288 lines
20 KiB
Plaintext
Raw Normal View History

2021-12-31 14:30:51 -08:00
<map version="1.0.1">
<node ID="ID_1" TEXT="Artigos GF coment&#225;rios interessantes">
<node BACKGROUND_COLOR="#cccccc" COLOR="#000000" ID="ID_2" POSITION="left" STYLE="rectagle" TEXT="Poorter 1999. Functional Ecology. 13:396-410">
<edge COLOR="#cccccc"/>
<node ID="ID_3" POSITION="left" STYLE="fork" TEXT="Esp&#233;cies pioneiras crescem mais r&#225;pido do que as n&#227;o pioneiras">
<node ID="ID_4" POSITION="left" STYLE="fork" TEXT="Toler&#226;ncia a sombra est&#225; relacionada com persist&#234;ncia e n&#227;o com crescimento"/>
</node>
</node>
<node BACKGROUND_COLOR="#cccccc" COLOR="#000000" ID="ID_17" POSITION="right" STYLE="rectagle" TEXT="Chazdon 2010. Biotropica. 42(1): 31&#8211;40">
<edge COLOR="#cccccc"/>
<node ID="ID_24" POSITION="right" STYLE="fork" TEXT="Falar no artigo que esse trabalho fala que &#233; inadequada a divis&#227;o entre pioneira e n&#227;o pioneira devido a grande varia&#231;&#227;o que h&#225; entre elas. Al&#233;m de terem descoberto que durante a ontogenia a resposta a luminosidade muda dentro de uma mesma esp&#233;cie. Por&#233;m recomendar que essa classifica&#231;&#227;o continue sendo usada em curto prazo enquanto n&#227;o h&#225; informa&#231;&#245;es confi&#225;veis suficiente para esta simples classifica&#231;&#227;o. Outras classifica&#231;&#245;es como esta do artigo s&#227;o bem vinda, contanto que tenham dados confi&#225;veis. Por&#233;m dados est&#225;ticos j&#225; s&#227;o dif&#237;ceis de se obter, dados temporais, como taxa de crescimento em di&#226;metro ou altura, s&#227;o mais dif&#237;ceis ainda. Falar que v&#225;rios tipos de classifica&#231;&#245;es podem ser utilizadas e quanto mais detalhe melhor, por&#233;m os dados &#233; que s&#227;o mais limitantes. Se focarmos em dados de germina&#231;&#227;o e crescimento limitantes, como sugerem sainete e whitmore, da uma id&#233;ia maismr&#225;pida e a curto prazo da classifica&#231;&#227;o destas esp&#233;cies. Depois com o tempo conseguiremos construir classifica&#231;&#245;es mais detalhadas e com mais dados confi&#225;veis. "/>
<node ID="ID_22" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>Here, we develop a new approach that links functional attributes</p>
<p>of tree species with studies of forest recovery and regional</p>
<p>land-use transitions (Chazdon et al. 2007). Grouping species according</p>
<p>to their functional attributes or demographic rates provides</p>
<p>insight into both applied and theoretical questions, such as selecting</p>
<p>species for reforestation programs, assessing ecosystem services, and</p>
<p>understanding community assembly processes in tropical forests</p>
<p>(Diaz et al. 2007, Kraft et al. 2008).</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_23" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>Since we have data on leaf</p>
<p>and wood functional traits for only a subset of the species in our</p>
<p>study sites, we based our functional type classification on information</p>
<p>for a large number of tree species obtained through vegetation</p>
<p>monitoring studies.</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_25" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>Our approach avoided preconceived notions of successional</p>
<p>behavior or shade tolerance of tree species by developing an objective</p>
<p>and independent classification of functional types based on vegetation</p>
<p>monitoring data from permanent sample plots in mature and</p>
<p>secondary forests of northeastern Costa Rica (Finegan et al. 1999,</p>
<p>Chazdon et al. 2007).We apply an independent, prior classification</p>
<p>of 293 tree species from our study region into five functional types, based on two species attributes: canopy strata and diameter growth</p>
<p>rates for individuals Z10 cm dbh (Finegan et al. 1999, Salgado-</p>
<p>Negret 2007).</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_26" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>Our results demonstrate strong linkages between functional</p>
<p>types defined by adult height and growth rates of large trees and</p>
<p>colonization groups based on the timing of seedling, sapling, and</p>
<p>tree recruitment in secondary forests.</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_27" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>These results allow us to move beyond earlier conceptual</p>
