage: corners file.stl > file-corners.scad\n"); return -1; } const char * const stl_name = argv[1]; int fd = open(stl_name, O_RDONLY); if (fd < 0) { perror(stl_name); return -1; } stl_3d_t * const stl = stl_3d_parse(fd); if (!stl) return EXIT_FAILURE; close(fd); printf("module model() {\n" "render() difference() {\n" "import(\"%s\");\n", stl_name ); //printf("%%model();\n"); const double thickness = 3; const double inset_dist = 5; const double hole_dist = 5; const double hole_rad = 1.25; int * const face_used = calloc(sizeof(*face_used), stl->num_face); const stl_vertex_t ** const vertex_list = calloc(sizeof(*vertex_list), stl->num_vertex); // for face, generate the set of coplanar points that go with it // and "drill" holes in the model for those corners. for (int i = 0 ; i < stl->num_face ; i++) { if (face_used[i]) continue; const stl_face_t * const f = &stl->face[i]; const int vertex_count = stl_trace_face( stl, f, vertex_list, face_used, 0 ); refframe_t ref; refframe_init( &ref, f->vertex[0]->p, f->vertex[1]->p, f->vertex[2]->p ); // replace the origin with the actual origin //ref.origin.p[0] = 0; //ref.origin.p[1] = 0; //ref.origin.p[2] = 0; printf("translate([%f,%f,%f])", f->vertex[0]->p.p[0], f->vertex[0]->p.p[1], f->vertex[0]->p.p[2] ); print_multmatrix(&ref, 0); printf("{\n"); // generate a bolt hole for each non-copolanar corner for (int j = 0 ; j < vertex_count ; j++) { double x, y; refframe_inset( &ref, inset_dist, &x, &y, vertex_list[(j+0) % vertex_count]->p, vertex_list[(j+1) % vertex_count]->p, vertex_list[(j+2) % vertex_count]->p ); printf("translate([%f,%f,0]) cylinder(r=%f, h=%f, center=true);\n", x, y, hole_rad, 10.0 ); } printf("}\n"); } printf("}\n}\n"); const int flip = 1; if (!flip) printf("model();\n"); // For each vertex, extract a small region around the corner const int div = sqrt(stl->num_vertex); const double spacing = 32; for(int i = 0 ; i < stl->num_vertex ; i++) { const stl_vertex_t * const v = &stl->vertex[i]; const v3_t origin = v->p; v3_t avg = {{ 0, 0, 0}}; find_normal(stl, v, inset_dist, &avg); if (flip) { printf("translate([%f,%f,20])", (i/div)*spacing, (i%div)*spacing); printf("render() intersection()"); } printf("{\n"); //printf("%%\n"); if (flip) { print_normal(&avg, 1); printf("translate([%f,%f,%f])", -origin.p[0], -origin.p[1], -origin.p[2]); printf("model();\n"); printf("translate([0,0,-20]) cylinder(r=15,h=20);\n"); } else { printf("translate([%f,%f,%f])", origin.p[0], origin.p[1], origin.p[2]); print_normal(&avg, 0); printf("%%translate([0,0,-20]) cylinder(r=15,h=20);\n"); } //avg = v3_norm(avg); printf("}\n"); } return 0; }