This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
mightyscape-0.92-deprecated/extensions/fablabchemnitz_elliptical_cone_box.py

753 lines
38 KiB
Python
Raw Normal View History

2019-11-14 20:05:10 +01:00
#!/usr/bin/env python2
# coding: utf8
# We will use the inkex module with the predefined Effect base class.
import inkex
# The simplestyle module provides functions for style parsing.
import simplestyle
import math
import numpy as np
sizeTab = 10000 #ANy value greater than 1000 should give goo results
objStyle = simplestyle.formatStyle(
{'stroke': '#000000',
'stroke-width': 0.1,
'fill': 'none'
})
objStyleStart = simplestyle.formatStyle(
{'stroke': '#FF0000',
'stroke-width': 0.1,
'fill': 'none'
})
def lengthCurve(Xarray, Yarray, npoints):
'''
Give length of a path between point of a curve
Beware, go from 0 to Index included, so the arrays should have at least npoints+1 elements
'''
x = Xarray[0]
y = Yarray[0]
Length = 0.0
i = 1
while i <= npoints:
Length += math.hypot((Xarray[i] - x), (Yarray[i] - y))
x = Xarray[i]
y = Yarray[i]
i += 1
return Length
class inkcape_polar:
def __init__(self, Offset, group):
self.offsetX = Offset[0]
self.offsetY = Offset[1]
self.Path = ''
self.group = group
def MoveTo(self, r, angle):
#Return string for moving to point given as parameter, with polar coordinates radius, angle
self.Path += ' M ' + str(round(r*math.cos(angle)-self.offsetX, 3)) + ',' + str(round(r*math.sin(angle)-self.offsetY, 3))
def MoveTo_cartesian(self, pt):
#Return string for moving to point given as parameter
self.Path += ' M ' + str(round(pt[0]-self.offsetX, 3)) + ',' + str(round(pt[1]-self.offsetY, 3))
def LineTo_cartesian(self, pt):
#Return string for moving to point given as parameter
self.Path += ' L ' + str(round(pt[0]-self.offsetX, 3)) + ',' + str(round(pt[1]-self.offsetY, 3))
def LineTo(self, r, angle):
#Retourne chaine de caractères donnant la position du point avec des coordonnées polaires
self.Path += ' L ' + str(round(r*math.cos(angle)-self.offsetX, 3)) + ',' + str(round(r*math.sin(angle)-self.offsetY, 3))
def Line(self, r1, angle1, r2, angle2):
#Retourne chaine de caractères donnant la position du point avec des coordonnées polaires
self.Path += ' M ' + str(round(r1*math.cos(angle1)-self.offsetX, 3)) + ',' + str(round(r1*math.sin(angle1)-self.offsetY, 3)) + ' L ' + str(round(r2*math.cos(angle2)-self.offsetX, 3)) + ',' + str(round(r2*math.sin(angle2)-self.offsetY, 3))
def GenPath(self):
line_attribs = {'style': objStyle, 'd': self.Path}
inkex.etree.SubElement(self.group, inkex.addNS('path', 'svg'), line_attribs)
class EllConicalBox(inkex.Effect):
"""
Creates a new layer with the drawings for a parametrically generaded box.
"""
def __init__(self):
inkex.Effect.__init__(self)
self.knownUnits = ['in', 'pt', 'px', 'mm', 'cm', 'm', 'km', 'pc', 'yd', 'ft']
self.OptionParser.add_option('--unit', action = 'store',
type = 'string', dest = 'unit', default = 'mm',
help = 'Unit, should be one of ')
self.OptionParser.add_option('--thickness', action = 'store',
type = 'float', dest = 'thickness', default = '3.0',
help = 'Material thickness')
self.OptionParser.add_option('--d1', action = 'store',
type = 'float', dest = 'd1', default = '50.0',
help = 'Small ellipse diameter')
self.OptionParser.add_option('--d2', action = 'store',
type = 'float', dest = 'd2', default = '100.0',
help = 'Large ellipse diameter')
self.OptionParser.add_option('--eccentricity', action = 'store',
type = 'float', dest = 'eccentricity', default = '1.0',
help = 'Ratio minor vs major axis, should be less than 1')
self.OptionParser.add_option('--zc', action = 'store',
type = 'float', dest = 'zc', default = '50.0',
help = 'Cone height')
self.OptionParser.add_option('--notch_interval', action = 'store',
type = 'int', dest = 'notch_interval', default = '2',
help = 'Interval between notches, should be even')
self.OptionParser.add_option('--cut_position', action = 'store',
type = 'int', dest = 'cut_position', default = '0',
help = 'Cut position angle')
self.OptionParser.add_option('--inner_size', action = 'store',
type = 'inkbool', dest = 'inner_size', default = 'true',
help = 'Dimensions are internal')
self.OptionParser.add_option('--Mode_Debug', action = 'store',
type = 'inkbool', dest = 'Mode_Debug', default = 'false',
help = 'Output Debug information in file')
# Create list of points for the ellipse, will be filled later
self.xEllipse = np.zeros(sizeTab+1) #X coordiantes
self.yEllipse = np.zeros(sizeTab+1) # Y coordinates
self.lEllipse = np.zeros(sizeTab+1) # Length of curve until this point
try:
inkex.Effect.unittouu # unitouu has moved since Inkscape 0.91
except AttributeError:
try:
def unittouu(self, unit):
return inkex.unittouu(unit)
except AttributeError:
pass
def DebugMsg(self, s):
if self.fDebug:
self.fDebug.write(s)
def length2Angle(self, StartIdx, Position):
'''
Return the first index which is near the requested position.
