/* * Triangle manipulations */ #ifndef _tri_h_ #define _tri_h_ #include "v3.h" #include "seg.h" typedef struct _tri_t tri_t; struct _tri_t { v3_t p[3]; // camera space v3_t normal; // camera space v3_t normal_xyz; // original xyz space float min[3]; // camera space float max[3]; // camera space tri_t * next; tri_t ** prev; }; tri_t * tri_new( const v3_t * p_cam, const v3_t * p_xyz ) { tri_t * const t = calloc(1, sizeof(*t)); if (!t) return NULL; for(int i = 0 ; i < 3 ; i++) t->p[i] = p_cam[i]; // precompute the normals t->normal = v3_norm(v3_cross( v3_sub(t->p[1], t->p[0]), v3_sub(t->p[2], t->p[1]) )); t->normal_xyz = v3_norm(v3_cross( v3_sub(p_xyz[1], p_xyz[0]), v3_sub(p_xyz[2], p_xyz[1]) )); // compute the bounding box for the triangle in camera space for(int j = 0 ; j < 3 ; j++) { t->min[j] = min(min(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]); t->max[j] = max(max(t->p[0].p[j], t->p[1].p[j]), t->p[2].p[j]); } return t; } // insert a triangle into our z-sorted list void tri_insert( tri_t ** zlist, tri_t * t ) { while(1) { tri_t * const iter = *zlist; if (!iter) break; // check to see if our new triangle is closer than // the current triangle if(iter->min[2] > t->min[2]) break; zlist = &(iter->next); } // either we reached the end of the list, // or we have found where our new triangle is sorted t->next = *zlist; t->prev = zlist; *zlist = t; if (t->next) t->next->prev = &t->next; } void tri_delete(tri_t * t) { if (t->next) t->next->prev = t->prev; if (t->prev) *(t->prev) = t->next; t->next = NULL; t->prev = NULL; free(t); } // Compute the 2D area of a triangle in screen space // using Heron's formula float tri_area_2d( const tri_t * const t ) { const float a = v3_dist_2d(&t->p[0], &t->p[1]); const float b = v3_dist_2d(&t->p[1], &t->p[2]); const float c = v3_dist_2d(&t->p[2], &t->p[0]); const float s = (a + b + c) / 2; return sqrt(s * (s-a) * (s-b) * (s-c)); } void tri_print( const tri_t * const t ) { fprintf(stderr, "%.0f,%.0f,%.0f %.0f,%.0f,%.0f %.0f,%.0f,%.0f norm %.3f,%.3f,%.3f\n", t->p[0].p[0], t->p[0].p[1], t->p[0].p[2], t->p[1].p[0], t->p[1].p[1], t->p[1].p[2], t->p[2].p[0], t->p[2].p[1], t->p[2].p[2], t->normal.p[0], t->normal.p[1], t->normal.p[2] ); } /* Check if two triangles are coplanar and share an edge. * * Returns -1 if not coplanar, 0-2 for the edge in t0 that they share. */ int tri_coplanar( const tri_t * const t0, const tri_t * const t1, const float coplanar_eps ) { // the two normals must be parallel-enough const float angle = v3_mag(v3_sub(t0->normal_xyz, t1->normal_xyz)); if (angle < -coplanar_eps || +coplanar_eps < angle) return -1; // find if there are two points shared unsigned matches = 0; for(int i = 0 ; i < 3 ; i++) { for(int j = 0 ; j < 3 ; j++) { if (!v3_eq(&t0->p[i], &t1->p[j])) continue; matches |= 1 << i; break; } } switch(matches) { case 0x3: return 0; case 0x6: return 1; case 0x5: return 2; case 0x7: fprintf(stderr, "uh, three points match?\n"); tri_print(t0); tri_print(t1); return -1; default: // no shared edge return -1; } } /* * Find the Z point of an XY coordinate in a triangle. * * p can be written as a combination of t01 and t02, * p - t0 = a * (t1 - t0) + b * (t2 - t0) * setting t0 to 0, this becomes: * p = a * t1 + b * t2 * which is two equations with two unknowns * * Returns true if the point is inside the triangle */ int tri_find_z( const tri_t * const t, const v3_t * const p, float * const zout ) { const float t1x = t->p[1].p[0] - t->p[0].p[0]; const float t1y = t->p[1].p[1] - t->p[0].p[1]; const float t1z = t->p[1].p[2] - t->p[0].p[2]; const float t2x = t->p[2].p[0] - t->p[0].p[0]; const float t2y = t->p[2].p[1] - t->p[0].p[1]; const float t2z = t->p[2].p[2] - t->p[0].p[2]; const float px = p->p[0] - t->p[0].p[0]; const float py = p->p[1] - t->p[0].p[1]; const float a = (px * t2y - py * t2x) / (t1x * t2y - t2x * t1y); const float b = (px * t1y - py * t1x) / (t2x * t1y - t1x * t2y); const float z = t->p[0].p[2] + a * t1z + b * t2z; if (zout) *zout = z; return 0 <= a && 0 <= b && a + b <= 1; } /** Compute the points of intersection for two segments in 2d, and z points. * * This is a specialized ray intersection algorithm for the * hidden wire-frame removal code that computes the intersection * points for two rays (in 2D, "orthographic") and then computes * the Z depth for the intersections along each of the segments. * * Returns -1 for non-intersecting, otherwise a ratio