495 lines
9.9 KiB
C
495 lines
9.9 KiB
C
#include "stl_3d.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
|
|
|
|
static const int debug = 0;
|
|
|
|
typedef struct
|
|
{
|
|
char header[80];
|
|
uint32_t num_triangles;
|
|
} __attribute__((__packed__))
|
|
stl_3d_file_header_t;
|
|
|
|
|
|
typedef struct
|
|
{
|
|
v3_t normal;
|
|
v3_t p[3];
|
|
uint16_t attr;
|
|
} __attribute__((__packed__))
|
|
stl_3d_file_triangle_t;
|
|
|
|
|
|
/** Find or create a vertex */
|
|
static stl_vertex_t *
|
|
stl_vertex_find(
|
|
stl_vertex_t * const vertices,
|
|
int * num_vertex_ptr,
|
|
const v3_t * const p
|
|
)
|
|
{
|
|
const int num_vertex = *num_vertex_ptr;
|
|
|
|
for (int x = 0 ; x < num_vertex ; x++)
|
|
{
|
|
stl_vertex_t * const v = &vertices[x];
|
|
|
|
if (v3_eq(&v->p, p))
|
|
return v;
|
|
}
|
|
|
|
if (debug)
|
|
fprintf(stderr, "%d: %f,%f,%f\n",
|
|
num_vertex,
|
|
p->p[0],
|
|
p->p[1],
|
|
p->p[2]
|
|
);
|
|
|
|
stl_vertex_t * const v = &vertices[(*num_vertex_ptr)++];
|
|
v->p = *p;
|
|
|
|
return v;
|
|
}
|
|
|
|
|
|
/** Check to see if the two faces share an edge.
|
|
* \return 0 if no common edge, 1 if there is a shared link
|
|
*/
|
|
static int
|
|
stl_has_edge(
|
|
const stl_face_t * const f,
|
|
const stl_vertex_t * const v1,
|
|
const stl_vertex_t * const v2
|
|
)
|
|
{
|
|
if (f->vertex[0] != v1 && f->vertex[1] != v1 && f->vertex[2] != v1)
|
|
return 0;
|
|
if (f->vertex[0] != v2 && f->vertex[1] != v2 && f->vertex[2] != v2)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/** Compute the angle between the two planes.
|
|
* This is an approximation:
|
|
* \return 0 == coplanar, negative == valley, positive == mountain.
|
|
*/
|
|
static double
|
|
stl_angle(
|
|
const stl_face_t * const f1,
|
|
const stl_face_t * const f2
|
|
)
|
|
{
|
|
// find the four distinct points
|
|
v3_t x1 = f1->vertex[0]->p;
|
|
v3_t x2 = f1->vertex[1]->p;
|
|
v3_t x3 = f1->vertex[2]->p;
|
|
v3_t x4;
|
|
|
|
for (int i = 0 ; i < 3 ; i++)
|
|
{
|
|
x4 = f2->vertex[i]->p;
|
|
if (v3_eq(&x1, &x4))
|
|
continue;
|
|
if (v3_eq(&x2, &x4))
|
|
continue;
|
|
if (v3_eq(&x3, &x4))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
// (x3-x1) . ((x2-x1) X (x4-x3)) == 0
|
|
v3_t dx31 = v3_sub(x3, x1);
|
|
v3_t dx21 = v3_sub(x2, x1);
|
|
v3_t dx43 = v3_sub(x4, x3);
|
|
v3_t cross = v3_cross(dx21, dx43);
|
|
float dot = v3_dot(dx31, cross);
|
|
|
|
if (debug)
|
|
fprintf(stderr, "dot %f:\n %f,%f,%f\n %f,%f,%f\n %f,%f,%f\n %f,%f,%f\n",
|
|
dot,
|
|
x1.p[0], x1.p[1], x1.p[2],
|
|
x2.p[0], x2.p[1], x2.p[2],
|
|
x3.p[0], x3.p[1], x3.p[2],
|
|
x4.p[0], x4.p[1], x4.p[2]
|
|
);
|
|
|
|
//int check = -EPS < dot && dot < +EPS;
|
|
int check = -10 < dot && dot < +10;
|
|
|
|
// if the dot product is not close enough to zero, they
|
|
// are not coplanar.