Start search at StartIdx to optimize computation
'''
while Position > self.lEllipse[StartIdx]:
StartIdx += 1
if StartIdx >= sizeTab:
return sizeTab
# Now return value between StartIdx and StartIdx - 1 which is nearer
if StartIdx == 0:
return 0
if abs(Position - self.lEllipse[StartIdx]) > abs(Position - self.lEllipse[StartIdx-1]):
return StartIdx - 1
return StartIdx
def ellipse_ext(self, a, b, alpha, e):
'''
Compute the point which is on line orthogonal to ellipse (a, b) and angle alpha and on the ellipse of parameters ( a+e, b+e)
As equations are quite complex, use an approximation method
'''
Slope = math.atan2(b*math.cos(alpha), -a*math.sin(alpha)) #Ellipse slope in point at angle alpha
Ortho = Slope - math.pi/2 # Use -pi/2 because e positive means second ellipse larger
''' The point is on the line x = a*cos(alpha) + L*cos(Ortho), y= b*sin(alpha) + L*sin(Ortho)
We have to determine L
For this, change L and compare with equation of larger ellipse
Start with L = e
Result should lie between L/2 and 2L
'''
#self.DebugMsg("Enter ellipse_ext"+str((a,b,alpha,e))+" Slope="+str(Slope*180/math.pi)+" Ortho="+str(Ortho*180/math.pi)+'\n')
L = e
step = e
ntry = 1
x = a*math.cos(alpha) + L*math.cos(Ortho)
y = b*math.sin(alpha) + L*math.sin(Ortho)
# Compute difference which the error between this point and the large ellipse
distance = (x*x)/((a+e)*(a+e)) + (y*y)/((b+e)*(b+e)) - 1
#self.DebugMsg("ellipse_ext First try with L=e pt="+str((x,y))+" distance="+str(distance)+'\n')
while abs(distance) > 0.001 and step >0.001:
if distance > 0:
#L is too large, decrease by step/2
step /= 2
L -= step
else:
#L is not large enough, increase by step/2
step /= 2
L += step
ntry += 1
x = a*math.cos(alpha) + L*math.cos(Ortho)
y = b*math.sin(alpha) + L*math.sin(Ortho)
# Compute difference which the error between this point and the large ellipse
distance = (x*x)/((a+e)*(a+e)) + (y*y)/((b+e)*(b+e)) - 1
#self.DebugMsg(" try "+str(ntry)+" with L="+str(L)+" pt="+str((x,y))+" distance="+str(distance)+'\n')
if distance > 0.001:
self.DebugMsg("Problem, solution do not converge. Error is "+str(distance)+" after "+str(ntry)+" tries\n")
return(x, y)
#self.DebugMsg("Solution converge after "+str(ntry)+" tries. Error is "+str(distance)+"\n")
return(x, y)
def Coordinates_Step_SubStep(self, step, substep):
'''
Return the radius and angle on resulting curve for step i, substep j
'''
if step == self.num_notches:
# Specific case for last notch on curve
if substep == 0: #Last position on curve
return (self.ResultingCurve_R[sizeTab], self.ResultingCurve_Theta[sizeTab])
else:
AngleEllipse = self.Notches_Angle_ellipse[self.Offset_Notch][1] - self.Offset_Ellipse #To match first step
if AngleEllipse < 0:
AngleEllipse += sizeTab
return(self.ResultingCurve_R[AngleEllipse], self.ResultingCurve_Theta[AngleEllipse]+self.ResultingCurve_Theta[sizeTab])
new_step = step + self.Offset_Notch
if new_step >= self.num_notches:
new_step -= self.num_notches
AngleEllipse = self.Notches_Angle_ellipse[new_step][substep] - self.Offset_Ellipse
if AngleEllipse < 0:
AngleEllipse += sizeTab
if substep == 0 or step == 0:
self.DebugMsg("Coordinates_Step_SubStep"+str((step, substep))+" --> AngleEllipse ="+str(self.Notches_Angle_ellipse[new_step][substep])+" --> "+str(AngleEllipse)+" Result="+str((self.ResultingCurve_R[AngleEllipse], self.ResultingCurve_Theta[AngleEllipse]))+'\n')
return (self.ResultingCurve_R[AngleEllipse], self.ResultingCurve_Theta[AngleEllipse])
def gen_flex_step(self, index_step):
'''
Draw a flex step. Each step has N + 2 vertical lines where N is the distance between notches.
