/* * Triangle manipulations */ #include #include #include #include "tri.h" int tri_debug = 0; tri_t * tri_new( const v3_t * p_cam, const v3_t * p_xyz ) { tri_t * const t = calloc(1, sizeof(*t)); if (!t) return NULL; for(int i = 0 ; i < 3 ; i++) t->p[i] = p_cam[i]; // precompute the normals t->normal = v3_norm(v3_cross( v3_sub(t->p[1], t->p[0]), v3_sub(t->p[2], t->p[1]) )); t->normal_xyz = v3_norm(v3_cross( v3_sub(p_xyz[1], p_xyz[0]), v3_sub(p_xyz[2], p_xyz[1]) )); // compute the bounding box for the triangle in camera space t->min = v3_min(v3_min(t->p[0], t->p[1]), t->p[2]); t->max = v3_max(v3_max(t->p[0], t->p[1]), t->p[2]); return t; } // insert a triangle into our z-sorted list void tri_insert( tri_t ** zlist, tri_t * t ) { while(1) { tri_t * const iter = *zlist; if (!iter) break; // check to see if our new triangle is closer than // the current triangle if(iter->min.p[2] > t->min.p[2]) break; zlist = &(iter->next); } // either we reached the end of the list, // or we have found where our new triangle is sorted t->next = *zlist; t->prev = zlist; *zlist = t; if (t->next) t->next->prev = &t->next; } void tri_delete(tri_t * t) { if (t->next) t->next->prev = t->prev; if (t->prev) *(t->prev) = t->next; t->next = NULL; t->prev = NULL; free(t); } // Compute the 2D area of a triangle in screen space // using Heron's formula float tri_area_2d( const tri_t * const t ) { const float a = v3_dist_2d(&t->p[0], &t->p[1]); const float b = v3_dist_2d(&t->p[1], &t->p[2]); const float c = v3_dist_2d(&t->p[2], &t->p[0]); const float s = (a + b + c) / 2; return sqrt(s * (s-a) * (s-b) * (s-c)); } void tri_print( const tri_t * const t ) { fprintf(stderr, "{{{%+5.1f,%+5.1f,%5.1f }},{{%+5.1f,%+5.1f,%5.1f }},{{%+5.1f,%+5.1f,%5.1f }}}\n", // norm %.3f %.3f %.3f\n", t->p[0].p[0], t->p[0].p[1], t->p[0].p[2], t->p[1].p[0], t->p[1].p[1], t->p[1].p[2], t->p[2].p[0], t->p[2].p[1], t->p[2].p[2] //t->normal.p[0], //t->normal.p[1], //t->normal.p[2] ); } /* Check if two triangles are coplanar and share an edge. * * Returns -1 if not coplanar, 0-2 for the edge in t0 that they share. */ int tri_coplanar( const tri_t * const t0, const tri_t * const t1, const float coplanar_eps ) { // the two normals must be parallel-enough const float angle = v3_mag(v3_sub(t0->normal_xyz, t1->normal_xyz)); if (angle < -coplanar_eps || +coplanar_eps < angle) return -1; // find if there are two points shared unsigned matches = 0; for(int i = 0 ; i < 3 ; i++) { for(int j = 0 ; j < 3 ; j++) { if (!v3_eq(t0->p[i], t1->p[j])) continue; matches |= 1 << i; break; } } switch(matches) { case 0x3: return 0; case 0x6: return 1; case 0x5: return 2; case 0x7: // these are likely small triangles that can be ignored if (tri_debug > 3) { fprintf(stderr, "uh, three points match?\n"); tri_print(t0); tri_print(t1); } return 0; default: // no shared edge return -1; } } /* * Find the Z point of an XY coordinate in a triangle. * * p can be written as a combination of t01 and t02, * p - t0 = a * (t1 - t0) + b * (t2 - t0) * setting t0 to 0, this becomes: * p = a * t1 + b * t2 * which is two equations with two unknowns * * Returns true if the point is inside the triangle */ int tri_find_z( const tri_t * const t, const v3_t * const p, float * const zout ) { const float t1x = t->p[1].p[0] - t->p[0].p[0]; const float t1y = t->p[1].p[1] - t->p[0].p[1]; const float t1z = t->p[1].p[2] - t->p[0].p[2]; const float t2x = t->p[2].p[0] - t->p[0].p[0]; const float t2y = t->p[2].p[1] - t->p[0].p[1]; const float t2z = t->p[2].p[2] - t->p[0].p[2]; const float px = p->p[0] - t->p[0].p[0]; const float py = p->p[1] - t->p[0].p[1]; const float a = (px * t2y - py * t2x) / (t1x * t2y - t2x * t1y); const float b = (px * t1y - py * t1x) / (t2x * t1y - t1x * t2y); const float z = t->p[0].p[2] + a * t1z + b * t2z; if (zout) *zout = z; return 0 <= a && 0 <= b && a + b <= 1; } /* * Find the barycentric coordinates for point of an XY coordinate in a triangle. * * p can be written as a combination of t01 and t02, * p - t0 = a * (t1 - t0) + b * (t2 - t0) * setting t0 to 0, this becomes: * p = a * t1 + b * t2 * which is two equations with two unknowns * * The x and y coordinates are based on the two sides of the triangle * and the z coordinate is the screen coordinate z in the triangle. */ v3_t tri_bary_coord( const tri_t * const t, const v3_t * const p ) { const float t1x = t->p[1].p[0] - t->p[0].p[0]; const float t1y = t->p[1].p[1] - t->p[0].p[1]; const float t1z = t->p[1].p[2] - t->p[0].p[2]; const float t2x = t->p[2].p[0] - t->p[0].p[0]; const float t2y = t->p[2].p[1] - t->p[0].p[1]; const float t2z = t->p[2].p[2] - t->p[0].p[2]; const float px = p->p[0] - t->p[0].p[0]; const float py = p->p[1] - t->p[0].p[1]; float a = (px * t2y - py * t2x) / (t1x * t2y - t2x * t1y); float b = (px * t1y - py * t1x) / (t2x * t1y - t1x * t2y); v3_t v = {{ a, b, t->p[0].p[2] + a * t1z + b * t2z, }}; //v.p[2] = 1.0 - v.p[0] - v.p[1]; return v; } // Returns true if the bary centry point is inside the triangle // which means that a and b are non-negative and sum to less than 1 int tri_bary_inside( const v3_t p ) { const float a = p.p[0]; const float b = p.p[1]; return 0 <= a && 0 <= b && a + b <= 1; } /** Compute the points of intersection for two segments in 2d, and z points. * * This is a specialized ray intersection algorithm for the * hidden wire-frame removal code that computes the intersection * points for two rays (in 2D, "orthographic") and then computes * the Z depth for the intersections along each of the segments. * * Returns -1 for non-intersecting, otherwise a ratio of how far * along the intersection is on the l0. */ float hidden_intersect( const v3_t * const p0, const v3_t * const p1, const v3_t * const p2, const v3_t * const p3, v3_t * const l0_int, v3_t * const l1_int ) { const float p0_x = p0->p[0]; const float p0_y = p0->p[1]; const float p0_z = p0->p[2]; const float p1_x = p1->p[0]; const float p1_y = p1->p[1]; const float p1_z = p1->p[2]; const float p2_x = p2->p[0]; const float p2_y = p2->p[1]; const float p2_z = p2->p[2]; const float p3_x = p3->p[0]; const float p3_y = p3->p[1]; const float p3_z = p3->p[2]; const float s1_x = p1_x - p0_x; const float s1_y = p1_y - p0_y; const float s2_x = p3_x - p2_x; const float s2_y = p3_y - p2_y; // compute r x s const float d = -s2_x * s1_y + s1_x * s2_y; // if they are close to parallel, then we do not need to check // for intersection (we define that as "non-intersecting") if (-EPS < d && d < EPS) return -1; // Compute how far along each line they would interesect const float r0 = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / d; const float r1 = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / d; // if they are not within the ratio (0,1), then the intersecton occurs // outside of the segments and is not of concern if (r0 < 0 || r0 > 1) return -1; if (r1 < 0 || r1 > 1) return -1; // Collision detected with the segments if(0) fprintf(stderr, "collision: %.0f,%.0f,%.0f->%.0f,%.0f,%.0f %.0f,%.0f,%.0f->%.0f,%.0f,%.0f == %.3f,%.3f\n", p0_x, p0_y, p0_z, p1_x, p1_y, p1_z, p2_x, p2_y, p2_z, p3_x, p3_y, p2_z, r0, r1 ); // compute the z intercept for each on the two different coordinates if(l0_int) { *l0_int = (v3_t){{ p0_x + r0 * s1_x, p0_y + r0 * s1_y, p0_z + r0 * (p1_z - p0_z) }}; } if(l1_int) { *l1_int = (v3_t){{ p2_x + r1 * s2_x, p2_y + r1 * s2_y, p2_z + r1 * (p3_z - p2_z) }}; } return r0; } /* * Fast check to see if t2 is entire occluded by t. */ int tri_behind( const tri_t * const t, const tri_t * const t2 ) { float z0, z1, z2; int inside0 = tri_find_z(t, &t2->p[0], &z0); int inside1 = tri_find_z(t, &t2->p[1], &z1); int inside2 = tri_find_z(t, &t2->p[2], &z2); // easy check -- if none of the points are inside, // t2 is not entirely occluded if (!inside0 || !inside1 || !inside2) return 0; // are all of the intersection points ahead of t2? int behind0 = t2->p[0].p[2] >= z0; int behind1 = t2->p[1].p[2] >= z1; int behind2 = t2->p[2].p[2] >= z2; if (behind0 && behind1 && behind2) return 