|
|
if (check)
|
|
return 0;
|
|
|
|
if (dot < 0)
|
|
return -1;
|
|
else
|
|
return +1;
|
|
}
|
|
|
|
|
|
static void
|
|
stl_find_neighbors(
|
|
stl_3d_t * const stl,
|
|
stl_face_t * const f1
|
|
)
|
|
{
|
|
for(int i = 0 ; i < 3 ; i++)
|
|
{
|
|
const stl_vertex_t * const v1 = f1->vertex[(i+0) % 3];
|
|
const stl_vertex_t * const v2 = f1->vertex[(i+1) % 3];
|
|
|
|
for(int j = 0 ; j < stl->num_face ; j++)
|
|
{
|
|
stl_face_t * const f2 = &stl->face[j];
|
|
|
|
// skip this triangle against itself
|
|
if (f1 == f2)
|
|
continue;
|
|
|
|
// find if these two triangles share an edge
|
|
if (!stl_has_edge(f2, v1, v2))
|
|
continue;
|
|
|
|
f1->face[i] = f2;
|
|
f1->angle[i] = stl_angle(f1, f2);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
stl_3d_t *
|
|
stl_3d_parse(
|
|
int fd
|
|
)
|
|
{
|
|
ssize_t rc;
|
|
stl_3d_file_header_t hdr;
|
|
|
|
rc = read(fd, &hdr, sizeof(hdr));
|
|
if (rc != sizeof(hdr))
|
|
return NULL;
|
|
|
|
const int num_triangles = hdr.num_triangles;
|
|
fprintf(stderr, "%d triangles\n", num_triangles);
|
|
|
|
stl_3d_file_triangle_t * fts;
|
|
const size_t file_len = num_triangles * sizeof(*fts);
|
|
fts = calloc(1, file_len);
|
|
|
|
rc = read(fd, fts, file_len);
|
|
if (rc < 0 || (size_t) rc != file_len)
|
|
return NULL;
|
|
|
|
stl_3d_t * const stl = calloc(1, sizeof(*stl));
|
|
|
|
*stl = (stl_3d_t) {
|
|
.num_vertex = 0,
|
|
.num_face = num_triangles,
|
|
.vertex = calloc(num_triangles, sizeof(*stl->vertex)),
|
|
.face = calloc(num_triangles, sizeof(*stl->face)),
|
|
};
|
|
|
|
// build the unique set of vertices and their connection
|
|
// to each face.
|
|
for(int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
const stl_3d_file_triangle_t * const ft = &fts[i];
|
|
stl_face_t * const f = &stl->face[i];
|
|
|
|
for (int j = 0 ; j < 3 ; j++)
|
|
{
|
|
const v3_t * const p = &ft->p[j];
|
|
|
|
stl_vertex_t * const v = stl_vertex_find(
|
|
stl->vertex,
|
|
&stl->num_vertex,
|
|
p
|
|
);
|
|
|
|
// add this vertex to this face
|
|
f->vertex[j] = v;
|
|
|
|
// and add this face to the vertex
|
|
v->face[v->num_face] = f;
|
|
v->face_num[v->num_face] = j;
|
|
v->num_face++;
|
|
}
|
|
}
|
|
|
|
// build the connections between each face
|
|
for(int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
stl_face_t * const f = &stl->face[i];
|
|
stl_find_neighbors(stl, f);
|
|
}
|
|
|
|
return stl;
|
|
}
|
|
|
|
|
|
/** Starting at a point, trace the coplanar polygon and return a
|
|
* list of vertices.
|
|
*/
|
|
int
|
|
stl_trace_face(
|
|
const stl_3d_t * const stl,
|
|
const stl_face_t * const f_start,
|
|
const stl_vertex_t ** vertex_list,
|
|
int * const face_used,
|
|
const int start_vertex
|
|
)
|
|
{
|
|
const stl_face_t * f = f_start;
|
|
int i = start_vertex;
|
|
int vertex_count = 0;
|
|
|
|
do {
|
|
const stl_vertex_t * const v1 = f->vertex[(i+0) % 3];
|
|
const stl_vertex_t * const v2 = f->vertex[(i+1) % 3];
|
|
const stl_face_t * const f_next = f->face[i];
|
|
|
|
fprintf(stderr, "%p %d: %f,%f,%f\n", f, i, v1->p.p[0], v1->p.p[1], v1->p.p[2]);
|
|
if (face_used)
|
|
face_used[f - stl->face] = 1;
|
|
|
|
if (!f_next || f->angle[i] != 0)
|
|
{
|
|
// not coplanar or no connection.
