383 lines
7.9 KiB
C
383 lines
7.9 KiB
C
/** \file
|
|
* Generate an OpenSCAD with connectors for each face.
|
|
*
|
|
* This imports the original STL file and then slices the corners
|
|
* off from it.
|
|
* Options are inside only (with face flush on outside)
|
|
* or with a slot for the face (like a corner cap)
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <math.h>
|
|
#include <err.h>
|
|
#include <assert.h>
|
|
#include "v3.h"
|
|
#include "stl_3d.h"
|
|
|
|
|
|
static v3_t avg_x, avg_y, avg_z;
|
|
|
|
static void
|
|
print_multmatrix(
|
|
const refframe_t * const ref,
|
|
const int transpose
|
|
)
|
|
{
|
|
printf("multmatrix(m=["
|
|
"[%f,%f,%f,0],"
|
|
"[%f,%f,%f,0],"
|
|
"[%f,%f,%f,0],"
|
|
"[ 0, 0, 0,1]])\n",
|
|
transpose ? ref->x.p[0] : ref->x.p[0],
|
|
transpose ? ref->x.p[1] : ref->y.p[0],
|
|
transpose ? ref->x.p[2] : ref->z.p[0],
|
|
transpose ? ref->y.p[0] : ref->x.p[1],
|
|
transpose ? ref->y.p[1] : ref->y.p[1],
|
|
transpose ? ref->y.p[2] : ref->z.p[1],
|
|
transpose ? ref->z.p[0] : ref->x.p[2],
|
|
transpose ? ref->z.p[1] : ref->y.p[2],
|
|
transpose ? ref->z.p[2] : ref->z.p[2]
|
|
);
|
|
}
|
|
|
|
|
|
static void
|
|
print_normal(
|
|
const v3_t * normal,
|
|
int flip
|
|
)
|
|
{
|
|
const float x = normal->p[0];
|
|
const float y = normal->p[1];
|
|
const float z = normal->p[2];
|
|
const double length = sqrt(x*x+y*y+z*z);
|
|
const double b = acos(z / length);
|
|
const double c = x == 0 ? sign(y)*90 : atan2(y,x);
|
|
|
|
if (flip)
|
|
{
|
|
printf("rotate([0,%f,0])", -b*180/M_PI);
|
|
printf("rotate([0,0,%f])", -c*180/M_PI);
|
|
} else {
|
|
printf("rotate([%f,%f,%f])\n", 0.0, b * 180 / M_PI, c * 180 / M_PI);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
find_normal(
|
|
const stl_3d_t * const stl,
|
|
const stl_vertex_t * const v,
|
|
const float inset_dist,
|
|
v3_t * const avg
|
|
)
|
|
{
|
|
int * const face_used
|
|
= calloc(sizeof(*face_used), stl->num_face);
|
|
|
|
// generate all of the coplanar polygons at this vertex
|
|
const stl_vertex_t ** const vertex_list
|
|
= calloc(sizeof(**vertex_list), stl->num_vertex);
|
|
|
|
for (int j = 0 ; j < v->num_face; j++)
|
|
{
|
|
// generate the polygon face for this vertex
|
|
const stl_face_t * const f = v->face[j];
|
|
if (face_used[f - stl->face])
|
|
continue;
|
|
|
|
//ref.origin.p[0] = 0;
|
|
//ref.origin.p[1] = 0;
|
|
//ref.origin.p[2] = 0;
|
|
|
|
const int start_vertex = v->face_num[j];
|
|
const int vertex_count = stl_trace_face(
|
|
stl,
|
|
f,
|
|
vertex_list,
|
|
face_used,
|
|
start_vertex
|
|
);
|
|
|
|
// find this vertex in the vertex list
|
|
// and compute the vector that subdivides the
|
|
// two outbound edges
|
|
for (int k = 0 ; k < vertex_count ; k++)
|
|
{
|
|
if (vertex_list[k] != v)
|
|
continue;
|
|
|
|
v3_t p1 = vertex_list[(k+vertex_count-1) % vertex_count]->p;
|
|
v3_t p2 = vertex_list[k % vertex_count]->p;
|
|
v3_t p3 = vertex_list[(k+1) % vertex_count]->p;
|
|
|
|
refframe_t ref;
|
|
refframe_init(
|
|
&ref,
|
|
p2,
|
|
p3,
|
|
p1
|
|
);
|
|
|
|
double x, y;
|
|
refframe_inset(&ref, inset_dist, &x, &y, p1, p2, p3);
|
|
|
|
v3_t hole = refframe_project(&ref, (v3_t){{x,y,0}});
|
|
//hole = refframe_project(&ref, (v3_t){{10,0,0}});
|
|
//hole.p[0] = 10*ref.x.p[0]; // + ref.origin.p[0];
|
|
