236 lines
4.4 KiB
C
236 lines
4.4 KiB
C
#include "stl_3d.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
|
|
|
|
static const int debug = 0;
|
|
|
|
typedef struct
|
|
{
|
|
char header[80];
|
|
uint32_t num_triangles;
|
|
} __attribute__((__packed__))
|
|
stl_3d_file_header_t;
|
|
|
|
|
|
typedef struct
|
|
{
|
|
v3_t normal;
|
|
v3_t p[3];
|
|
uint16_t attr;
|
|
} __attribute__((__packed__))
|
|
stl_3d_file_triangle_t;
|
|
|
|
|
|
/** Find or create a vertex */
|
|
static stl_vertex_t *
|
|
stl_vertex_find(
|
|
stl_vertex_t * const vertices,
|
|
int * num_vertex_ptr,
|
|
const v3_t * const p
|
|
)
|
|
{
|
|
const int num_vertex = *num_vertex_ptr;
|
|
|
|
for (int x = 0 ; x < num_vertex ; x++)
|
|
{
|
|
stl_vertex_t * const v = &vertices[x];
|
|
|
|
if (v3_eq(&v->p, p))
|
|
return v;
|
|
}
|
|
|
|
if (debug)
|
|
fprintf(stderr, "%d: %f,%f,%f\n",
|
|
num_vertex,
|
|
p->p[0],
|
|
p->p[1],
|
|
p->p[2]
|
|
);
|
|
|
|
stl_vertex_t * const v = &vertices[(*num_vertex_ptr)++];
|
|
v->p = *p;
|
|
|
|
return v;
|
|
}
|
|
|
|
|
|
/** Check to see if the two faces share an edge.
|
|
* \return 0 if no common edge, 1 if there is a shared link
|
|
*/
|
|
static int
|
|
stl_has_edge(
|
|
const stl_face_t * const f,
|
|
const stl_vertex_t * const v1,
|
|
const stl_vertex_t * const v2
|
|
)
|
|
{
|
|
if (f->vertex[0] != v1 && f->vertex[1] != v1 && f->vertex[2] != v1)
|
|
return 0;
|
|
if (f->vertex[0] != v2 && f->vertex[1] != v2 && f->vertex[2] != v2)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/** Compute the angle between the two planes.
|
|
* This is an approximation:
|
|
* \return 0 == coplanar, negative == valley, positive == mountain.
|
|
*/
|
|
static double
|
|
stl_angle(
|
|
const stl_face_t * const f1,
|
|
const stl_face_t * const f2
|
|
)
|
|
{
|
|
// find the four distinct points
|
|
v3_t x1 = f1->vertex[0]->p;
|
|
v3_t x2 = f1->vertex[1]->p;
|
|
v3_t x3 = f1->vertex[2]->p;
|
|
v3_t x4;
|
|
|
|
for (int i = 0 ; i < 3 ; i++)
|
|
{
|
|
x4 = f2->vertex[i]->p;
|
|
if (v3_eq(&x1, &x4))
|
|
continue;
|
|
if (v3_eq(&x2, &x4))
|
|
continue;
|
|
if (v3_eq(&x3, &x4))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
// (x3-x1) . ((x2-x1) X (x4-x3)) == 0
|
|
v3_t dx31 = v3_sub(x3, x1);
|
|
v3_t dx21 = v3_sub(x2, x1);
|
|
v3_t dx43 = v3_sub(x4, x3);
|
|
v3_t cross = v3_cross(dx21, dx43);
|
|
float dot = v3_dot(dx31, cross);
|
|
|
|
//if (debug)
|
|
fprintf(stderr, "dot %f:\n %f,%f,%f\n %f,%f,%f\n %f,%f,%f\n %f,%f,%f\n",
|
|
dot,
|
|
x1.p[0], x1.p[1], x1.p[2],
|
|
x2.p[0], x2.p[1], x2.p[2],
|
|
x3.p[0], x3.p[1], x3.p[2],
|
|
x4.p[0], x4.p[1], x4.p[2]
|
|
);
|
|
|
|
//int check = -EPS < dot && dot < +EPS;
|
|
int check = -1 < dot && dot < +1;
|
|
|
|
// if the dot product is not close enough to zero, they
|
|
// are not coplanar.
|
|
if (check)
|
|
return 0;
|
|
|
|
if (dot < 0)
|
|
return -1;
|
|
else
|
|
return +1;
|
|
}
|
|
|
|
|
|
static void
|
|
stl_find_neighbors(
|
|
stl_3d_t * const stl,
|
|
stl_face_t * const f1
|
|
)
|
|
{
|
|
for(int i = 0 ; i < 3 ; i++)
|
|
{
|
|
const stl_vertex_t * const v1 = f1->vertex[(i+0) % 3];
|
|
const stl_vertex_t * const v2 = f1->vertex[(i+1) % 3];
|
|
|
|
for(int j = 0 ; j < stl->num_face ; j++)
|
|
{
|
|
stl_face_t * const f2 = &stl->face[j];
|
|
|
|
// skip this triangle against itself
|
|
if (f1 == f2)
|
|
continue;
|
|
|
|
// find if these two triangles share an edge
|
|
if (!stl_has_edge(f2, v1, v2))
|
|
continue;
|
|
|
|
f1->face[i] = f2;
|
|
f1->angle[i] = stl_angle(f1, f2);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
stl_3d_t *
|
|
stl_3d_parse(
|
|
int fd
|
|
)
|
|
{
|
|
ssize_t rc;
|
|
stl_3d_file_header_t hdr;
|
|
|
|
rc = read(fd, &hdr, sizeof(hdr));
|
|
if (rc != sizeof(hdr))
|
|
return NULL;
|
|
|
|
const int num_triangles = hdr.num_triangles;
|
|
fprintf(stderr, "%d triangles\n", num_triangles);
|
|
|
|
stl_3d_file_triangle_t * fts;
|
|
const size_t file_len = num_triangles * sizeof(*fts);
|
|
fts = calloc(1, file_len);
|
|
|
|
rc = read(fd, fts, file_len);
|
|
if (rc < 0 || (size_t) rc != file_len)
|
|
return NULL;
|
|
|
|
stl_3d_t * const stl = calloc(1, sizeof(*stl));
|
|
|
|
*stl = (stl_3d_t) {
|
|
.num_vertex = 0,
|
|
.num_face = num_triangles,
|
|
.vertex = calloc(num_triangles, sizeof(*stl->vertex)),
|
|
.face = calloc(num_triangles, sizeof(*stl->face)),
|
|
};
|
|
|
|
// build the unique set of vertices and their connection
|
|
// to each face.
|
|
for(int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
const stl_3d_file_triangle_t * const ft = &fts[i];
|
|
stl_face_t * const f = &stl->face[i];
|
|
|
|
for (int j = 0 ; j < 3 ; j++)
|
|
{
|
|
const v3_t * const p = &ft->p[j];
|
|
|
|
stl_vertex_t * const v = stl_vertex_find(
|
|
stl->vertex,
|
|
&stl->num_vertex,
|
|
p
|
|
);
|
|
|
|
// add this vertex to this face
|
|
f->vertex[j] = v;
|
|
|
|
// and add this face to the vertex
|
|
v->face[v->num_face] = f;
|
|
v->face_num[v->num_face] = j;
|
|
v->num_face++;
|
|
}
|
|
}
|
|
|
|
// build the connections between each face
|
|
for(int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
stl_face_t * const f = &stl->face[i];
|
|
stl_find_neighbors(stl, f);
|
|
}
|
|
|
|
return stl;
|
|
}
|