|
|
// add the NEXT vertex on this face and continue
|
|
vertex_list[vertex_count++] = v2;
|
|
i = (i+1) % 3;
|
|
continue;
|
|
}
|
|
|
|
// coplanar; figure out which vertex on the next
|
|
// face we start at
|
|
int i_next = -1;
|
|
for (int j = 0 ; j < 3 ; j++)
|
|
{
|
|
if (f_next->vertex[j] != v1)
|
|
continue;
|
|
i_next = j;
|
|
break;
|
|
}
|
|
|
|
if (i_next == -1)
|
|
abort();
|
|
|
|
// move to the new face
|
|
f = f_next;
|
|
i = i_next;
|
|
|
|
// keep going until we reach our starting face
|
|
// at vertex 0.
|
|
} while (f != f_start || i != start_vertex);
|
|
|
|
return vertex_count;
|
|
}
|
|
|
|
|
|
void
|
|
refframe_init(
|
|
refframe_t * ref,
|
|
const v3_t p0,
|
|
const v3_t p1,
|
|
const v3_t p2
|
|
)
|
|
{
|
|
ref->origin = p0;
|
|
|
|
const v3_t dx = v3_norm(v3_sub(p1, ref->origin));
|
|
const v3_t dy = v3_norm(v3_sub(p2, ref->origin));
|
|
|
|
ref->x = dx;
|
|
ref->z = v3_norm(v3_cross(dx, dy));
|
|
ref->y = v3_norm(v3_cross(ref->x, ref->z));
|
|
}
|
|
|
|
|
|
void
|
|
v3_project(
|
|
const refframe_t * const ref,
|
|
const v3_t p_in,
|
|
double * const x_out,
|
|
double * const y_out
|
|
)
|
|
{
|
|
v3_t p = v3_sub(p_in, ref->origin);
|
|
|
|
double x = ref->x.p[0]*p.p[0] + ref->x.p[1]*p.p[1] + ref->x.p[2]*p.p[2];
|
|
double y = ref->y.p[0]*p.p[0] + ref->y.p[1]*p.p[1] + ref->y.p[2]*p.p[2];
|
|
double z = ref->z.p[0]*p.p[0] + ref->z.p[1]*p.p[1] + ref->z.p[2]*p.p[2];
|
|
|
|
fprintf(stderr, "%f,%f,%f\n", x, y, z);
|
|
|
|
*x_out = x;
|
|
*y_out = y;
|
|
}
|
|
|
|
|
|
// Determines the intersection point of the line defined by points A and B with the
|
|
// line defined by points C and D.
|
|
//
|
|
// Returns YES if the intersection point was found, and stores that point in X,Y.
|
|
// Returns NO if there is no determinable intersection point, in which case X,Y will
|
|
// be unmodified.
|
|
|
|
static int
|
|
line_intersect(
|
|
double Ax, double Ay,
|
|
double Bx, double By,
|
|
double Cx, double Cy,
|
|
double Dx, double Dy,
|
|
double *X, double *Y
|
|
)
|
|
{
|
|
// Fail if either line is undefined.
|
|
if ((Ax==Bx && Ay==By) || (Cx==Dx && Cy==Dy))
|
|
return 0;
|
|
|
|
// (1) Translate the system so that point A is on the origin.
|
|
Bx-=Ax; By-=Ay;
|
|
Cx-=Ax; Cy-=Ay;
|
|
Dx-=Ax; Dy-=Ay;
|
|
|
|
// Discover the length of segment A-B.
|
|
const double distAB=sqrt(Bx*Bx+By*By);
|
|
|
|
// (2) Rotate the system so that point B is on the positive X axis.
|
|
const double theCos=Bx/distAB;
|
|
const double theSin=By/distAB;
|
|
|
|
double newX=Cx*theCos+Cy*theSin;
|
|
Cy =Cy*theCos-Cx*theSin; Cx=newX;
|
|
newX=Dx*theCos+Dy*theSin;
|
|
Dy =Dy*theCos-Dx*theSin; Dx=newX;
|
|
|
|
// Fail if the lines are parallel.