1; // it is a STL violation if they are not all on the // same side (this would indicate that t and t2 intersect // go ahead and prune since it will cause problems if (behind0 || behind1 || behind2) { /* fprintf(stderr, "WARNING: triangles intersect %.0f %.0f %.0f inside %d %d %d behind %d %d %d\n", z0, z1, z2, inside0, inside1, inside2, behind0, behind1, behind2); tri_print(t); tri_print(t2); */ return 1; } // they are all on the same side return 0; } /* tri_no_intersection, // nothing changed tri_infront, // segment is in front of the triangle tri_hidden, // segment is completely occluded tri_clipped, // segment is partially occluded on one end tri_split, // segment is partially occluded in the middle */ tri_intersect_t tri_seg_intersect( const tri_t * t, seg_t * s, seg_t ** new_seg // only if tri_split ) { // avoid processing nearly empty segments const float seg_len = v3_len(&s->p[0], &s->p[1]); if (seg_len < EPS) return tri_hidden; const v3_t p_max = v3_max(s->p[0], s->p[1]); const v3_t p_min = v3_min(s->p[0], s->p[1]); // if the segment is closer than the triangle, // then we no longer have to check any further into // the zlist (it is sorted by depth). if (p_max.p[2] <= t->min.p[2]) return tri_infront; // check for four quadrant outside the bounding box // of the triangle min/max, which would have no chance // of intersecting with the triangle if (p_min.p[0] < t->min.p[0] && p_max.p[0] < t->min.p[0]) return tri_no_intersection; if (p_min.p[1] < t->min.p[1] && p_max.p[1] < t->min.p[1]) return tri_no_intersection; if (p_min.p[0] > t->max.p[0] && p_max.p[0] > t->max.p[0]) return tri_no_intersection; if (p_min.p[1] > t->max.p[1] && p_max.p[1] > t->max.p[1]) return tri_no_intersection; // there is a possibility that this line crosses the triangle // compute the coordinates in triangle space const v3_t tp0 = tri_bary_coord(t, &s->p[0]); const v3_t tp1 = tri_bary_coord(t, &s->p[1]); // if both are inside and not both on the same edge of // the triangle, then the segment is totally hidden. if (tri_bary_inside(tp0) && tri_bary_inside(tp1)) { // if the segment z is closer than the triangle z // then the segment is in front of the triangle if (s->p[0].p[2] < tp0.p[2] && s->p[1].p[2] < tp1.p[2]) return tri_no_intersection; // if the barycentric coord is 0 for the same edge // for both points, then it is on the original line if (tp0.p[0] < EPS && tp1.p[0] < EPS) return tri_no_intersection; if (tp0.p[1] < EPS && tp1.p[1] < EPS) return tri_no_intersection; // compute the third barycentric coordinate and check float c0 = 1.0 - tp0.p[0] - tp0.p[1]; float c1 = 1.0 - tp1.p[0] - tp1.p[1]; if (c0 < EPS && c1 < EPS) return tri_no_intersection; // it is not on an edge and not infront of the triangle // so the segment is totally occluded return tri_hidden; } // find the intersection point for each of the three // sides of the triangle v3_t is[3] = {}; // 3d point of segment intercept v3_t it[3] = {}; // 3d point of triangle intercept float ratio[3] = {}; // length along the line int intersections = 0; for(int j = 0 ; j < 3 ; j++) { ratio[intersections] = hidden_intersect( &s->p[0], &s->p[1], &t->p[j], &t->p[(j+1)%3], &is[intersections], &it[intersections] ); if (ratio[intersections] < 0) continue; // if the segment intersection is closer than the // triangle intersection, this does not count as // an intersection and we can ignore it. if (is[intersections].p[2] < it[intersections].p[2]) continue; if (tri_debug >= 2) { fprintf(stderr, "%d ratio=%.2f %+6.1f", j, ratio[intersections], it[intersections].p[2]); v3_print(is[intersections]); } intersections++; } // check for duplicate intersections, which happens if // the lines go through at precisely the corners // this might mean that we hit exactly at one // point and two of the points are the same if (intersections == 3) { if (v3_eq(is[0], is[2])) intersections--; else if (v3_eq(is[1], is[2])) intersections--; else if (v3_eq(is[0], is[1])) { intersections--; is[1] = is[2]; it[1] = it[2]; } } if (intersections == 2 && v3_eq(is[0], is[1])) intersections--; // no intersections? there is nothing to do if (intersections == 0) return tri_no_intersection; // three intersections? maybe a very small triangle if (intersections == 3) { fprintf(stderr, "THREE INTERSECTIONS?