<p>frameworks of tropical forest secondary succession developed</p>
<p>by Finegan (1996) and Chazdon (2008) based on subjective groupings,</p>
<p>such as pioneers and shade-tolerant species (Swaine &amp;</p>
<p>Whitmore 1988).</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_28" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>Reproductive traits, such as dispersal mode, pollination mode,</p>
<p>and sexual system, were ultimately not useful in delimiting tree</p>
<p>functional types for the tree species examined here (Salgado-Negret</p>
<p>2007). Thus, although reproductive traits do vary quantitatively in</p>
<p>abundance between secondary and mature forests in our landscape</p>
<p>(Chazdon et al. 2003), they do not seem to be important drivers of</p>
<p>successional dynamics of trees Z10 cm dbh. For seedlings, however,</p>
<p>dispersal mode and seed size are likely to play an important</p>
<p>role in community dynamics during succession (Dalling&amp;Hubbell</p>
<p>2002).</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_29" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>Our classification of colonization groups defies the traditional</p>
<p>dichotomy between &#8216;late successional&#8217; shade-tolerant and &#8216;early successional&#8217;</p>
<p>pioneer species. Many tree species, classified here as</p>
<p>regenerating pioneers on the basis of their population structure in</p>
<p>secondary forests, are common in both young secondary forest and</p>
<p>mature forests in this region (Guariguata et al. 1997), and many are</p>
<p>important timber species (Vilchez et al. 2008). These generalists are</p>
<p>by far the most abundant species of seedlings and saplings, conferring</p>
<p>a high degree of resilience in the wet tropical forests of NE</p>
<p>Costa Rica (Norden et al. 2009, Letcher &amp; Chazdon 2009). The</p>
<p>high abundance of regenerating pioneers in seedling and sapling</p>
<p>size classes clearly shows that species with shade-tolerant seedlings</p>
<p>can also recruit as trees early in succession. For these species, early</p>
<p>tree colonization enhances seedling and sapling recruitment during</p>
<p>the first 20&#8211;30 yr of succession, due to local seed rain. Species</p>
<p>abundance and size distribution depend strongly on chance colonization</p>
<p>events early in succession (Chazdon 2008). Other studies</p>
<p>have shown that mature forest species are able to colonize early in</p>
<p>succession (Finegan 1996, van Breugel et al. 2007, Franklin &amp; Rey</p>
<p>2007, Ochoa-Gaona et al. 2007), emphasizing the importance of</p>
<p>initial floristic composition in the determination of successional</p>
<p>pathways and rates of forest regrowth. On the other hand, significant</p>
<p>numbers of species in our sites (40% overall and the majority</p>
<p>of rare species) colonized only after canopy closure, and these species</p>
<p>may not occur as mature individuals until decades after agricultural</p>
<p>abandonment.</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_30" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>Classifying functional types</p>
<p>based on functional traits with low plasticity, such as wood density</p>
<p>and seed size, could potentially serve as robust proxies for demographic</p>
<p>variables (Poorter et al. 2008, Zhang et al. 2008).</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_31" POSITION="right" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>CONDIT, R., S. P. HUBBELL, AND R. B. FOSTER. 1996. Assessing the response of</p>
<p>plant functional types in tropical forests to climatic change. J. Veg. Sci.</p>
<p>7: 405&#8211;416.</p>
<p>DALLING, J. S., AND S. P. HUBBELL. 2002. Seed size, growth rate and gap microsite</p>
<p>conditions as determinants of recruitment success for pioneer species.</p>
<p>J. Ecol. 90: 557&#8211;568.</p>
<p>FINEGAN, B. 1996. Pattern and process in neotropical secondary forests: The first</p>
<p>100 years of succession. Trends Ecol. Evol. 11: 119&#8211;124.</p>
<p>POORTER, L., S. J. WRIGHT, H. PAZ, D. D. ACKERLY, R. CONDIT, G.</p>
<p>IBARRA-MANRI&#180;QUEZ, K. E. HARMS, J. C. LICONA, M.MARTI&#180;NEZ-RAMOS,</p>
<p>S. J. MAZER, H. C. MULLER-LANDAU, M. PEN&#732; A-CLAROS, C. O. WEBB,</p>
<p>AND I. J. WRIGHT. 2008. Are functional traits good predictors of demographic</p>
<p>rates? Evidence from five Neotropical forests. Ecology 89:</p>
