This repository has been archived on 2023-03-25. You can view files and clone it, but cannot push or open issues or pull requests.
mightyscape-1.1-deprecated/extensions/fablabchemnitz/fablabchemnitz_sheet_conus.py

431 lines
22 KiB
Python
Raw Normal View History

2020-07-30 01:16:18 +02:00
#!/usr/bin/env python3
# Distributed under the terms of the GNU Lesser General Public License v3.0
import math
import inkex
from copy import deepcopy
from lxml import etree
from inkex.transforms import Transform
2020-08-19 14:21:41 +02:00
from inkex import Color
2020-07-30 01:16:18 +02:00
# Helper functions
def calc_angle_between_points(p1, p2):
xDiff = p2[0] - p1[0]
yDiff = p2[1] - p1[1]
return math.degrees(math.atan2(yDiff, xDiff))
def calc_dist_between_points(p1, p2):
xDiff = p2[0] - p1[0]
yDiff = p2[1] - p1[1]
return math.sqrt(yDiff*yDiff + xDiff*xDiff)
def normalize(p1, p2):
" p1,p2 defines a vector return normalized "
xDiff = p2[0] - p1[0]
yDiff = p2[1] - p1[1]
magn = calc_dist_between_points(p1,p2)
return (xDiff/magn, yDiff/magn)
def polar_to_cartesian(cx, cy, radius, angle_degrees):
" So we can make arcs in the 'A' svg syntax. "
angle_radians = math.radians(angle_degrees)
return [
cx + (radius * math.cos(angle_radians)),
cy + (radius * math.sin(angle_radians))
]
def point_on_circle(radius, angle):
" return xy coord of the point at distance radius from origin at angle "
x = radius * math.cos(angle)
y = radius * math.sin(angle)
return [x, y]
class SheetMetalConus(inkex.Effect):
""" Program to unfold a frustum of a cone or a cone
(if parameter diaCut=0) and generate a sheet cutting layout
or flat pattern projection that can be rolled or bend up into a (truncated) cone shape.
"""
color_marker_dim = '#703cd6' # purple
color_marker_chords = '#9d2222' # red
color_marker_base = '#36ba36' # green
# Arrowed lines
dimline_style = {'stroke' : '#000000',
'stroke-width' : '0.75px',
'fill' : 'none',
'marker-start' : 'url(#ArrowDIN-start)',
'marker-end' : 'url(#ArrowDIN-end)' }
def __init__(self):
inkex.Effect.__init__(self) # Call the base class constructor.
self.arg_parser.add_argument('-b', '--diaBase', type = float, dest = 'diaBase', default = 300.0, help = 'The diameter of the cones base.')
self.arg_parser.add_argument('-c', '--diaCut', type = float, default = 100.0, help = 'The diameter of cones cut (0.0 if cone is not cut.')
self.arg_parser.add_argument('-l', '--heightCone', type = float, default = 200.0, help = 'The height of the (cut) cone.')
self.arg_parser.add_argument('-u', '--units', default = 'mm', help = 'The units in which the cone values are given. mm or in for real objects')
self.arg_parser.add_argument('-w', '--strokeWidth', type = float, default = 0.3, help = 'The line thickness in given unit. For laser cutting it should be rather small.')
2020-08-19 14:21:41 +02:00
self.arg_parser.add_argument('-f', '--strokeColour', type=Color, default = 255, help = 'The line colour.')
2020-07-30 01:16:18 +02:00
self.arg_parser.add_argument('-d', '--verbose', type = inkex.Boolean, default = False, help = 'Enable verbose output of calculated parameters. Used for debugging or is someone needs the calculated values.')
