papercraft/unfold.c
2014-12-11 20:29:09 -05:00

127 lines
2.3 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#define EPS 0.0001
typedef struct
{
char header[80];
uint32_t num_triangles;
} __attribute__((__packed__))
stl_header_t;
typedef struct
{
float p[3];
} v3_t;
typedef struct
{
v3_t normal;
v3_t p0;
v3_t p1;
v3_t p2;
} __attribute__((__packed__))
stl_face_t;
#define MAX_POINTS 24
typedef struct
{
int n;
int p[MAX_POINTS];
} poly_t;
static int
v3_eq(
const v3_t * v1,
const v3_t * v2
)
{
float dx = v1->p[0] - v2->p[0];
float dy = v1->p[1] - v2->p[1];
float dz = v1->p[2] - v2->p[2];
if (-EPS < dx && dx < EPS
&& -EPS < dy && dy < EPS
&& -EPS < dz && dz < EPS)
return 1;
return 0;
}
int main(void)
{
const size_t max_len = 1 << 20;
uint8_t * const buf = calloc(max_len, 1);
ssize_t rc = read(0, buf, max_len);
if (rc == -1)
return EXIT_FAILURE;
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
// worst case -- all separate polygons
poly_t * const polys = calloc(num_triangles, sizeof(*polys));
// Collapse coplanar triangles into larger polygons
v3_t * const vertices = calloc(num_triangles, 3);
int num_vertices = 0;
for(int i = 0 ; i < num_triangles ; i++)
{
// see if this matches an existing vertex
const stl_face_t * const t = &faces[i];
poly_t * const p = &polys[i];
p->n = 3;
p->p[0] = p->p[1] = p->p[2] = -1;
for (int j = 0 ; j < num_vertices ; j++)
{
const v3_t * const v = &vertices[j];
if (p->p[0] == -1 && v3_eq(v, &t->p0))
p->p[1] = j;
if (p->p[1] == -1 && v3_eq(v, &t->p1))
p->p[1] = j;
if (p->p[2] == -1 && v3_eq(v, &t->p2))
p->p[2] = j;
// check if we've found all of them
if (p->p[0] >= 0 && p->p[1] >= 0 && p->p[2] >= 0)
break;
}
// create new points if we haven't found matches
if (p->p[0] < 0)
{
p->p[0] = num_vertices;
vertices[num_vertices++] = t->p0;
}
if (p->p[1] < 0)
{
p->p[1] = num_vertices;
vertices[num_vertices++] = t->p1;
}
if (p->p[3] < 0)
{
p->p[3] = num_vertices;
vertices[num_vertices++] = t->p2;
}
}
fprintf(stderr, "unique vertices: %d\n", num_vertices);
return 0;
}