<p>1908&#8211;1920.</p>
<p>ZHANG, Z. D., R. G. ZANG, AND Y. D. QI. 2008. Spatiotemporal patterns and</p>
<p>dynamics of species richness and abundance of woody plant functional</p>
<p>groups in a tropical forest landscape of Hainan Island, South China.</p>
<p>J. Integr. Plant Biol. 50: 547&#8211;558.</p>
</body>
</html>
</richcontent>
</node>
</node>
<node BACKGROUND_COLOR="#cccccc" ID="ID_5" POSITION="left" STYLE="rectagle" TEXT="Baraloto et al. 2010. Functional trait variation and sampling strategies in species-rich plant communities">
<edge COLOR="#cccccc"/>
<node ID="ID_6" POSITION="left" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>Therecent growth of large functional trait data</p>
<p>bases has been fuelled by standardized protocols forthe</p>
<p>measurement of individual functional traits and intensive</p>
<p>efforts to compile trait data(Cornelissen etal. 2003; Chave etal. 2009). Nonetheless, there remains no consensusfor</p>
<p>the most appropriate sampling design so that traits can be</p>
<p>scaled from the individuals on whom measurements are</p>
<p>made to the community or ecosystem levels at which infer-</p>
<p>ences are drawn (Swenson etal. 2006,2007,Reich,Wright</p>
<p>&amp; Lusk 2007;Kraft,Valencia &amp; Ackerly 2008).</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_7" POSITION="left" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>However, the fast pace of</p>
<p>development of plant trait meta-analyses also suggests that</p>
<p>trait acquisition in the field is a factor limiting the growth of</p>
<p>plant trait data bases.</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_8" POSITION="left" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>We measured</p>
<p>traits for every individual tree in nine 1-ha plots in tropical</p>
<p>lowland rainforest (N = 4709). Each plant was sampled for</p>
<p>10 functional traits related to wood and leaf morphology and</p>
<p>ecophysiology. Here, we contrast the trait means and variances</p>
<p>obtained with a full sampling strategy with those of</p>
<p>other sampling designs used in the recent literature, which we</p>
<p>obtain by simulation. We assess the differences in community-</p>
<p>level estimates of functional trait means and variances</p>
<p>among design types and sampling intensities. We then contrast</p>
<p>the relative costs of these designs and discuss the appropriateness</p>
<p>of different sampling designs and intensities for</p>
<p>different questions and systems.</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_9" POSITION="left" STYLE="fork" TEXT="Falar que a escolha das categorias de sucess&#227;o e dos par&#226;metros ou caracter&#237;stica dos indiv&#237;duos que ser&#227;o utilizadas dependera da facilidade de coleta dos dados e do custo monet&#225;rio e temporal."/>
<node ID="ID_12" POSITION="left" STYLE="fork" TEXT="Ver se classifica sucess&#227;o por densidade de tronco para citar no artigo como exemplo de outros atributos al&#233;m de germina&#231;&#227;o e ver se e custoso no tempo e em dinheiro"/>
<node ID="ID_13" POSITION="left" STYLE="fork" TEXT="Intensas amostragens de experimentos simples tem maior retorno em acur&#225;cia de estimativa e de custo tb."/>
<node ID="ID_14" POSITION="left" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>With regard to estimating mean trait values, strategies</p>
<p>alternative to BRIDGE were consistently cost-effective. On</p>
<p>the other hand, strategies alternative to BRIDGE clearly</p>
<p>failed to accurately estimate the variance of trait values. This</p>
<p>indicates that in situations where accurate estimation of plotlevel</p>
<p>variance is desired, complete censuses are essential.</p>
</body>
</html>
</richcontent>
<richcontent TYPE="NOTE">
<html>
<head/>
<body>
<p/>
<p>Isso significa que estudos de caracter&#237;stica de hist&#243;ria de vida compensam? Ver nos m&amp;m.</p>
</body>
</html>
</richcontent>
</node>
<node ID="ID_15" POSITION="left" STYLE="fork">
<richcontent TYPE="NODE">
<html>
<head/>
<body>
<p>We suggest that, in these studies,</p>
<p>the investment in complete sampling may be worthwhile</p>
<p>for at least some traits.</p>
</body>
</html>
</richcontent>
<richcontent TYPE="NOTE">
<html>
<head/>
<body>
<p/>
<p>Falar que isso corrobora nossa sugest&#227;o de utilizar poucas medidas, mas que elas sejam confi&#225;veis.</p>
</body>
</html>
</richcontent>
</node>
</node>
</node>
</map>