196 lines
6.3 KiB
Python
196 lines
6.3 KiB
Python
|
#!/usr/bin/python3
|
||
|
|
||
|
# Generate Apollonian Gaskets -- the math part.
|
||
|
|
||
|
# Copyright (c) 2014 Ludger Sandig
|
||
|
# This file is part of apollon.
|
||
|
|
||
|
# Apollon is free software: you can redistribute it and/or modify
|
||
|
# it under the terms of the GNU General Public License as published by
|
||
|
# the Free Software Foundation, either version 3 of the License, or
|
||
|
# (at your option) any later version.
|
||
|
|
||
|
# Apollon is distributed in the hope that it will be useful,
|
||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
# GNU General Public License for more details.
|
||
|
|
||
|
# You should have received a copy of the GNU General Public License
|
||
|
# along with Apollon. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
from cmath import *
|
||
|
import random
|
||
|
|
||
|
class Circle(object):
|
||
|
"""
|
||
|
A circle represented by center point as complex number and radius.
|
||
|
"""
|
||
|
def __init__ ( self, mx, my, r ):
|
||
|
"""
|
||
|
@param mx: x center coordinate
|
||
|
@type mx: int or float
|
||
|
@param my: y center coordinate
|
||
|
@type my: int or float
|
||
|
@param r: radius
|
||
|
@type r: int or float
|
||
|
"""
|
||
|
self.r = r
|
||
|
self.m = (mx +my*1j)
|
||
|
|
||
|
def __repr__ ( self ):
|
||
|
"""
|
||
|
Pretty printing
|
||
|
"""
|
||
|
return "Circle( self, %s, %s, %s )" % (self.m.real, self.m.imag, self.r)
|
||
|
|
||
|
def __str__ ( self ):
|
||
|
"""
|
||
|
Pretty printing
|
||
|
"""
|
||
|
return "Circle x:%.3f y:%.3f r:%.3f [cur:%.3f]" % (self.m.real, self.m.imag, self.r.real, self.curvature().real)
|
||
|
|
||
|
def curvature (self):
|
||
|
"""
|
||
|
Get circle's curvature.
|
||
|
@rtype: float
|
||
|
@return: Curvature of the circle.
|
||
|
"""
|
||
|
return 1/self.r
|
||
|
|
||
|
def outerTangentCircle( circle1, circle2, circle3 ):
|
||
|
"""
|
||
|
Takes three externally tangent circles and calculates the fourth one enclosing them.
|
||
|
@param circle1: first circle
|
||
|
@param circle2: second circle
|
||
|
@param circle3: third circle
|
||
|
@type circle1: L{Circle}
|
||
|
@type circle2: L{Circle}
|
||
|
@type circle3: L{Circle}
|
||
|
@return: The enclosing circle
|
||
|
@rtype: L{Circle}
|
||
|
"""
|
||
|
cur1 = circle1.curvature()
|
||
|
cur2 = circle2.curvature()
|
||
|
cur3 = circle3.curvature()
|
||
|
m1 = circle1.m
|
||
|
m2 = circle2.m
|
||
|
m3 = circle3.m
|
||
|
cur4 = -2 * sqrt( cur1*cur2 + cur2*cur3 + cur1 * cur3 ) + cur1 + cur2 + cur3
|
||
|
m4 = ( -2 * sqrt( cur1*m1*cur2*m2 + cur2*m2*cur3*m3 + cur1*m1*cur3*m3 ) + cur1*m1 + cur2*m2 + cur3*m3 ) / cur4
|
||
|
circle4 = Circle( m4.real, m4.imag, 1/cur4 )
|
||
|
|
||
|
return circle4
|
||
|
|
||
|
|
||
|
def tangentCirclesFromRadii( r2, r3, r4 ):
|
||
|
"""
|
||
|
Takes three radii and calculates the corresponding externally
|
||
|
tangent circles as well as a fourth one enclosing them. The enclosing
|
||
|
circle is the first one.
|
||
|
|
||
|
@param r2, r3, r4: Radii of the circles to calculate
|
||
|
@type r2: int or float
|
||
|
@type r3: int or float
|
||
|
@type r4: int or float
|
||
|
@return: The four circles, where the first one is the enclosing one.