The notch itself is 2 mm (roughly) large, the whole notch is N+2 mm large
'''
#Each step is a path for inkscape
path = inkcape_polar(self.Offset, self.group)
# first draw the line between next notch and current one
R, angle = self.Coordinates_Step_SubStep(index_step+1, 0)
self.DebugMsg("gen_flex_step("+str(index_step)+") : MoveTo("+str((R, 180*angle/math.pi))+'\n')
path.MoveTo(R, angle)
R, angle = self.Coordinates_Step_SubStep(index_step, 2)
path.LineTo(R, angle)
self.DebugMsg(" From next notch, LineTo("+str((R, 180*angle/math.pi))+'\n')
# Then the notch, starting internal to external
# Compute radius to largest ellipse
R2 = R * self.large_ell_a / self.small_ell_a
# The short vertical line begins at (R2 - R)/2/NbVerticalLines - 1
v = (R2-R)/2/self.nbVerticalLines - 1
path.Line(R+v, angle, R-self.thickness, angle)
self.DebugMsg(" Int notch, LineFrom("+str((R+v, 180*angle/math.pi))+" to "+str((R-self.thickness, 180*angle/math.pi))+" v="+str(v)+'\n')
# Then notch (internal side)
R, angle = self.Coordinates_Step_SubStep(index_step, 0)
path.LineTo(R-self.thickness, angle)
self.DebugMsg(" Int notch, LineTo "+str((R-self.thickness, 180*angle/math.pi))+'\n')
# Compute radius to largest ellipse
R2 = R * self.large_ell_a / self.small_ell_a
# The short vertical line ends at (R2 - R)/2/NbVerticalLines - 1
v = (R2-R)/2/self.nbVerticalLines - 1
v2 = (R2-R)/self.nbVerticalLines - 2
path.LineTo(v + R , angle)
self.DebugMsg(" notch, LineTo "+str((R+v, 180*angle/math.pi))+" v ="+str(v)+" v2="+str(v2)+'\n')
# Now draw N-1 vertical lines, size v2
for i in range(self.nbVerticalLines-1):
path.Line(i*(v2+2)+v+2+R, angle, (i+1)*(v2+2)+v+R, angle)
self.DebugMsg(" Vertical lines_1 , Line from "+str((i*(v2+2)+v+2+R, 180*angle/math.pi))+" to "+str(((i+1)*(v2+2)+v+R, 180*angle/math.pi))+'\n')
# Then external notch
path.Line((i+1)*(v2+2)+v+R+2, angle, R2 + self.thickness, angle)
self.DebugMsg(" Ext_notch , Line from "+str(((i+1)*(v2+2)+v+R+2, 180*angle/math.pi))+" to "+str((R2 + self.thickness, 180*angle/math.pi))+'\n')
R, angle = self.Coordinates_Step_SubStep(index_step, 2)
R21 = R * self.large_ell_a / self.small_ell_a
path.LineTo(R21+self.thickness, angle)
self.DebugMsg(" Ext notch, LineTo "+str((R21+self.thickness, 180*angle/math.pi))+'\n')
R01, angle2 = self.Coordinates_Step_SubStep(index_step+1, 0)
R21 = R01 * self.large_ell_a / self.small_ell_a
# Then return
v = (R2-R)/2/self.nbVerticalLines - 1
v2 = (R2-R)/self.nbVerticalLines - 2
path.LineTo(R2-v, angle)
self.DebugMsg(" Ext notch, LineTo "+str((R2-v, 180*angle/math.pi))+" v="+str(v)+" v2="+str(v2)+'\n')
#Line to next notch (external)
path.Line(R2, angle, R21, angle2)
self.DebugMsg(" To next notch, Line From "+str((R21, 180*angle/math.pi))+" To "+str((R2, 180*angle2/math.pi))+'\n')
# Now draw N-1 vertical lines
for i in range(self.nbVerticalLines-2, -1, -1):
path.Line((i+1)*(v2+2)+v+R, angle, i*(v2+2)+v+2+R, angle)
self.DebugMsg(" Vertical lines_2 , Line from "+str(((i+1)*v2+R+v+1, 180*angle/math.pi))+" to "+str((i*(v2+2)+v+2+R, 180*angle/math.pi))+'\n')
# Then draw nbVerticalLines inside notch, "top" to "bottom"
R, angle = self.Coordinates_Step_SubStep(index_step, 1)
v2 = (R2-R)/self.nbVerticalLines - 2
for i in range(self.nbVerticalLines):
if i == 0:
path.Line(R-self.thickness+1, angle, R+v2+1, angle)
self.DebugMsg(" Vertical lines_3 , Line from "+str((R-self.thickness+1, 180*angle/math.pi))+" to "+str((R+(i+1)*(v2+2)-1, 180*angle/math.pi))+'\n')
elif i == self.nbVerticalLines - 1:
path.Line(R+i*(v2+2)+1, angle, R2 + self.thickness - 1, angle)
self.DebugMsg(" Vertical lines_3 , Line from "+str((R+i*(v2+2)+1, 180*angle/math.pi))+" to "+str((R2 + self.thickness - 1, 180*angle/math.pi))+'\n')
else:
path.Line(R+i*(v2+2)+1, angle, R+(i+1)*(v2+2)-1, angle)
self.DebugMsg(" Vertical lines_3 , Line from "+str((R+i*(v2+2)+1, 180*angle/math.pi))+" to "+str((R+(i+1)*(v2+2)-1, 180*angle/math.pi))+'\n')
# Then notch_interval set of nbVerticalLines
#
for line in range(1, self.options.notch_interval):
R, angle = self.Coordinates_Step_SubStep(index_step, line+2)
v = (R2-R)/2/self.nbVerticalLines - 1
v2 = (R2-R)/self.nbVerticalLines - 2
if line % 2 == 0:
