351 lines
7.5 KiB
C
351 lines
7.5 KiB
C
/** \file
|
|
* Generate an svg file with the polygonal faces.
|
|
*
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <math.h>
|
|
#include <err.h>
|
|
#include <assert.h>
|
|
#include "v3.h"
|
|
#include "stl_3d.h"
|
|
|
|
static const char * stroke_string
|
|
= "stroke-width=\"1px\" fill=\"none\"";
|
|
|
|
typedef struct
|
|
{
|
|
v3_t origin;
|
|
v3_t x;
|
|
v3_t y;
|
|
v3_t z;
|
|
} refframe_t;
|
|
|
|
|
|
static void
|
|
v3_project(
|
|
const refframe_t * const ref,
|
|
const v3_t p_in,
|
|
double * const x_out,
|
|
double * const y_out
|
|
)
|
|
{
|
|
v3_t p = v3_sub(p_in, ref->origin);
|
|
|
|
double x = ref->x.p[0]*p.p[0] + ref->x.p[1]*p.p[1] + ref->x.p[2]*p.p[2];
|
|
double y = ref->y.p[0]*p.p[0] + ref->y.p[1]*p.p[1] + ref->y.p[2]*p.p[2];
|
|
double z = ref->z.p[0]*p.p[0] + ref->z.p[1]*p.p[1] + ref->z.p[2]*p.p[2];
|
|
|
|
fprintf(stderr, "%f,%f,%f\n", x, y, z);
|
|
|
|
*x_out = x;
|
|
*y_out = y;
|
|
}
|
|
|
|
|
|
static void
|
|
svg_line(
|
|
const refframe_t * const ref,
|
|
const v3_t p1,
|
|
const v3_t p2
|
|
)
|
|
{
|
|
// project p1 and p2 into the plane
|
|
double x1, y1, x2, y2;
|
|
|
|
v3_project(ref, p1, &x1, &y1);
|
|
v3_project(ref, p2, &x2, &y2);
|
|
const char * color = "#FF0000";
|
|
|
|
printf("<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" stroke=\"%s\" %s/>\n",
|
|
x1, y1,
|
|
x2, y2,
|
|
color,
|
|
stroke_string
|
|
);
|
|
}
|
|
|
|
|
|
static void
|
|
svg_circle(
|
|
const double x,
|
|
const double y,
|
|
const double rad,
|
|
const char * const color
|
|
)
|
|
{
|
|
printf("<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke=\"%s\" %s/>\n",
|
|
x,
|
|
y,
|
|
rad,
|
|
color,
|
|
stroke_string
|
|
);
|
|
}
|
|
|
|
|
|
/** Starting at a point, trace the coplanar polygon and return a
|
|
* list of vertices.
|
|
*/
|
|
int
|
|
trace_face(
|
|
const stl_3d_t * const stl,
|
|
const stl_face_t * const f_start,
|
|
const stl_vertex_t ** vertex_list,
|
|
int * const face_used
|
|
)
|
|
{
|
|
const stl_face_t * f = f_start;
|
|
int i = 0;
|
|
int vertex_count = 0;
|
|
|
|
do {
|
|
const stl_vertex_t * const v1 = f->vertex[(i+0) % 3];
|
|
const stl_vertex_t * const v2 = f->vertex[(i+1) % 3];
|
|
const stl_face_t * const f_next = f->face[i];
|
|
|
|
fprintf(stderr, "%p %d: %f,%f,%f\n", f, i, v1->p.p[0], v1->p.p[1], v1->p.p[2]);
|
|
face_used[f - stl->face] = 1;
|
|
|
|
if (!f_next || f->angle[i] != 0)
|
|
{
|
|
// not coplanar or no connection.
|
|
// add the NEXT vertex on this face and continue
|
|
vertex_list[vertex_count++] = v2;
|
|
i = (i+1) % 3;
|
|
continue;
|
|
}
|
|
|
|
// coplanar; figure out which vertex on the next
|
|
// face we start at
|
|
int i_next = -1;
|
|
for (int j = 0 ; j < 3 ; j++)
|
|
{
|
|
if (f_next->vertex[j] != v1)
|
|
continue;
|
|
i_next = j;
|
|
break;
|
|
}
|
|
|
|
if (i_next == -1)
|
|
abort();
|
|
|
|
// move to the new face
|
|
f = f_next;
|
|
i = i_next;
|
|
|
|
// keep going until we reach our starting face
|
|
// at vertex 0.
