papercraft/hiddenwire.c
2018-03-01 23:00:01 -05:00

492 lines
9.5 KiB
C

/** \file
* Render a hidden wireframe version of an STL file.
*
*/
// ./hiddenwire --no-hidden --prune 1 -v < nyc-50000.stl --camera 400,60,-600 --lookat 450,0,-800 --up 0,1,0 --fov 20 > test3.svg
static int debug = 0;
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <math.h>
#include <err.h>
#include <assert.h>
#include <getopt.h>
#include "v3.h"
#include "tri.h"
#include "camera.h"
static const char usage[] =
"Usage: hiddenwire [options] file.stl > file.svg\n"
"\n"
"Options:\n"
" -h | -? | --help Help\n"
" -v | --verbose Enable debugging output\n"
" -c | --camera x,y,z Camera position\n"
" -l | --lookat x,y,z Target\n"
" -u | --up x,y,z Up vector\n"
" -F | --fov deg Field-of-view angle\n"
" -s | --scale s Scale factor\n"
" -p | --prune s Prune lines shorter than s\n"
" --no-backface Disable backface culling\n"
" --no-coplanar Disable coplanar merging\n"
" --no-hiddenwire Disable hidden wire frame removal\n"
"\n";
static const struct option long_options[] = {
{ "help", 0, NULL, 'h' },
{ "verbose", 0, NULL, 'v' },
{ "no-backface", 0, NULL, 'B' },
{ "no-coplanar", 0, NULL, 'C' },
{ "no-hiddenwire", 0, NULL, 'H' },
{ "camera", 1, NULL, 'c' },
{ "lookat", 1, NULL, 'l' },
{ "up", 1, NULL, 'u' },
{ "scale", 1, NULL, 's' },
{ "prune", 1, NULL, 'p' },
{ "fov", 1, NULL, 'F' },
{ NULL, 0, NULL, 0 },
};
#ifndef M_PI
#define M_PI 3.1415926535897932384
#endif
typedef struct
{
char header[80];
uint32_t num_triangles;
} __attribute__((__packed__))
stl_header_t;
typedef struct
{
v3_t normal;
v3_t p[3];
uint16_t attr;
} __attribute__((__packed__))
stl_face_t;
void
svg_line(
const char * color,
const float * p1,
const float * p2,
float thick
)
{
// invert the sense of y
printf("<line x1=\"%fpx\" y1=\"%fpx\" x2=\"%fpx\" y2=\"%fpx\" stroke=\"%s\" stroke-width=\"%.1fpx\"/>\n",
p1[0],
-p1[1],
p2[0],
-p2[1],
color,
thick
);
}
static inline int
v2_eq(
const float p0[],
const float p1[],
const float eps
)
{
const float dx = p0[0] - p1[0];
const float dy = p0[1] - p1[1];
// are the points within epsilon of each other?
if (-eps < dx && dx < eps
&& -eps < dy && dy < eps)
return 1;
// nope, not equal
return 0;
}
/*
* Determine if a segment is part of a triangle edge
*/
int
parallel(
const v3_t * const p00,
const v3_t * const p01,
const v3_t * const p10,
const v3_t * const p11
)
{
//v3_t v = v3_sub(*p11, *p10);
v3_t v0 = v3_sub(*p01, *p00);
v3_t v1 = v3_sub(*p11, *p10);
v3_t vx = v3_cross(v0, v1);
float angle = v3_mag2(vx);
// if the angle is far from zero, definitely not parallel
if (angle < -EPS || EPS < angle)
return 0;
// they might be parallel, figure out if they are the same
return 1;
}
int v3_parse(v3_t * out, const char * str)
{
int rc = sscanf(str, "%f,%f,%f",
&out->p[0],
&out->p[1],
&out->p[2]
);
if (rc != 3)
return -1;
return 0;
}
int onscreen(
const v3_t * const p,
const float width,
const float height
)
{
if (p->p[0] < -width/2 || width/2 < p->p[0])
return 0;
/*
if (p->p[1] < -height/2 || height/2 < p->p[1])
return 0;
*/
return 1;
}
int main(
int argc,
char ** argv
)
{
if (argc <= 1)
{
fprintf(stderr, "%s", usage);
return EXIT_FAILURE;
}
int opt;
int do_backface = 1;
int do_coplanar = 1;
int do_hidden = 1;
v3_t eye = { { 100, 0, 0 } };
v3_t lookat = { { 0, 0, 0 } };
v3_t up = { { 0, 0, 1 } };
float scale = 1;
float fov = 45;
float prune = 0.1;
float width = 4096;
float height = 2048;
while((opt = getopt_long(argc, argv ,"h?vBCHc:l:s:u:p:F:", long_options, NULL)) != -1)
{
switch(opt)
{
case 'h' : case '?':
printf("%s", usage);
return EXIT_SUCCESS;
default:
fprintf(stderr, "%s", usage);
return EXIT_FAILURE;
case 'v': debug++; break;
case 'B': do_backface = 0; break;
case 'C': do_coplanar = 0; break;
case 'H': do_hidden = 0; break;
case 'p': prune = atof(optarg); break;
case 's': scale = atof(optarg); break;
case 'F': fov = atof(optarg); break;
case 'c':
if (v3_parse(&eye, optarg) < 0)
return EXIT_FAILURE;
break;
case 'l':
if (v3_parse(&lookat, optarg) < 0)
return EXIT_FAILURE;
break;
case 'u':
if (v3_parse(&up, optarg) < 0)
return EXIT_FAILURE;
break;
}
}
// todo: sanity check fov, scale, etc
const size_t max_len = 32 << 20;
uint8_t * const buf = calloc(max_len, 1);
size_t offset = 0;
while(1)
{
ssize_t rc = read(0, buf+offset, max_len - offset);
if (rc == -1)
return EXIT_FAILURE;
if (rc == 0)
break;
offset += rc;
}
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