#line is even, draw nbVerticalLines top to bottom
for i in range(self.nbVerticalLines):
path.Line(R+i*(v2+2)+1, angle, R+(i+1)*(v2+2)-1, angle)
self.DebugMsg(" Vertical lines_4_0 , Line from "+str((R+i*(v2+2)+1, 180*angle/math.pi))+" to "+str((R+(i+1)*(v2+2)-1, 180*angle/math.pi))+'\n')
else:
# line is odd, draw bottom to top, first line half size
path.Line(R2 - 1, angle, R2 - v, angle)
# then nbVerticalLines - 1 lines
for i in range(self.nbVerticalLines-2, -1, -1):
path.Line((i+1)*(v2+2)+v+R, angle, i*(v2+2)+v+2+R, angle)
#and at last, one vertical line half size
path.Line(v+R, angle, R+1, angle)
path.GenPath()
def gen_flex_first_step(self):
'''
Draw the first step flex.
This specific step has a notch which is only 1mm (roughly) wide, because first and last step shoul lie in same notch
This has step has N + 2 vertical lines where N is the distance between notches.
'''
#Each step is a path for inkscape
path = inkcape_polar(self.Offset, self.group)
# first draw the line between next notch and current one
R, angle = self.Coordinates_Step_SubStep(1, 0) # Position of next step, which is 1
self.DebugMsg("gen_first_flex_step : MoveTo("+str((R, 180*angle/math.pi))+'\n')
path.MoveTo(R, angle)
R, angle = self.Coordinates_Step_SubStep(0, 2)
path.LineTo(R, angle)
self.DebugMsg(" From next notch, LineTo("+str((R, 180*angle/math.pi))+'\n')
# Then the notch, starting internal to external
# Compute radius to largest ellipse
R2 = R * self.large_ell_a / self.small_ell_a
# The short vertical line begins at (R2 - R)/2/NbVerticalLines - 1
v = (R2-R)/2/self.nbVerticalLines - 1
path.Line(R+v, angle, R-self.thickness, angle)
self.DebugMsg(" Int notch, LineFrom("+str((R+v, 180*angle/math.pi))+" to "+str((R-self.thickness, 180*angle/math.pi))+" v="+str(v)+'\n')
# Then notch (internal side)
R, angle = self.Coordinates_Step_SubStep(0, 1)
path.LineTo(R-self.thickness, angle)
self.DebugMsg(" Int notch, LineTo "+str((R-self.thickness, 180*angle/math.pi))+'\n')
# Compute radius to largest ellipse
R2 = R * self.large_ell_a / self.small_ell_a
# Then edge, full line towards R2
path.LineTo(R2+self.thickness , angle)
self.DebugMsg(" edge, LineTo "+str((R2, 180*angle/math.pi))+'\n')
R, angle = self.Coordinates_Step_SubStep(0, 2)
R21 = R * self.large_ell_a / self.small_ell_a
path.LineTo(R21+self.thickness, angle)
self.DebugMsg(" Ext notch, LineTo "+str((R21+self.thickness, 180*angle/math.pi))+'\n')
R01, angle2 = self.Coordinates_Step_SubStep(1, 0)
R21 = R01 * self.large_ell_a / self.small_ell_a
# Then return
v = (R2-R)/2/self.nbVerticalLines - 1
v2 = (R2-R)/self.nbVerticalLines - 2
path.LineTo(R2-v, angle)
self.DebugMsg(" Ext notch, LineTo "+str((R2-v, 180*angle/math.pi))+" v="+str(v)+" v2="+str(v2)+'\n')
#Line to next notch (external)
path.Line(R2, angle, R21, angle2)
self.DebugMsg(" To next notch, Line From "+str((R21, 180*angle/math.pi))+" To "+str((R2, 180*angle2/math.pi))+'\n')
# Now draw N-1 vertical lines
for i in range(self.nbVerticalLines-2, -1, -1):
path.Line((i+1)*(v2+2)+v+R, angle, i*(v2+2)+v+2+R, angle)
self.DebugMsg(" Vertical lines_2 , Line from "+str(((i+1)*v2+R+v+1, 180*angle/math.pi))+" to "+str((i*(v2+2)+v+2+R, 180*angle/math.pi))+'\n')
# Then notch_interval -1 or +1 set of nbVerticalLines
if self.options.notch_interval == 2:
numstep = 3
else:
numstep = self.options.notch_interval - 1
for line in range(1, numstep):
R, angle = self.Coordinates_Step_SubStep(0, line+2)
v = (R2-R)/2/self.nbVerticalLines - 1
v2 = (R2-R)/self.nbVerticalLines - 2
if line % 2 == 0:
#line is even, draw nbVerticalLines top to bottom
for i in range(self.nbVerticalLines):
path.Line(R+i*(v2+2)+1, angle, R+(i+1)*(v2+2)-1, angle)
self.DebugMsg(" Vertical lines_4_0 , Line from "+str((R+i*(v2+2)+1, 180*angle/math.pi))+" to "+str((R+(i+1)*(v2+2)-1, 180*angle/math.pi))+'\n')
else:
# line is odd, draw bottom to top, first line half size
path.Line(R2 - 1, angle, R2 - v, angle)
# then nbVerticalLines - 1 lines
for i in range(self.nbVerticalLines-2, -1, -1):
path.Line((i+1)*(v2+2)+v+R, angle, i*(v2+2)+v+2+R, angle)
#and at last, one vertical line half size
path.Line(v+R, angle, R+1, angle)
path.GenPath()
def gen_flex_last_step(self):
'''
Draw the last step flex.