|
|
} while (f != f_start || i != 0);
|
|
|
|
return vertex_count;
|
|
}
|
|
|
|
// Determines the intersection point of the line defined by points A and B with the
|
|
// line defined by points C and D.
|
|
//
|
|
// Returns YES if the intersection point was found, and stores that point in X,Y.
|
|
// Returns NO if there is no determinable intersection point, in which case X,Y will
|
|
// be unmodified.
|
|
|
|
static int
|
|
line_intersect(
|
|
double Ax, double Ay,
|
|
double Bx, double By,
|
|
double Cx, double Cy,
|
|
double Dx, double Dy,
|
|
double *X, double *Y
|
|
)
|
|
{
|
|
// Fail if either line is undefined.
|
|
if ((Ax==Bx && Ay==By) || (Cx==Dx && Cy==Dy))
|
|
return 0;
|
|
|
|
// (1) Translate the system so that point A is on the origin.
|
|
Bx-=Ax; By-=Ay;
|
|
Cx-=Ax; Cy-=Ay;
|
|
Dx-=Ax; Dy-=Ay;
|
|
|
|
// Discover the length of segment A-B.
|
|
const double distAB=sqrt(Bx*Bx+By*By);
|
|
|
|
// (2) Rotate the system so that point B is on the positive X axis.
|
|
const double theCos=Bx/distAB;
|
|
const double theSin=By/distAB;
|
|
|
|
double newX=Cx*theCos+Cy*theSin;
|
|
Cy =Cy*theCos-Cx*theSin; Cx=newX;
|
|
newX=Dx*theCos+Dy*theSin;
|
|
Dy =Dy*theCos-Dx*theSin; Dx=newX;
|
|
|
|
// Fail if the lines are parallel.
|
|
if (Cy==Dy) return 0;
|
|
|
|
// (3) Discover the position of the intersection point along line A-B.
|
|
const double ABpos=Dx+(Cx-Dx)*Dy/(Dy-Cy);
|
|
|
|
// (4) Apply the discovered position to line A-B in the original coordinate system.
|
|
*X=Ax+ABpos*theCos;
|
|
*Y=Ay+ABpos*theSin;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
|
|
/** Compute the inset coordinate.
|
|
* http://alienryderflex.com/polygon_inset/
|
|
// Given the sequentially connected points (a,b), (c,d), and (e,f), this
|
|
// function returns, in (C,D), a bevel-inset replacement for point (c,d).
|
|
//
|
|
// Note: If vectors (a,b)->(c,d) and (c,d)->(e,f) are exactly 180° opposed,
|
|
// or if either segment is zero-length, this function will do
|
|
// nothing; i.e. point (C,D) will not be set.
|
|
|
|
*/
|
|
void
|
|
inset(
|
|
const refframe_t * const ref,
|
|
const double inset_dist,
|
|
double * const x_out,
|
|
double * const y_out,
|
|
const v3_t p0, // previous point
|
|
const v3_t p1, // current point to inset
|
|
const v3_t p2 // next point
|
|
)
|
|
{
|
|
double a, b, c, d, e, f;
|
|
v3_project(ref, p0, &a, &b);
|
|
v3_project(ref, p1, &c, &d);
|
|
v3_project(ref, p2, &e, &f);
|
|
|
|
double c1 = c;
|
|
double d1 = d;
|
|
double c2 = c;
|
|
double d2 = d;
|
|
|
|
// Calculate length of line segments.
|
|
const double dx1 = c-a;
|
|
const double dy1 = d-b;
|
|
const double dist1 = sqrt(dx1*dx1+dy1*dy1);
|
|
const double dx2 = e-c;
|
|
const double dy2 = f-d;
|
|
const double dist2 = sqrt(dx2*dx2+dy2*dy2);
|
|
|
|
// Exit if either segment is zero-length.
|
|
if (dist1==0. || dist2==0.)
