papercraft/corners.c
2015-02-15 16:03:51 -05:00

173 lines
4.0 KiB
C

/** \file
* Generate an OpenSCAD with connectors for each face.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <math.h>
#include <err.h>
#include <assert.h>
#include "v3.h"
#include "stl_3d.h"
int
main(void)
{
stl_3d_t * const stl = stl_3d_parse(STDIN_FILENO);
if (!stl)
return EXIT_FAILURE;
const double thickness = 6;
const double offset = 8;
// for each vertex, find the coplanar triangles
// \todo: do coplanar bits
const stl_vertex_t ** const vertex_list = calloc(sizeof(**vertex_list), stl->num_vertex);
for(int i = 0 ; i < stl->num_vertex ; i++)
{
const stl_vertex_t * const v = &stl->vertex[i];
const v3_t origin = v->p;
printf("// vertex %d\n"
"translate([%f,%f,%f])\n"
"//render() difference()\n"
"{\n"
"sphere(r=20);\n",
i, origin.p[0], origin.p[1], origin.p[2]);
int * const face_used = calloc(sizeof(*face_used), stl->num_face);
for (int j = 0 ; j < v->num_face; j++)
{
// generate the polygon face for this vertex
const stl_face_t * const f = v->face[j];
if (face_used[f - stl->face])
continue;
const int start_vertex = v->face_num[j];
const int vertex_count = stl_trace_face(
stl,
f,
vertex_list,
face_used,
start_vertex
);
refframe_t ref;
refframe_init(&ref,
f->vertex[(start_vertex+0) % 3]->p,
f->vertex[(start_vertex+1) % 3]->p,
f->vertex[(start_vertex+2) % 3]->p
);
const stl_vertex_t * const v1 = vertex_list[0];
const stl_vertex_t * const v2 = vertex_list[1];
const v3_t d = v3_sub(v2->p, v1->p);
const float len = v3_len(&v2->p, &v1->p);
//const float b = acos(d.p[2] / len) * 180/M_PI;
//const float c = d.p[0] == 0 ? sign(d.p[1]) * 90 : atan2(d.p[1], d.p[0]) * 180/M_PI;
//
// use the transpose of the rotation matrix,
// which will rotate from (x,y) to the correct
// orientation relative to this connector node.
printf("multmatrix(m=[[%f,%f,%f,0],[%f,%f,%f,0],[%f,%f,%f,0],[0,0,0,1]]) translate([0,0,%f]) linear_extrude(height=%f) polygon(points=[\n",
ref.x.p[0],
ref.y.p[0],
ref.z.p[0],
ref.x.p[1],
ref.y.p[1],
ref.z.p[1],
ref.x.p[2],
ref.y.p[2],
ref.z.p[2],
//a, b, c,
-thickness/2,
thickness
);
for(int k=0 ; k < vertex_count ; k++)
{
double x, y;
v3_project(&ref, vertex_list[k]->p, &x, &y);
printf("[%f,%f],", x, y);
}
printf("\n]);\n");
// generate a polyhedron that spans
// the width of this coplanar thingy
#if 0
v3_t v0 = v3_sub(f->vertex[0]->p, origin);
v3_t v1 = v3_sub(f->vertex[1]->p, origin);
v3_t v2 = v3_sub(f->vertex[2]->p, origin);
v3_t n;
// compute normal of the face
if (v->face_num[j] == 0)
n = v3_cross(v1, v2);
else
if (v->face_num[j] == 1)
n = v3_cross(v2, v0);
else
if (v->face_num[j] == 2)
n = v3_cross(v0, v1);
n = v3_scale(n, (thickness+1)/v3_mag(n)/2);
// slide the vectors towards the center
v3_t v0mid = v3_scale(v3_mid(v0, v1, v2), offset);
v3_t v1mid = v3_scale(v3_mid(v1, v0, v2), offset);
v3_t v2mid = v3_scale(v3_mid(v2, v0, v1), offset);
v0 = v3_add(v0, v0mid);
v1 = v3_add(v1, v1mid);
v2 = v3_add(v2, v2mid);
// compute the
v3_t v3 = v3_add(v0, n);
v3_t v4 = v3_add(v1, n);
v3_t v5 = v3_add(v2, n);
v0 = v3_sub(v0, n);
v1 = v3_sub(v1, n);
v2 = v3_sub(v2, n);
printf("polyhedron(\n"
"points=[\n"
"[%f,%f,%f],[%f,%f,%f],[%f,%f,%f],\n"
"[%f,%f,%f],[%f,%f,%f],[%f,%f,%f],\n"
"], %s = ["
" [0,1,2], [3,5,4],"
" [0,2,3], [2,5,3],"
" [0,3,4], [0,4,1],"
" [1,4,5], [1,5,2],"
"]);\n",
v0.p[0], v0.p[1], v0.p[2],
v1.p[0], v1.p[1], v1.p[2],
v2.p[0], v2.p[1], v2.p[2],
v3.p[0], v3.p[1], v3.p[2],
v4.p[0], v4.p[1], v4.p[2],
v5.p[0], v5.p[1], v5.p[2],
#ifdef __linux__
"triangles"
#else
"faces"
#endif
);
#endif
//break; // only do one right now
}
free(face_used);
printf("}\n");
//if (i == 2) break; // only do one right now
}
return 0;
}