//hole.p[1] = 10*ref.x.p[1]; // + ref.origin.p[1];
|
|
//hole.p[2] = 10*ref.x.p[2]; // + ref.origin.p[2];
|
|
fprintf(stderr, "**** %p [%f,%f]=>%f,%f,%f\n", v, x, y,
|
|
hole.p[0],
|
|
hole.p[1],
|
|
hole.p[2]
|
|
);
|
|
|
|
#if 0
|
|
printf("color(\"green\") translate([%f,%f,%f]) sphere(r=1);\n",
|
|
hole.p[0],
|
|
hole.p[1],
|
|
hole.p[2]
|
|
);
|
|
|
|
hole = refframe_project(&ref, (v3_t){10,0,0});
|
|
//v3_t hole = refframe_project(&ref, (v3_t){5,5,0});
|
|
printf("translate([%f,%f,%f]) sphere(r=1);\n",
|
|
hole.p[0],
|
|
hole.p[1],
|
|
hole.p[2]
|
|
);
|
|
/*
|
|
hole = refframe_project(&ref, (v3_t){0,10,0});
|
|
//v3_t hole = refframe_project(&ref, (v3_t){5,5,0});
|
|
printf("%%translate([%f,%f,%f]) sphere(r=1);\n",
|
|
hole.p[0],
|
|
hole.p[1],
|
|
hole.p[2]
|
|
);
|
|
*/
|
|
#endif
|
|
|
|
//*avg = v3_add(*avg, ref.z);
|
|
*avg = v3_add(*avg, v3_norm(v3_sub(ref.origin, hole)));
|
|
//*avg = v3_add(*avg, (v3_sub(hole, ref.origin)));
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// use the transpose of the rotation matrix,
|
|
// which will rotate from (x,y) to the correct
|
|
// orientation relative to this connector node.
|
|
print_multmatrix(&ref, 1);
|
|
printf("{\n");
|
|
|
|
// generate the polygon plane
|
|
if (thickness != 0)
|
|
{
|
|
printf("translate([0,0,%f]) linear_extrude(height=%f) polygon(points=[\n",
|
|
translate,
|
|
thickness
|
|
);
|
|
|
|
for(int k=0 ; k < vertex_count ; k++)
|
|
{
|
|
double x, y;
|
|
refframe_inset(&ref, inset_dist, &x, &y,
|
|
vertex_list[(k+0) % vertex_count]->p,
|
|
vertex_list[(k+1) % vertex_count]->p,
|
|
vertex_list[(k+2) % vertex_count]->p
|
|
);
|
|
printf("[%f,%f],", x, y);
|
|
}
|
|
printf("\n]);\n");
|
|
}
|
|
|
|
// generate the mounting holes/pins
|
|
if (hole_rad != 0)
|
|
{
|
|
for(int k=0 ; k < vertex_count ; k++)
|
|
{
|
|
double x, y;
|
|
refframe_inset(&ref, inset_dist+hole_dist, &x, &y,
|
|
vertex_list[(k+0) % vertex_count]->p,
|
|
vertex_list[(k+1) % vertex_count]->p,
|
|
vertex_list[(k+2) % vertex_count]->p
|
|
);
|
|
printf("translate([%f,%f,%f]) cylinder(r=%f,h=%f, $fs=1);\n",
|
|
x, y, -hole_height/2,
|
|
hole_rad,
|
|
hole_height
|
|
);
|
|
}
|
|
}
|
|
|
|
printf("}\n");
|
|
}
|
|
#endif
|
|
|
|
free(face_used);
|
|
free(vertex_list);
|
|
}
|
|
|
|
|
|
int
|
|
main(
|
|
int argc,
|
|
char ** argv
|
|
)
|
|
{
|
|
if (argc <= 1)
|
|
{
|
|
fprintf(stderr, "Usage: corners file.stl > file-corners.scad\n");
|
|
return -1;
|
|
}
|
|
|
|
const char * const stl_name = argv[1];
|
|
int fd = open(stl_name, O_RDONLY);
|
|
if (fd < 0)
|
|
{
|
|
perror(stl_name);
|
|
return -1;
|
|
}
|
|
|
|
stl_3d_t * const stl = stl_3d_parse(fd);
|
|
if (!stl)
|
|
return EXIT_FAILURE;
|
|
close(fd);
|
|
|
|
printf("module model() {\n"
|
|
"render() difference() {\n"
|
|
"import(\"%s\");\n",
|
|
stl_name
|
|
);
|
|
//printf("%%model();\n");
|
|
|
|
const double thickness = 3;
|
|
const double inset_dist = 5;
|
|
const double hole_dist = 5;
|
|
const double hole_rad = 1.5;
|
|
|
|
int * const face_used
|
|
= calloc(sizeof(*face_used), stl->num_face);
|
|
const stl_vertex_t ** const vertex_list
|
|
= calloc(sizeof(*vertex_list), stl->num_vertex);
|
|
|
|
// for face, generate the set of coplanar points that go with it
|
|
// and "drill" holes in the model for those corners.