This specific step has a notch which is only 1mm (roughly) wide, because first and last step shoul lie in same notch
This is a very simple step, with only the narrow notch
'''
#Each step is a path for inkscape
path = inkcape_polar(self.Offset, self.group)
# Then the notch, starting internal to external
R, angle = self.Coordinates_Step_SubStep(self.num_notches, 0)
# Compute radius to largest ellipse
R2 = R * self.large_ell_a / self.small_ell_a
# The short vertical line begins at (R2 - R)/2/NbVerticalLines - 1
v = (R2-R)/2/self.nbVerticalLines - 1
path.Line(R+v, angle, R-self.thickness, angle)
self.DebugMsg("GenLast_Step, LineFrom("+str((R+v, 180*angle/math.pi))+" to "+str((R-self.thickness, 180*angle/math.pi))+" v="+str(v)+'\n')
# Then notch (internal side)
R, angle = self.Coordinates_Step_SubStep(self.num_notches, 1)
path.LineTo(R-self.thickness, angle)
self.DebugMsg(" Last notch, LineTo "+str((R-self.thickness, 180*angle/math.pi))+'\n')
# Compute radius to largest ellipse
R2 = R * self.large_ell_a / self.small_ell_a
# Then edge, full line towards R2
path.LineTo(R2+self.thickness , angle)
self.DebugMsg(" edge, LineTo "+str((R2, 180*angle/math.pi))+'\n')
R, angle = self.Coordinates_Step_SubStep(self.num_notches, 0)
R21 = R * self.large_ell_a / self.small_ell_a
path.LineTo(R21+self.thickness, angle)
self.DebugMsg(" Ext notch, LineTo "+str((R21+self.thickness, 180*angle/math.pi))+'\n')
# Then return
v = (R2-R)/2/self.nbVerticalLines - 1
v2 = (R2-R)/self.nbVerticalLines - 2
path.LineTo(R2-v, angle)
self.DebugMsg(" Ext notch, LineTo "+str((R2-v, 180*angle/math.pi))+" v="+str(v)+" v2="+str(v2)+'\n')
# Now draw N-1 vertical lines
for i in range(self.nbVerticalLines-2, -1, -1):
path.Line((i+1)*(v2+2)+v+R, angle, i*(v2+2)+v+2+R, angle)
self.DebugMsg(" Last Vertical lines_2 , Line from "+str(((i+1)*v2+R+v+1, 180*angle/math.pi))+" to "+str((i*(v2+2)+v+2+R, 180*angle/math.pi))+'\n')
path.GenPath()
def compute_notches_angle(self):
'''
Compute the angles associated with each notch
Indeed, do not compute angles, but index in the reference ellipse array.
After this angle could be easily computed by multiplying by 2*pi/sizeTab
For each notch build a list of n+2 angles, corresponding to each step in the notch
2 steps for the notch itself and n steps as requested between notches
Angles are computed to match length of the small ellipse, length of the larger one will be longer accordingly to size ratio
return an array which will be used for drawing both ellipses and curved surface
'''
self.Notches_Angle_ellipse = []
LastIdx = 0
curPos = 0
#Compute offset, this is the first notch greater or equal to offset
Delta_i = self.options.cut_position * sizeTab / 360 #expected offset
self.Offset_Notch = -1
for iNotch in range(self.num_notches):
# First point is same as end of previous one, do not compute
# Second and third one are 1mm (roughly) farther to make the notch
idx1 = self.length2Angle( LastIdx, (curPos + self.notch_size / ( self.options.notch_interval + 2.0))/self.small_ell_a)
idx2 = self.length2Angle( LastIdx, (curPos + self.notch_size * 2.0 / ( self.options.notch_interval + 2.0))/self.small_ell_a)
# Check if this is the "special notch"
if idx1 >= Delta_i:
self.Offset_Ellipse = LastIdx
self.Offset_Notch = iNotch
Delta_i = sizeTab * 2 # To make sure there is only one match !