\n"); fprintf(stderr, "is0="); v3_print(is[0]); fprintf(stderr, "is1="); v3_print(is[1]); fprintf(stderr, "is2="); v3_print(is[2]); svg_line("#0000FF", s->p[0].p, s->p[1].p, 8); return tri_no_intersection; } if (intersections == 1) { if (tri_bary_inside(tp0)) { // if the intercept point on the segment is // closer than the intercept point on the triangle edge, // then there is no occlusion if (is[0].p[2] <= it[0].p[2]) return tri_no_intersection; // clipped from intersection to p1 s->p[0] = is[0]; return tri_clipped; } if (tri_bary_inside(tp1)) { // if the intercept point on the segment is // closer than the intercept point on the triangle edge, // then there is no occlusion if (is[0].p[2] < it[0].p[2]) return tri_no_intersection; // clipped from p0 to intersection s->p[1] = is[0]; return tri_clipped; } // something isn't right. maybe we have a small triangle? fprintf(stderr, "ONE INTERSECTION?"); /* svg_line("#FFFF00", s->p[0].p, s->p[1].p, 20); svg_line("#000080", t->p[0].p, t->p[1].p, 8); svg_line("#000080", t->p[1].p, t->p[2].p, 8); svg_line("#000080", t->p[2].p, t->p[0].p, 8); */ seg_print(s); v3_print(tp0); v3_print(tp1); tri_print(t); *new_seg = seg_new(is[0], s->p[1]); s->p[1] = is[0]; return tri_split; } // two intersections: find the one that is closer to p0 // modify the existing segment and create a new segment const float d00 = v3_mag2(v3_sub(is[0], s->p[0])); const float d01 = v3_mag2(v3_sub(is[1], s->p[0])); const float d10 = v3_mag2(v3_sub(is[0], s->p[1])); const float d11 = v3_mag2(v3_sub(is[1], s->p[1])); // if any of the intersections points are zero from an // end point on the segment, then skip that part if (tri_debug > 4) { seg_print(s); tri_print(t); fprintf(stderr, "d: %f %f %f %f\n", d00, d01, d10, d11); } if (d00 < EPS && d11 < EPS) return tri_hidden; if (d01 < EPS && d10 < EPS) return tri_hidden; if (d00 < EPS) { s->p[0] = is[1]; return tri_clipped; } else if (d01 < EPS) { s->p[0] = is[0]; return tri_clipped; } else if (d10 < EPS) { s->p[1] = is[1]; return tri_clipped; } else if (d11 < EPS) { s->p[1] = is[0]; return tri_clipped; } // neither end points match, so create a new segment // that excludes the space covered by the triangle. // determine which is closer to point is[0] if (d00 < d01) { // p0 is closer to is0, so new segment is is1 to p1 *new_seg = seg_new(is[1], s->p[1]); s->p[1] = is[0]; } else { // p0 is closer to is1, so new segment is is0 to p1 *new_seg = seg_new(is[0], s->p[1]); s->p[1] = is[1]; } if (tri_debug > 3) { fprintf(stderr, "SPLIT: "); seg_print(*new_seg); } return tri_split; } int tri_seg_hidden( const tri_t * zlist, seg_t * s, seg_t ** slist_visible ) { int count = 0; if (tri_debug > 2) { fprintf(stderr, "TEST: "); seg_print(s); } for( const tri_t * t = zlist ; t ; t = t->next ) { seg_t * new_seg = NULL; tri_intersect_t type = tri_seg_intersect(t, s, &new_seg); // if there is no intersection or if the segment has // been clipped on one side, keep looking if (type == tri_no_intersection) continue; if (type == tri_clipped) { //seg_print(s); continue; } // if this segment is infront of this triangle then we can // stop searching if (type == tri_infront) break; // if this segment is totally occluded, we're done if (type == tri_hidden) return count; // if this line has been split into two, process the // new segment starting at the next triangle since it // has already intersected this one if (type == tri_split) { static int recursive; int new_count = tri_seg_hidden( t->next, new_seg, slist_visible ); count += new_count; continue; } fprintf(stderr, "unknown type %d\n", type); return -1; } // we've reached the end and it is still visible s->next = *slist_visible; *slist_visible = s; return ++count; }