# Marker arrows
def makeMarkerstyle(self, name, rotate):
" Markers added to defs for reuse "
defs = self.svg.getElement('/svg:svg//svg:defs')
if defs == None:
defs = etree.SubElement(self.document.getroot(),inkex.addNS('defs','svg'))
marker = etree.SubElement(defs ,inkex.addNS('marker','svg'))
marker.set('id', name)
marker.set('orient', 'auto')
marker.set('refX', '0.0')
marker.set('refY', '0.0')
marker.set('style', 'overflow:visible')
marker.set(inkex.addNS('stockid','inkscape'), name)
arrow = etree.Element("path")
# definition of arrows in beautiful DIN-shapes:
if name.startswith('ArrowDIN-'):
if rotate:
arrow.set('d', 'M 8,0 -8,2.11 -8,-2.11 z')
else:
arrow.set('d', 'M -8,0 8,-2.11 8,2.11 z')
if name.startswith('ArrowDINout-'):
if rotate:
arrow.set('d', 'M 0,0 16,2.11 16,0.5 26,0.5 26,-0.5 16,-0.5 16,-2.11 z')
else:
arrow.set('d', 'M 0,0 -16,2.11 -16,0.5 -26,0.5 -26,-0.5 -16,-0.5 -16,-2.11 z')
arrow.set('style', 'fill:#000000;stroke:none')
marker.append(arrow)
def set_arrow_dir(self, option, style):
if option=='inside':
# inside
self.arrowlen = 6.0
style['marker-start'] = 'url(#ArrowDIN-start)'
style['marker-end'] = 'url(#ArrowDIN-end)'
self.makeMarkerstyle('ArrowDIN-start', False)
self.makeMarkerstyle('ArrowDIN-end', True)
else:
# outside
self.arrowlen = 0
style['marker-start'] = 'url(#ArrowDINout-start)'
style['marker-end'] = 'url(#ArrowDINout-end)'
self.makeMarkerstyle('ArrowDINout-start', False)
self.makeMarkerstyle('ArrowDINout-end', True)
def drawDimArc(self, center, start, end, radius, style, parent, gap=0, lowside=True):
" just the arrowed arc line "
angle = abs(end-start)
# inside or outside
inside = True
critical_length = 35
dist = calc_dist_between_points(point_on_circle(radius, start), point_on_circle(radius, end))
if angle < 45 and dist > critical_length: inside = False
# change start and end angles to make room for arrow markers
arrow_angle = math.degrees(math.sin(self.arrowlen/radius))
if lowside:
start += arrow_angle
angle -= arrow_angle
anglefac = 1
else:
start -= arrow_angle
angle -= arrow_angle
anglefac = -1
#
if gap == 0:
line_attribs = {'style' : str(inkex.Style(style)),
'd' : self.build_arc(center, start, angle*anglefac, radius, lowside) }
ell = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs )
else: # leave a gap for label
gap_angle = math.degrees(math.sin(gap/radius))
startstyle = deepcopy(style)
startstyle['marker-start'] = None
line_attribs = {'style' : str(inkex.Style(startstyle)),
'd' : self.build_arc(center, start, angle*anglefac/2-gap_angle/2*anglefac, radius, lowside) }
ell = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs )
endstyle = deepcopy(style)
endstyle['marker-end'] = None
line_attribs = {'style' : str(inkex.Style(endstyle)),
'd' : self.build_arc(center, angle/2*anglefac+gap_angle/2*anglefac, angle*anglefac, radius, lowside) }
etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs )
# return pos in center of gap (or arc)
textposangle = angle/2*anglefac
return (point_on_circle(radius, math.radians(textposangle)))
def drawDimension(self, a, b, style, parent):
" draw arrowed dimensions using markers "
# draw arrows as inside or outside dimension
critical_length = 35.
if calc_dist_between_points(a,b) > critical_length:
self.set_arrow_dir('inside', style)
else:
self.set_arrow_dir('outside', style)
attribs = {'style' : str(inkex.Style(style))}
# account for length change so arrows fit
norm = normalize(a, b)
dim_start_x = a[0] + self.arrowlen*norm[0]
dim_start_y = a[1] + self.arrowlen*norm[1]
dim_end_x = b[0] - self.arrowlen*norm[0]
dim_end_y = b[1] - self.arrowlen*norm[1]
#
attribs['d'] = 'M %f,%f %f,%f' % (dim_start_x, dim_start_y, dim_end_x, dim_end_y)
dimline = etree.SubElement(parent, inkex.addNS('path', 'svg'), attribs)
return dimline
def calculateCone(self, dictCone):
""" Calculates all relevant values in order to construct a cone.
These values are:
- short radius
- long radius
- angle of cone layout
- chord of base diameter
- chord of cut diameter
- coordinates of points A, B, C and D
"""
dBase = dictCone['diaBase']
dCut = dictCone['diaCut']
hCone = dictCone['heightCone']
base = dBase - dCut
# radius from top of cone to cut
if dCut > 0:
shortRadius = math.sqrt( dCut*dCut/4 + (dCut*hCone)/base * (dCut*hCone)/base )
else:
shortRadius=0.0
dictCone['shortRadius'] = shortRadius
## radius from top of cone to base of cone
longRadius=math.sqrt( dBase*dBase/4 + (dBase*hCone)/base * (dBase*hCone)/base )