|
|
{
|
|
*x_out = *y_out = 0;
|
|
fprintf(stderr, "inset fail\n");
|
|
return;
|
|
}
|
|
|
|
// Inset each of the two line segments.
|
|
double insetX, insetY;
|
|
|
|
insetX = dy1/dist1 * inset_dist;
|
|
a+=insetX;
|
|
c1+=insetX;
|
|
|
|
insetY = -dx1/dist1 * inset_dist;
|
|
b+=insetY;
|
|
d1+=insetY;
|
|
|
|
insetX = dy2/dist2 * inset_dist;
|
|
e+=insetX;
|
|
c2+=insetX;
|
|
|
|
insetY = -dx2/dist2 * inset_dist;
|
|
f+=insetY;
|
|
d2+=insetY;
|
|
|
|
// If inset segments connect perfectly, return the connection point.
|
|
if (c1==c2 && d1==d2)
|
|
{
|
|
*x_out = c1;
|
|
*y_out = d1;
|
|
return;
|
|
}
|
|
|
|
// Return the intersection point of the two inset segments (if any).
|
|
if (line_intersect(a,b,c1,d1,c2,d2,e,f, x_out, y_out))
|
|
return;
|
|
|
|
*x_out = *y_out = 0;
|
|
fprintf(stderr, "inset failed 2\n");
|
|
}
|
|
|
|
|
|
int
|
|
main(void)
|
|
{
|
|
stl_3d_t * const stl = stl_3d_parse(STDIN_FILENO);
|
|
if (!stl)
|
|
return EXIT_FAILURE;
|
|
const double inset_distance = 8;
|
|
const double hole_radius = 3;
|
|
|
|
int * const face_used = calloc(sizeof(*face_used), stl->num_face);
|
|
|
|
// for each vertex, find the coplanar triangles
|
|
// \todo: do coplanar bits
|
|
printf("<svg xmlns=\"http://www.w3.org/2000/svg\">\n");
|
|
printf("<g transform=\"scale(3.543307)\"><!-- scale to mm -->\n");
|
|
|
|
const stl_vertex_t ** const vertex_list = calloc(sizeof(*vertex_list), stl->num_vertex);
|
|
|
|
for(int i = 0 ; i < stl->num_face ; i++)
|
|
{
|
|
if (face_used[i])
|
|
continue;
|
|
|
|
const stl_face_t * const f = &stl->face[i];
|
|
const int vertex_count = trace_face(stl, f, vertex_list, face_used);
|
|
|
|
fprintf(stderr, "%d: %d vertices\n", i, vertex_count);
|
|
|
|
// generate a refernce frame based on this face
|
|
refframe_t ref = {
|
|
.origin = f->vertex[0]->p,
|
|
};
|
|
|
|
const v3_t dx = v3_norm(v3_sub(f->vertex[1]->p, ref.origin));
|
|
const v3_t dy = v3_norm(v3_sub(f->vertex[2]->p, ref.origin));
|
|
|
|
ref.x = dx;
|
|
ref.z = v3_norm(v3_cross(dx, dy));
|
|
ref.y = v3_norm(v3_cross(ref.x, ref.z));
|
|
|
|
printf("<!-- face %d --><g>\n", i);
|
|
|
|
// generate the polygon outline (should be one path?)
|
|
for (int j = 0 ; j < vertex_count ; j++)
|
|
svg_line(
|
|
&ref,
|
|
vertex_list[(j+0) % vertex_count]->p,
|
|
vertex_list[(j+1) % vertex_count]->p
|
|
);
|
|
|
|
// generate the inset mounting holes
|
|
for (int j = 0 ; j < vertex_count ; j++)
|
|
{
|
|
double x, y;
|
|
inset(&ref, inset_distance, &x, &y,
|
|
vertex_list[(j+0) % vertex_count]->p,
|
|
vertex_list[(j+1) % vertex_count]->p,
|
|
vertex_list[(j+2) % vertex_count]->p
|
|
);
|
|
svg_circle(x, y, hole_radius, "#00ff00");
|
|
}
|
|
|
|
printf("</g>\n");
|
|
}
|
|
|
|
printf("</g></svg>\n");
|
|
|
|
return 0;
|
|
}
|