|
|
for (int i = 0 ; i < stl->num_face ; i++)
|
|
{
|
|
if (face_used[i])
|
|
continue;
|
|
|
|
const stl_face_t * const f = &stl->face[i];
|
|
const int vertex_count = stl_trace_face(
|
|
stl,
|
|
f,
|
|
vertex_list,
|
|
face_used,
|
|
0
|
|
);
|
|
|
|
refframe_t ref;
|
|
refframe_init(
|
|
&ref,
|
|
f->vertex[0]->p,
|
|
f->vertex[1]->p,
|
|
f->vertex[2]->p
|
|
);
|
|
|
|
// replace the origin with the actual origin
|
|
//ref.origin.p[0] = 0;
|
|
//ref.origin.p[1] = 0;
|
|
//ref.origin.p[2] = 0;
|
|
|
|
printf("translate([%f,%f,%f])",
|
|
f->vertex[0]->p.p[0],
|
|
f->vertex[0]->p.p[1],
|
|
f->vertex[0]->p.p[2]
|
|
);
|
|
|
|
print_multmatrix(&ref, 0);
|
|
printf("{\n");
|
|
|
|
// generate a bolt hole for each non-copolanar corner
|
|
for (int j = 0 ; j < vertex_count ; j++)
|
|
{
|
|
double x, y;
|
|
refframe_inset(
|
|
&ref,
|
|
inset_dist,
|
|
&x,
|
|
&y,
|
|
vertex_list[(j+0) % vertex_count]->p,
|
|
vertex_list[(j+1) % vertex_count]->p,
|
|
vertex_list[(j+2) % vertex_count]->p
|
|
);
|
|
|
|
printf("translate([%f,%f,0]) cylinder(r=%f, h=%f, center=true);\n",
|
|
x,
|
|
y,
|
|
hole_rad,
|
|
10.0
|
|
);
|
|
}
|
|
|
|
printf("}\n");
|
|
}
|
|
|
|
printf("}\n}\n");
|
|
|
|
const int flip = 1;
|
|
if (!flip)
|
|
printf("model();\n");
|
|
|
|
|
|
// For each vertex, extract a small region around the corner
|
|
const int div = sqrt(stl->num_vertex);
|
|
const double spacing = 32;
|
|
|
|
for(int i = 0 ; i < stl->num_vertex ; i++)
|
|
{
|
|
const stl_vertex_t * const v = &stl->vertex[i];
|
|
const v3_t origin = v->p;
|
|
|
|
v3_t avg = {{ 0, 0, 0}};
|
|
find_normal(stl, v, inset_dist, &avg);
|
|
|
|
if (flip)
|
|
{
|
|
printf("translate([%f,%f,20])", (i/div)*spacing, (i%div)*spacing);
|
|
printf("render() intersection()");
|
|
}
|
|
|
|
printf("{\n");
|
|
|
|
//printf("%%\n");
|
|
if (flip)
|
|
{
|
|
print_normal(&avg, 1);
|
|
printf("translate([%f,%f,%f])",
|
|
-origin.p[0], -origin.p[1], -origin.p[2]);
|
|
printf("model();\n");
|
|
printf("translate([0,0,-20]) cylinder(r=15,h=20);\n");
|
|
} else {
|
|
printf("translate([%f,%f,%f])",
|
|
origin.p[0], origin.p[1], origin.p[2]);
|
|
print_normal(&avg, 0);
|
|
printf("%%translate([0,0,-20]) cylinder(r=15,h=20);\n");
|
|
}
|
|
|
|
//avg = v3_norm(avg);
|
|
|
|
printf("}\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|