dictCone['longRadius'] = longRadius
## angle of circle sector
angle=(math.pi * dBase) / longRadius
dictCone['angle'] = angle
# chord is the straight line between the 2 endpoints of an arc.
# Not used directly, but available in verbose output.
chordBase = longRadius * math.sqrt( 2* (1-math.cos(angle)) )
dictCone['chordBase'] = chordBase
chordCut = shortRadius * math.sqrt( 2* (1-math.cos(angle)) )
dictCone['chordCut'] = chordCut
# calculate coordinates of points A, B, C and D
# center M is at (0,0) and points A and B are on the x-axis:
ptA = (shortRadius, 0.0)
ptB = (longRadius, 0.0)
# we can calculate points C and D with the given radii and the calculated angle
ptC=(longRadius * math.cos(angle), longRadius * math.sin(angle))
ptD=(shortRadius * math.cos(angle), shortRadius * math.sin(angle))
dictCone['ptA'] = ptA
dictCone['ptB'] = ptB
dictCone['ptC'] = ptC
dictCone['ptD'] = ptD
def effect(self):
""" Effect behaviour.
- Overrides base class' method and draws rolled out sheet metal cone into SVG document.
"""
# calc scene scale
2020-08-19 14:21:41 +02:00
convFactor = self.svg.unittouu("1" + self.options.units)
2020-07-30 01:16:18 +02:00
# Store all the relevants values in a dictionary for easy access
dictCone={'diaBase': self.options.diaBase,
'diaCut': self.options.diaCut,
'heightCone': self.options.heightCone }
# Get all values needed in order to draw cone layout:
self.calculateCone(dictCone)
# Draw the cone layout:
# Make top level group
t = 'translate(%s,%s)' % (self.svg.namedview.center[0], self.svg.namedview.center[1])
grp_attribs = {inkex.addNS('label','inkscape'):'Sheet Metal Conus Group', 'transform':t}
grp = etree.SubElement(self.svg.get_current_layer(), 'g', grp_attribs)
linestyle = { 'stroke' : self.options.strokeColour, 'fill' : 'none',
'stroke-width': str(self.svg.unittouu(str(self.options.strokeWidth) + self.options.units)) }
line_attribs = {'style' : str(inkex.Style(linestyle)), inkex.addNS('label','inkscape') : 'Cone' }
# Connect the points into a single path of lines and arcs
zeroCenter=(0.0, 0.0)
angle = math.degrees(dictCone['angle'])
path = ""
path += self.build_line(dictCone['ptA'][0], dictCone['ptA'][1], dictCone['ptB'][0], dictCone['ptB'][1], convFactor) # A,B
path += " " + self.build_arc(zeroCenter[0], zeroCenter[1], 0.0, angle, dictCone.get('longRadius')*convFactor)
path += " " + self.build_line(dictCone['ptC'][0], dictCone['ptC'][1],dictCone['ptD'][0], dictCone['ptD'][1], convFactor) # C,D
path += self.build_arc(zeroCenter[0], zeroCenter[1], 0.0, angle, dictCone['shortRadius']*convFactor)
line_attribs['d'] = path
ell = etree.SubElement(grp, inkex.addNS('path','svg'), line_attribs )
# Draw Dimensions Markup
if self.options.verbose == True:
grp_attribs = {inkex.addNS('label','inkscape'):'markup'}
markup_group = etree.SubElement(grp, 'g', grp_attribs)
self.beVerbose(dictCone, convFactor, markup_group)
def build_arc(self, x, y, start_angle, end_angle, radius, reverse=True, swap=False):
# Not using internal arc rep - instead construct path A in svg style directly
# so we can append lines to make single path
start = polar_to_cartesian(x, y, radius, end_angle)
end = polar_to_cartesian(x, y, radius, start_angle)
arc_flag = 0 if reverse else 1
sweep = 0 if (end_angle-start_angle) <=180 else 1
if swap: sweep = 1-sweep
path = 'M %s,%s' % (start[0], start[1])
path += " A %s,%s 0 %d %d %s %s" % (radius, radius, sweep, arc_flag, end[0], end[1])
return path
def build_line(self, x1, y1, x2, y2, unitFactor):
path = 'M %s,%s L %s,%s' % (x1*unitFactor, y1*unitFactor, x2*unitFactor, y2*unitFactor)
return path
def beVerbose(self, dictCone, unitFactor, parent):
""" Verbose output of calculated values.
Can be used for debugging purposes or if calculated values needed.