of how far * along the intersection is on the l0. */ float hidden_intersect( const v3_t * const p0, const v3_t * const p1, const v3_t * const p2, const v3_t * const p3, v3_t * const l0_int, v3_t * const l1_int ) { const float p0_x = p0->p[0]; const float p0_y = p0->p[1]; const float p0_z = p0->p[2]; const float p1_x = p1->p[0]; const float p1_y = p1->p[1]; const float p1_z = p1->p[2]; const float p2_x = p2->p[0]; const float p2_y = p2->p[1]; const float p2_z = p2->p[2]; const float p3_x = p3->p[0]; const float p3_y = p3->p[1]; const float p3_z = p3->p[2]; const float s1_x = p1_x - p0_x; const float s1_y = p1_y - p0_y; const float s2_x = p3_x - p2_x; const float s2_y = p3_y - p2_y; // compute r x s const float d = -s2_x * s1_y + s1_x * s2_y; // if they are close to parallel, then we do not need to check // for intersection (we define that as "non-intersecting") if (-EPS < d && d < EPS) return -1; // Compute how far along each line they would interesect const float r0 = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / d; const float r1 = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / d; // if they are not within the ratio (0,1), then the intersecton occurs // outside of the segments and is not of concern if (r0 < 0 || r0 > 1) return -1; if (r1 < 0 || r1 > 1) return -1; // Collision detected with the segments if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f->%.0f,%.0f,%.0f == %.3f,%.3f\n", p0_x, p0_y, p0_z, p1_x, p1_y, p1_z, p2_x, p2_y, p2_z, p3_x, p3_y, p2_z, r0, r1 ); const float ix = p0_x + (r0 * s1_x); const float iy = p0_y + (r0 * s1_y); // compute the z intercept for each on the two different coordinates if(l0_int) { *l0_int = (v3_t){{ ix, iy, p0_z + r0 * (p1_z - p0_z) }}; } if(l1_int) { *l1_int = (v3_t){{ ix, iy, p2_z + r1 * (p3_z - p2_z) }}; } return r0; } /* * Recursive algorithm: * Given a line segment and a list of triangles, * find if the line segment crosses any triangle. * If it crosses a triangle the segment will be shortened * and an additional one might be created. * Recusively try intersecting the new segment (starting at the same triangle) * and then continue trying the shortened segment. */ void tri_seg_intersect( const tri_t * zlist, seg_t * s, seg_t ** slist_visible ) { const float p0z = s->p[0].p[2]; const float p1z = s->p[1].p[2]; const float seg_max_z = max(p0z, p1z); // avoid processing empty segments const float seg_len = v3_len(&s->p[0], &s->p[1]); if (seg_len < EPS) return; static int recursive; recursive++; //fprintf(stderr, "%d: processing segment ", recursive); seg_print(s); fprintf(stderr, "--- recursive %d\n", recursive); seg_print(s); for( const tri_t * t = zlist ; t ; t = t->next ) { // if the segment is closer than the triangle, // then we no longer have to check any further into // the zlist (it is sorted by depth). if (seg_max_z <= t->min[2]) break; #if 0 // make sure that we're not comparing to our own triangle // or one that shares an edge with us (which might be in // a different order) if (v2_eq(s->src[0].p, t->p[0].p, 0.0005) && v2_eq(s->src[1].p, t->p[1].p, 0.0005)) continue; if (v2_eq(s->src[0].p, t->p[1].p, 0.0005) && v2_eq(s->src[1].p, t->p[2].p, 0.0005)) continue; if (v2_eq(s->src[0].p, t->p[2].p, 0.0005) && v2_eq(s->src[1].p, t->p[0].p, 0.0005)) continue; if (v2_eq(s->src[0].p, t->p[1].p, 0.0005) && v2_eq(s->src[1].p, t->p[0].p, 0.0005)) continue; if (v2_eq(s->src[0].p, t->p[2].p, 0.0005) && v2_eq(s->src[1].p, t->p[1].p, 0.0005)) continue; if (v2_eq(s->src[0].p, t->p[0].p, 0.0005) && v2_eq(s->src[1].p, t->p[2].p, 0.0005)) continue; #endif if (debug >= 2) tri_print(t); /* // if the segment is co-linear to any of the // triangle edges, include it for(int i = 0 ; i < 3 ; i++) { if (parallel( &s->p[0], &s->p[1], &t->p[i], &t->p[(i+1)%3] )) goto next_segment; } */ float z0, z1; int inside0 = tri_find_z(t, &s->p[0], &z0); int inside1 = tri_find_z(t, &s->p[1], &z1); if (debug >= 2 && (inside0 || inside1)) { fprintf(stderr, "inside %d %d\n", inside0, inside1); } // if both are inside but the segment is infront of the // triangle, then we retain the segment. // otherwies we discard the segment if (inside0 && inside1) { if (s->p[0].p[2] <= z0 && s->p[1].p[2] <= z1) continue; if (debug >= 2) fprintf(stderr, "BOTH INSIDE\n"); recursive--; return; } // split the segment for each intersection with the // triangle segments and add it to the work queue. int intersections = 0; v3_t is[3] = {}; // 3d point of segment intercept v3_t it[3] = {}; // 3d point of triangle intercept for(int j = 0 ; j < 3 ; j++) { float ratio = hidden_intersect( &s->p[0], &s->p[1], &t->p[j], &t->p[(j+1)%3], &is[intersections], &it[intersections] ); if (ratio < 0) continue; if (debug >= 2) fprintf(stderr, "%d ratio=%.2f\n", j, ratio); intersections++; } // if none of them intersect, we keep looking if (intersections == 0) continue; if (debug >= 2) fprintf(stderr, "%d intersections\n", intersections); if (intersections == 3) { // this likely means that the triangle is very, very // small, so let's just ignore this triangle if (debug >= 2) fprintf(stderr, "Three intersections\n"); continue; } if (intersections == 2) { // figure out how far it is to each of the intersections const float d00 = v3_len(&s->p[0], &is[0]); const float d01 = v3_len(&s->p[0], &is[1]); const float d10 = v3_len(&s->p[1], &is[0]); const float d11 = v3_len(&s->p[1], &is[1]); if (debug >= 2) fprintf(stderr, "Two intersections\n"); // discard segments that have two interesections that match // the segment exactly (distance from segment ends to // intersection point close enough to zero). if (d00 < EPS && d11 < EPS) { recursive--; return; } if (d01 < EPS && d10 < EPS) { recursive--; return; } // if the segment intersection is closer than the triangle, // then we do nothing. degenerate cases are not handled if (d00 <= d01 && is[0].p[2] <= it[0].p[2] && is[1].p[2] <= it[1].p[2]) continue; if (d00 > d01 && is[1].p[2] <= it[0].p[2] && is[0].p[2] <= it[1].p[2]) continue; // segment is behind the triangle, // we have to create a new segment // and shorten the existing segment // find the two intersections that we have // update the src field // we need to create a new segment seg_t * news; if (d00 < d01) { // split from p0 to ix0 news = seg_new(s->p[0], is[0]); news->src[0] = s->src[0]; news->src[1] = s->src[1]; s->p[0] = is[1]; } else { // split from p0 to ix1 news = seg_new(s->p[0], is[1]); news->src[0] = s->src[0]; news->src[1] = s->src[1]; s->p[0] = is[0]; } // recursively start splitting the new segment // starting at the next triangle down the z-depth tri_seg_intersect(zlist->next, news, slist_visible); // continue splitting our current segment continue; } if (intersections == 1) { // if there is an intersection, but the segment intercept // is closer than the triangle intercept, then no problem. // we do not bother with degenerate cases of intersecting // triangles if (is[0].p[2] <= it[0].p[2] && is[1].p[2] <= it[0].p[2]) { //svg_line("#00FF00", s->p[0].p, s->p[1].p, 10); continue; } if (inside0) { // shorten it on the 0 side s->p[0] = is[0]; // huh? shouldn't we process this one? return; continue; } else if (inside1) { // shorten it on the 1 side s->p[1] = is[0]; // huh? shouldn't we process this one? return; continue; } else { // both outside, but an intersection? // split at that point and hope for the best seg_t * const news = seg_new(s->p[0], is[0]); news->src[0] = s->src[0]; news->src[1] = s->src[1]; s->p[0] = is[0]; tri_seg_intersect(zlist->next, news, slist_visible); // continue splitting our current segment continue; } } next_segment: continue; } // if we've reached here the segment is visible // and should be added to the visible list s->next = *slist_visible; *slist_visible = s; recursive--; } /* * Fast check to see if t2 is entire occluded by t. */ int tri_behind( const tri_t * const t, const tri_t * const t2 ) { float z0, z1, z2; int inside0 = tri_find_z(t, &t2->p[0], &z0); int inside1 = tri_find_z(t, &t2->p[1], &z1); int inside2 = tri_find_z(t, &t2->p[2], &z2); // easy check -- if none of the points are inside, // t2 is not entirely occluded if (!inside0 || !inside1 || !inside2) return 0; // are all of the intersection points ahead of t2? int behind0 = t2->p[0].p[2] >= z0; int behind1 = t2->p[1].p[2] >= z1; int behind2 = t2->p[2].p[2] >= z2; if (behind0 && behind1 && behind2) return 1; // it is a STL violation if they are not all on the // same side (this would indicate that t and t2 intersect // go ahead and prune since it will cause problems if (behind0 || behind1 || behind2) { /* fprintf(stderr, "WARNING: triangles intersect %.0f %.0f %.0f inside %d %d %d behind %d %d %d\n", z0, z1, z2, inside0, inside1, inside2, behind0, behind1, behind2); tri_print(t); tri_print(t2); */ return 1; } // they are all on the same side return 0; } #endif