|
|
if (Cy==Dy) return 0;
|
|
|
|
// (3) Discover the position of the intersection point along line A-B.
|
|
const double ABpos=Dx+(Cx-Dx)*Dy/(Dy-Cy);
|
|
|
|
// (4) Apply the discovered position to line A-B in the original coordinate system.
|
|
*X=Ax+ABpos*theCos;
|
|
*Y=Ay+ABpos*theSin;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
|
|
/** Compute the inset coordinate.
|
|
* http://alienryderflex.com/polygon_inset/
|
|
// Given the sequentially connected points (a,b), (c,d), and (e,f), this
|
|
// function returns, in (C,D), a bevel-inset replacement for point (c,d).
|
|
//
|
|
// Note: If vectors (a,b)->(c,d) and (c,d)->(e,f) are exactly 180° opposed,
|
|
// or if either segment is zero-length, this function will do
|
|
// nothing; i.e. point (C,D) will not be set.
|
|
|
|
*/
|
|
void
|
|
refframe_inset(
|
|
const refframe_t * const ref,
|
|
const double inset_dist,
|
|
double * const x_out,
|
|
double * const y_out,
|
|
const v3_t p0, // previous point
|
|
const v3_t p1, // current point to inset
|
|
const v3_t p2 // next point
|
|
)
|
|
{
|
|
double a, b, c, d, e, f;
|
|
v3_project(ref, p0, &a, &b);
|
|
v3_project(ref, p1, &c, &d);
|
|
v3_project(ref, p2, &e, &f);
|
|
|
|
double c1 = c;
|
|
double d1 = d;
|
|
double c2 = c;
|
|
double d2 = d;
|
|
|
|
// Calculate length of line segments.
|
|
const double dx1 = c-a;
|
|
const double dy1 = d-b;
|
|
const double dist1 = sqrt(dx1*dx1+dy1*dy1);
|
|
const double dx2 = e-c;
|
|
const double dy2 = f-d;
|
|
const double dist2 = sqrt(dx2*dx2+dy2*dy2);
|
|
|
|
// Exit if either segment is zero-length.
|
|
if (dist1==0. || dist2==0.)
|
|
{
|
|
*x_out = *y_out = 0;
|
|
fprintf(stderr, "inset fail\n");
|
|
return;
|
|
}
|
|
|
|
// Inset each of the two line segments.
|
|
double insetX, insetY;
|
|
|
|
insetX = dy1/dist1 * inset_dist;
|
|
a+=insetX;
|
|
c1+=insetX;
|
|
|
|
insetY = -dx1/dist1 * inset_dist;
|
|
b+=insetY;
|
|
d1+=insetY;
|
|
|
|
insetX = dy2/dist2 * inset_dist;
|
|
e+=insetX;
|
|
c2+=insetX;
|
|
|
|
insetY = -dx2/dist2 * inset_dist;
|
|
f+=insetY;
|
|
d2+=insetY;
|
|
|
|
// If inset segments connect perfectly, return the connection point.
|
|
if (c1==c2 && d1==d2)
|
|
{
|
|
*x_out = c1;
|
|
*y_out = d1;
|
|
return;
|
|
}
|
|
|
|
// Return the intersection point of the two inset segments (if any).
|
|
if (line_intersect(a,b,c1,d1,c2,d2,e,f, x_out, y_out))
|
|
return;
|
|
|
|
*x_out = *y_out = 0;
|
|
fprintf(stderr, "inset failed 2\n");
|
|
}
|
|
|
|
|
|
v3_t
|
|
refframe_project(
|
|
const refframe_t * const ref,
|
|
const v3_t p
|
|
)
|
|
{
|
|
v3_t o = { 0, 0, 0 };
|
|
o.p[0] = 0
|
|
+ ref->x.p[0] * p.p[0]
|
|
+ ref->y.p[0] * p.p[1]
|
|
+ ref->x.p[0] * p.p[2];
|
|
o.p[1] = 0
|
|
+ ref->x.p[1] * p.p[0]
|
|
+ ref->y.p[1] * p.p[1]
|
|
+ ref->z.p[1] * p.p[2];
|
|
o.p[2] = 0
|
|
+ ref->x.p[2] * p.p[0]
|
|
+ ref->y.p[2] * p.p[1]
|
|
+ ref->z.p[2] * p.p[2];
|
|
|
|
return o;
|
|
}
|