elif self.Offset_Notch < 0 and iNotch >= self.num_notches -1:
#If not found the special notch, this is the last one
self.Offset_Ellipse = LastIdx
self.Offset_Notch = iNotch
current_notch = [LastIdx, idx1, idx2]
#self.DebugMsg("Notch "+str(iNotch)+" First points="+str(current_notch)+'\n')
NumStep = self.options.notch_interval
if iNotch == self.Offset_Notch:
self.DebugMsg("Angle offset="+str(self.options.cut_position)+" Delta notch="+str(self.Offset_Notch)+" Real offset="+str(self.Offset_Ellipse)+'\n')
if NumStep == 2:
NumStep = 3 # In this case, special notch is longer
else:
NumStep -= 1 # In this case, it is shorter
# Now for each remaining steps
for i in range(NumStep):
# Even with specific notch, use self.options.notch_interval to keep global notch_size different
idx = self.length2Angle( LastIdx, (curPos + self.notch_size * (2.0+i+1) / ( self.options.notch_interval + 2.0))/self.small_ell_a)
current_notch.append(idx) # add to the list
LastIdx = idx
curPos = self.lEllipse[idx] * self.small_ell_a
self.Notches_Angle_ellipse.append(current_notch)
if iNotch == self.Offset_Notch:
self.DebugMsg(" Special Notch "+str(iNotch)+" with Numstep="+str(NumStep)+" ="+str(current_notch)+'\n')
#self.DebugMsg(" Complete Notch "+str(iNotch)+"="+str(current_notch)+'\n')
self.DebugMsg("Angles are computed, last position : "+str(curPos)+'\n')
# Now change position of notch next to Offset to make assembly easier
# if notch_interval is 2, add one for this
def gen_Resulting_Curve(self):
'''
Each point from the smallest ellipse will be on a curve defined by
1) The distance from the cone summit will sqrt(h**2 + a**2*cos(alpha)**2 + b**2*sin(alpha)**2) where h is the cone height (full cone up to summit)
and a and b are the ellipse dimensions.
2) The distance between two points on the curve should be equal at the distance between two points on the ellipse.
If when on alpha1 on the ellipse the angle on the resulting curbe is Theta1.
When on alpha2 on the ellipse, the angle on the resulting curve will be Theta2, and distance between Point(Theta2), Point(Theta1) will be equal
to distance Point(Alpha1), Point(Alpha2)
3) Theta=0 on resulting curve should correspond to parameter cut_position on the ellipse.
'''
#First compute the cone summit with the dimensions of the two ellipses
# When angle is 0, positions are (small_a, 0) and (large_a,0)
h1 = self.zc*self.small_ell_a/(self.large_ell_a - self.small_ell_a)
self.DebugMsg("gen_Resulting_Curve: height for small ellipse "+str(h1)+" For large one "+str(h1*self.large_ell_a/self.small_ell_a)+'\n')
# Now for each angle (index) in Notches_Angle compute the corresponding Theta angle on the resulting curve and the associated distance (polar coordinates)
# Do the computation with the small ellipse and large ellipse
self.ResultingCurve_R = np.zeros(sizeTab+1) # Distance from center for the small ellipse, once projection is applied
self.ResultingCurve_Theta = np.zeros(sizeTab+1) # Angle on resulting curve, for each point in initial ellipse
LengthResultingCurve = 0
alpha = (math.pi * 2 / sizeTab) * self.Offset_Ellipse
#Offset to length computation on ellipse
length_Offset = self.lEllipse[self.Offset_Ellipse]
#Compute first point
self.ResultingCurve_R[0] = math.sqrt(h1**2 + self.small_ell_a**2*math.cos(alpha)**2 + self.small_ell_b**2*math.sin(alpha)**2)
self.ResultingCurve_Theta[0] = 0
oldR = self.ResultingCurve_R[0]
oldX = oldR
oldY = 0
self.BoundingXmax = oldX
self.BoundingXmin = oldX
self.BoundingYmax = oldY
self.BoundingYmin = oldY
i = 1
error = 0
maxError = 0
maxErrorPos = 0
while i <= sizeTab:
index_ellipse = i + self.Offset_Ellipse
if index_ellipse > sizeTab:
index_ellipse -= sizeTab
# First radius
alpha = (math.pi * 2 / sizeTab) * index_ellipse
R = math.sqrt(h1**2 + self.small_ell_a**2*math.cos(alpha)**2 + self.small_ell_b**2*math.sin(alpha)**2)
self.ResultingCurve_R[i] = R
# Then angle
# First get distance on ellipse and delta from distance on result curve
if i == sizeTab: #Specific case, whole ellipse
Distance = self.small_ell_a * self.lEllipse[sizeTab]
else:
Distance = self.small_ell_a * (self.lEllipse[index_ellipse] - length_Offset)
if Distance < 0:
Distance += self.lEllipse[sizeTab] * self.small_ell_a
Delta_Distance = Distance - LengthResultingCurve
if i == sizeTab:
self.DebugMsg("gen_Resulting_Curve["+str(i)+"] : oldR="+str(oldR)+" R="+str(R)+" Distance="+str(Distance)+" Delta_Distance="+str(Delta_Distance)+" Compute acos("+str((oldR**2 + R**2 - Delta_Distance**2 ) / (2*oldR*R))+")\n")
dTheta = math.acos((oldR**2 + R**2 - Delta_Distance**2 ) / (2*oldR*R))