float coplanar_eps = 0.001;
if(debug)
{
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
}
(void) scale;
const camera_t * const cam = camera_new(eye, lookat, up, fov);
printf("<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"%.0fpx\" height=\"%.0fpx\" viewbox=\"0 0 %.0f %.0f\">\n", width, height, width, height);
float off_x = width/2;
float off_y = height/2;
printf("<g transform=\"translate(%f %f)\">\n", off_x, off_y);
int rejected = 0;
tri_t * zlist = NULL;
seg_t * slist = NULL;
seg_t * slist_visible = NULL;
int retained = 0;
int backface = 0;
int small_area = 0;
int behind = 0;
int offscreen = 0;
// transform the stl by the camera projection and generate
// a z-sorted list of triangles
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
v3_t s[3];
for(int j = 0 ; j < 3 ; j++)
{
// if any points are behind us, reject
// this one
if (!camera_project(cam, &stl->p[j], &s[j]))
{
behind++;
goto reject_early;
}
// scale to the image size
s[j].p[0] *= width;
s[j].p[1] *= width;
s[j].p[2] *= width;
}
if(debug >= 2)
for(int j = 0 ; j < 3 ; j++)
{
fprintf(stderr, "%+8.1f %+8.1f %+8.1f -> %+8.1f %+8.1f %+8.1f\n",
stl->p[j].p[0],
stl->p[j].p[1],
stl->p[j].p[2],
s[j].p[0],
s[j].p[1],
s[j].p[2]
);
}
tri_t * const tri = tri_new(s, stl->p);
// reject this face if any of the vertices are behind us
if (tri->min[2] < 0)
{
behind++;
goto reject;
}
// do a back-face cull to determine if this triangle
// is not facing us. we have to determine the orientation
// from the winding of the new projection
if (do_backface && tri->normal.p[2] <= 0)
{
backface++;
goto reject;
}
// if it has any off-screen coords, reject it
if (!onscreen(&tri->p[0], width, height)
|| !onscreen(&tri->p[1], width, height)
|| !onscreen(&tri->p[2], width, height))
{
tri_print(tri);
offscreen++;
goto reject;
}
// prune the small triangles in the screen space
if (tri_area_2d(tri) < prune)
{
small_area++;
goto reject;
}
const float a = v3_dist_2d(&tri->p[0], &tri->p[1]);
const float b = v3_dist_2d(&tri->p[1], &tri->p[2]);
const float c = v3_dist_2d(&tri->p[2], &tri->p[0]);
if( a < prune || b < prune || c < prune)
{
small_area++;
goto reject;
}
// it passes the first tests, so insert the triangle
// into the list and the three line segments
tri_insert(&zlist, tri);
retained++;
continue;
reject:
tri_delete(tri);
reject_early:
continue;
}
if (debug)
fprintf(stderr, "Retained %d triangles, rejected %d behind, %d offscreen, %d backface, %d small\n", retained, behind, offscreen, backface, small_area);
// drop any triangles that are totally occluded by another
// triangle. this reduces the amount of work for later
rejected = 0;
for(tri_t * t = zlist ; t ; t = t->next)
{
tri_t * t2_next;
for(tri_t * t2 = zlist ; t2 ; t2 = t2_next)
{
t2_next = t2->next;
if (t == t2)
continue;
if (!tri_behind(t, t2))
continue;
// t2 is occluded by t, remove it from the list
rejected++;
tri_delete(t2);
}
}
if (debug)
fprintf(stderr, "Rejected %d fully occluded triangles\n", rejected);
// generate a list of segments, dropping any coplanar ones
rejected = 0;
for(tri_t * t = zlist ; t ; t = t->next)
{
unsigned matches = 0;
if(do_coplanar)
for(tri_t * t2 = zlist ; t2 ; t2 = t2->next)
{
if (t == t2)
continue;
const int edge = tri_coplanar(t, t2, coplanar_eps);
if (edge < 0)
continue;
matches |= 1 << edge;
}
for(int j = 0 ; j < 3 ; j++)
{
// drop any that are coplanar
if (matches & (1 << j))
{
rejected++;
continue;
}
seg_t * s = seg_new(t->p[j], t->p[(j+1) % 3]);
s->next = slist;
slist = s;
}
}
if (debug)
fprintf(stderr, "Rejected %d coplanar segments\n", rejected);
// we now have a z-sorted list of triangles
rejected = 0;
// compute how many we actuall have remaining
int remaining = 0;
if (debug)
{
for(seg_t * s = slist ; s ; s = s->next)
remaining++;
fprintf(stderr, "%d segments remain to process\n", remaining);
}
if(do_hidden)
{
// work on each segment, intersecting it with all of the triangles
int processed = 0;
while(slist)
{
if (debug && ++processed % 1 == 0)
fprintf(stderr, "Hidden %d\n", processed);
seg_t * s = slist;
slist = s->next;
tri_seg_intersect(zlist, s, &slist_visible);
}
} else {
// don't do any intersection tests
slist_visible = slist;
slist = NULL;
}
// display all of the visible segments
for(seg_t * s = slist_visible ; s ; s = s->next)
{
svg_line("#FF0000", s->p[0].p, s->p[1].p, 1);
}
printf("</g>\n");
printf("</svg>\n");
return 0;
}