|
||
|
@rtype: (L{Circle}, L{Circle}, L{Circle}, L{Circle})
|
||
|
"""
|
||
|
circle2 = Circle( 0, 0, r2 )
|
||
|
circle3 = Circle( r2 + r3, 0, r3 )
|
||
|
m4x = (r2*r2 + r2*r4 + r2*r3 - r3*r4) / (r2 + r3)
|
||
|
m4y = sqrt( (r2 + r4) * (r2 + r4) - m4x*m4x )
|
||
|
circle4 = Circle( m4x, m4y, r4 )
|
||
|
circle1 = outerTangentCircle( circle2, circle3, circle4 )
|
||
|
return ( circle1, circle2, circle3, circle4 )
|
||
|
|
||
|
def secondSolution( fixed, c1, c2, c3 ):
|
||
|
"""
|
||
|
If given four tangent circles, calculate the other one that is tangent
|
||
|
to the last three.
|
||
|
|
||
|
@param fixed: The fixed circle touches the other three, but not
|
||
|
the one to be calculated.
|
||
|
|
||
|
@param c1, c2, c3: Three circles to which the other tangent circle
|
||
|
is to be calculated.
|
||
|
|
||
|
@type fixed: L{Circle}
|
||
|
@type c1: L{Circle}
|
||
|
@type c2: L{Circle}
|
||
|
@type c3: L{Circle}
|
||
|
@return: The circle.
|
||
|
@rtype: L{Circle}
|
||
|
"""
|
||
|
|
||
|
curf = fixed.curvature()
|
||
|
cur1 = c1.curvature()
|
||
|
cur2 = c2.curvature()
|
||
|
cur3 = c3.curvature()
|
||
|
|
||
|
curn = 2 * (cur1 + cur2 + cur3) - curf
|
||
|
mn = (2 * (cur1*c1.m + cur2*c2.m + cur3*c3.m) - curf*fixed.m ) / curn
|
||
|
return Circle( mn.real, mn.imag, 1/curn )
|
||
|
|
||
|
class ApollonianGasket(object):
|
||
|
"""
|
||
|
Container for an Apollonian Gasket.
|
||
|
"""
|
||
|
def __init__(self, c1, c2, c3):
|
||
|
"""
|
||
|
Creates a basic apollonian Gasket with four circles.
|
||
|
|
||
|
@param c1, c2, c3: The curvatures of the three inner circles of the
|
||
|
starting set (i.e. depth 0 of the recursion). The fourth,
|
||
|
enclosing circle will be calculated from them.
|
||
|
@type c1: int or float
|
||
|
@type c2: int or float
|
||
|
@type c3: int or float
|
||
|
"""
|
||
|
self.start = tangentCirclesFromRadii( 1/c1, 1/c2, 1/c3 )
|
||
|
self.genCircles = list(self.start)
|
||
|
|
||
|
def recurse(self, circles, depth, maxDepth):
|
||
|
"""Recursively calculate the smaller circles of the AG up to the
|
||
|
given depth. Note that for depth n we get 2*3^{n+1} circles.
|
||
|
|
||
|
@param maxDepth: Maximal depth of the recursion.
|
||
|
@type maxDepth: int
|
||
|
|
||
|
@param circles: 4-Tuple of circles for which the second
|
||
|
solutions are calculated
|
||
|
@type circles: (L{Circle}, L{Circle}, L{Circle}, L{Circle})
|
||
|
|
||
|
@param depth: Current depth
|
||
|
@type depth: int
|
||
|
"""
|
||
|
if( depth == maxDepth ):
|
||
|
return
|
||
|
(c1, c2, c3, c4) = circles
|
||
|
if( depth == 0 ):
|
||
|
# First recursive step, this is the only time we need to
|
||
|
# calculate 4 new circles.
|
||
|
del self.genCircles[4:]
|
||
|
cspecial = secondSolution( c1, c2, c3, c4 )
|
||
|
self.genCircles.append( cspecial )
|
||
|
self.recurse( (cspecial, c2, c3, c4), 1, maxDepth )
|
||
|
|
||
|
cn2 = secondSolution( c2, c1, c3, c4 )
|
||
|
self.genCircles.append( cn2 )
|
||
|
cn3 = secondSolution( c3, c1, c2, c4 )
|
||
|
self.genCircles.append( cn3 )
|
||
|
cn4 = secondSolution( c4, c1, c2, c3 )
|
||
|
self.genCircles.append( cn4 )
|
||
|
|
||
|
self.recurse( (cn2, c1, c3, c4), depth+1, maxDepth )
|
||
|
self.recurse( (cn3, c1, c2, c4), depth+1, maxDepth )
|
||
|
self.recurse( (cn4, c1, c2, c3), depth+1, maxDepth )
|
||
|
|
||
|
def generate(self, depth):
|
||
|
"""
|
||
|
Wrapper for the recurse function. Generate the AG,
|
||
|
@param depth: Recursion depth of the Gasket
|
||
|
@type depth: int
|
||
|
"""
|
||
|
self.recurse(self.start, 0, depth)
|
||
|
|