Theta = self.ResultingCurve_Theta[i-1] + dTheta
self.ResultingCurve_Theta[i] = Theta
X = R*math.cos(Theta)
Y = R*math.sin(Theta)
LengthResultingCurve += math.sqrt((X - oldX)**2 + (Y - oldY)**2)
oldR = R
oldX = X
oldY = Y
if self.BoundingXmax < X:
self.BoundingXmax = X
if self.BoundingXmin > X:
self.BoundingXmin = X
if self.BoundingYmax < Y:
self.BoundingYmax = Y
if self.BoundingYmin > Y:
self.BoundingYmin = Y
#self.DebugMsg("Index= "+str(i)+" R= "+str(R)+" Theta= "+str(180*Theta/math.pi)+" Longueur= "+str(LengthResultingCurve)+'\n')
error = abs(Distance - LengthResultingCurve)
if error > maxError:
maxError = error
maxErrorPos = i
self.DebugMsg("New max error reached at index "+str(i)+" Distance Ellipse="+str(Distance)+" on curve="+str(LengthResultingCurve)+" Error="+str(error)+'\n')
i += 1
def gen_ellipse(self, axis_a, axis_b, xOffset, yOffset, parent):
''' Generate an ellipse with notches as a path.
Ellipse dimensions' are parameters axis_a and axis_b
Notches size gives the exact distance between two notches
Notches number gives the number of notches to be drawed
xOffset and yOffset gives the offset within the inkscape page
Parent gives the parent structure of the path which will be created, most often the inkscape page itself
'''
group = inkex.etree.SubElement(parent, 'g') # Create a group which will hold the ellipse
path = inkcape_polar((xOffset, yOffset), group)
# First point is in (major_axis, 0)
Angle = 0
idx = 0
for iNotch in range(self.num_notches):
#Angle on ellipse
angle = (math.pi * 2.0 / sizeTab) * self.Notches_Angle_ellipse[iNotch][0]
# First point is external
pt1 = self.ellipse_ext(axis_a, axis_b, angle, self.thickness)
#Second point is on ellipse at angle given by Notches_Angle_ellipse
pt2 = (axis_a*math.cos(angle), axis_b*math.sin(angle))
#Third point is on ellipse at angle with substep=2
angle1 = (math.pi * 2.0 / sizeTab) * self.Notches_Angle_ellipse[iNotch][2]
pt3 = (axis_a*math.cos(angle1), axis_b*math.sin(angle1))
#Fourth point is external
pt4 = self.ellipse_ext(axis_a, axis_b, angle1, self.thickness)
if iNotch == 0:
#Specific case, use MoveTo
path.MoveTo_cartesian(pt1)
else:
#Draw line from previous fourth point
path.LineTo_cartesian(pt1)
#Then pt1 --> pt2
path.LineTo_cartesian(pt2)
#Then pt2 --> pt3
path.LineTo_cartesian(pt3)
#And at last pt3 --> pt4
path.LineTo_cartesian(pt4)
self.DebugMsg("Draw Ellipse, notch "+str(iNotch)+" Pts="+str([pt1, pt2, pt3, pt4])+'\n')
#Last line will be drawed with next notch
#For the last one
path.LineTo_cartesian((axis_a+self.thickness, 0))
path.GenPath()
def gen_flex(self, xOffset, yOffset, parent):
group = inkex.etree.SubElement(parent, 'g')
self.group = group
self.Offset = (xOffset, yOffset)
#Compute number of vertical lines, depends on cone's height
R = self.ResultingCurve_R[0]
R2 = self.large_ell_a / self.small_ell_a * self.ResultingCurve_R[0]
if R2 - R > 60:
self.nbVerticalLines = int((R2 - R)/25)
else:
self.nbVerticalLines = 2
self.DebugMsg("Starting gen flex with "+str(self.nbVerticalLines)+" vertical lines R1="+str(R)+" R2="+str(R2)+ "R2-R1="+str(R2-R)+"\n")
# First start step
self.gen_flex_first_step()
# Then middle steps
for step in range(1, self.num_notches):
self.gen_flex_step(step)
# and alst one, (very short)
self.gen_flex_last_step()
def effect(self):
"""
Draws an elliptical conic box, based on provided parameters
"""
# input sanity check
error = False
if self.options.zc < 15:
inkex.errormsg('Error: Cone height should be at least 15mm')
error = True
if self.options.d1 < 30:
inkex.errormsg('Error: d1 should be at least 30mm')
error = True
if self.options.d2 < self.options.d1 + 0.009999:
inkex.errormsg('Error: d2 should be at d1 + 0.01mm')
error = True
if self.options.eccentricity > 1.0 or self.options.eccentricity < 0.01:
inkex.errormsg('Ratio minor axis / major axis should be between 0.01 and 1.0')
error = True
if self.options.notch_interval > 10:
inkex.errormsg('Distance between notches should be less than 10')
error = True
if self.options.thickness < 1 or self.options.thickness > 10:
inkex.errormsg('Error: thickness should be at least 1mm and less than 10mm')
error = True
if error:
exit()
# convert units
unit = self.options.unit
self.small_ell_a = round(0.5 * self.unittouu(str(self.options.d1) + unit), 2)
self.large_ell_a = round(0.5 * self.unittouu(str(self.options.d2) + unit), 2)
self.zc = self.unittouu(str(self.options.zc) + unit)
self.thickness = self.unittouu(str(self.options.thickness) + unit)
if self.options.notch_interval % 2:
#Should be even !
self.options.notch_interval += 1
# If dimensions are external, correct d1, d2 and zc by thickness
if self.options.inner_size == False:
self.large_ell_a -= 2*self.thickness
self.d2 -= 2*self.thickness
self.zc -= 2*self.thickness
#Compute minor axes sizes
self.small_ell_b = round(self.small_ell_a * self.options.eccentricity, 2)
self.large_ell_b = round(self.large_ell_a * self.options.eccentricity, 2)
svg = self.document.getroot()
docWidth = self.unittouu(svg.get('width'))
docHeight = self.unittouu(svg.attrib['height'])
# Open Debug file if requested
if self.options.Mode_Debug:
try:
self.fDebug = open( 'DebugEllConicBox.txt', 'w')
except IOError:
print ('cannot open debug output file')
self.DebugMsg("Start processing, doc size="+str((docWidth, docHeight))+"\n")
layer = inkex.etree.SubElement(svg, 'g')
layer.set(inkex.addNS('label', 'inkscape'), 'Conical Box')
layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')
#Create reference ellipse points.
self.xEllipse[0] = 1
self.yEllipse[0] = 0
self.lEllipse[0] = 0
i = 1
while i <= sizeTab:
self.xEllipse[i] = math.cos(2*math.pi*i/sizeTab) # Major axis size : 1
self.yEllipse[i] = self.options.eccentricity*math.sin(2*math.pi*i/sizeTab) # Minor axis size
self.lEllipse[i] = self.lEllipse[i-1] + math.hypot( self.xEllipse[i] - self.xEllipse[i-1], self.yEllipse[i] - self.yEllipse[i-1])
i += 1
# Compute notches size of small ellipse
Ell_Length = self.small_ell_a * self.lEllipse[sizeTab]
# One notch is different to make assembly easier, as the notch on flex are NOT evenly spaced
if self.options.notch_interval == 2:
self.num_notches = int(round((Ell_Length - self.options.notch_interval - 3) / (2.0 + self.options.notch_interval)+1))
self.notch_size = Ell_Length / (self.num_notches -1 + (self.options.notch_interval+3.0)/(self.options.notch_interval+2.0))
else:
self.num_notches = int(round((Ell_Length - self.options.notch_interval - 1) / (2.0 + self.options.notch_interval)+1))
self.notch_size = Ell_Length / (self.num_notches -1 + (self.options.notch_interval+1.0)/(self.options.notch_interval+2.0))
self.DebugMsg("Small ellipse dimensions a ="+str(self.small_ell_a)+" b="+str(self.small_ell_b)+" Length ="+str(Ell_Length)+'\n')
self.DebugMsg("Number of notches : "+str(self.num_notches)+" Real notch size="+str(self.notch_size)+'\n')
#Compute angles of all points which be drawed
self.compute_notches_angle()
#Then draw small ellipse
self.gen_ellipse(self.small_ell_a, self.small_ell_b, -self.small_ell_a - self.thickness - 1, -self.small_ell_b - self.thickness - 1, layer)
# Then large one
self.gen_ellipse(self.large_ell_a, self.large_ell_b, -self.large_ell_a-2*self.small_ell_a - 3*self.thickness - 5, -self.large_ell_b - self.thickness - 1, layer)
# Compute points on resulting curve
self.gen_Resulting_Curve()
# Then generate flex
# Bounding box of flex has been computed in gen_Resulting_Curve
self.DebugMsg("Flex bounding box : "+str((self.BoundingXmin, self.BoundingYmin))+","+str((self.BoundingXmax, self.BoundingYmax))+'\n')
# yOffset is below large ellipse
yOffset = -2*(self.large_ell_b+self.thickness) - 5 - self.BoundingYmin
# xOffset, center on page
xOffset = 0.5*(self.BoundingXmin + self.BoundingXmax) - 0.5*docWidth
self.DebugMsg("Offset Flex="+str((xOffset, yOffset))+'\n')
self.gen_flex(xOffset, yOffset, layer)
if self.fDebug:
self.fDebug.close()
# Create effect instance and apply it.
effect = EllConicalBox()
effect.affect()