"""
# unpack
base_dia = dictCone['diaBase']
cut_dia = dictCone['diaCut']
cone_height = dictCone['heightCone']
shortradius = dictCone['shortRadius']
longradius = dictCone['longRadius']
angle = dictCone['angle']
chord_base = dictCone['chordBase']
chord_cut = dictCone['chordCut']
ptA = dictCone['ptA']
ptB = dictCone['ptB']
ptC = dictCone['ptC']
ptD = dictCone['ptD']
# styles for markup
stroke_width = max(0.1, self.svg.unittouu(str(self.options.strokeWidth/2) + self.options.units))
line_style = { 'stroke': self.color_marker_dim, 'stroke-width': str(stroke_width), 'fill':'none' }
arrow_style = self.dimline_style
font_height = min(32, max( 8, int(self.svg.unittouu(str(longradius/40) + self.options.units))))
text_style = { 'font-size': str(font_height),
'font-family': 'arial',
'text-anchor': 'middle',
'text-align': 'center',
'fill': self.color_marker_dim }
# verbose message for debug window
msg = "Base diameter: " + str(base_dia) + "Cut diameter: " + str(cut_dia) + \
"\nCone height: " + str(cone_height) + "\nShort radius: " + str(shortradius) + \
"\nLong radius: " + str(longradius) + "\nAngle of circle sector: " + str(angle) + \
" radians (= " + str(math.degrees(angle)) + " degrees)" + \
"\nChord length of base arc: " + str(chord_base) + \
"\nChord length of cut arc: " + str(chord_cut)
#inkex.utils.debug( msg)
# Mark center
marker_length = max(5, longradius* unitFactor/100)
line_attribs = {'style' : str(inkex.Style(line_style)),
inkex.addNS('label','inkscape') : 'center',
'd' : 'M -{0},-{0} L {0},{0}'.format(marker_length)}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
line_attribs = {'style' : str(inkex.Style(line_style)),
inkex.addNS('label','inkscape') : 'center',
'd' : 'M -{0},{0} L {0},-{0}'.format(marker_length)}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
# Draw tick marks
line_attribs = {'style' : str(inkex.Style(line_style)), 'd' : 'M 0,-3 L 0,-30'}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
if cut_dia != 0:
line_attribs = {'style' : str(inkex.Style(line_style)), 'd' : 'M {0},-3 L {0},-30'.format(shortradius * unitFactor)}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
line_attribs = {'style' : str(inkex.Style(line_style)), 'd' : 'M {0},-3 L {0},-30'.format(longradius * unitFactor)}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
# span line
arrow_style['stroke'] = self.color_marker_dim
self.drawDimension((0,-10), (shortradius * unitFactor, -10), arrow_style, parent)
self.drawDimension((shortradius * unitFactor,-10), (longradius * unitFactor, -10), arrow_style, parent)
# labels for short, long radii
if cut_dia >= 0.001:
text_atts = {'style':str(inkex.Style(text_style)),
'x': str(shortradius*unitFactor/2),
'y': str(-15) }
text = etree.SubElement(parent, 'text', text_atts)
text.text = "%4.3f" %(shortradius)
text_atts = {'style':str(inkex.Style(text_style)),
'x': str((shortradius + (longradius-shortradius)/2)*unitFactor),
'y': str(-15) }
text = etree.SubElement(parent, 'text', text_atts)
text.text = "%4.3f" %(longradius)
# Draw angle
lowside = math.degrees(angle) < 180
value = math.degrees(angle) if lowside else 360-math.degrees(angle)
# radial limit lines
line_attribs = {'style' : str(inkex.Style(line_style)), 'd' : 'M 3,0 L %4.2f,0' % (ptA[0]*unitFactor*0.8)}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
line_attribs = {'style' : str(inkex.Style(line_style)), 'd' : 'M %4.2f,%4.2f L %4.2f,%4.2f' % (ptD[0]*unitFactor*0.02, ptD[1]*unitFactor*0.02,ptD[0]*unitFactor*0.8, ptD[1]*unitFactor*0.8)}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
# arc
arc_rad = ptA[0]*unitFactor*0.50
gap = self.svg.unittouu(str(font_height*2)+"pt")
textpos = self.drawDimArc(0, 0, value, arc_rad, arrow_style, parent, gap, lowside)
# angle label
textpos[1] += font_height/4 if lowside else font_height/2
text_atts = {'style':str(inkex.Style(text_style)),
'x': str(textpos[0]),
'y': str(textpos[1]) }
text = etree.SubElement(parent, 'text', text_atts)
text.text = "%4.2f deg" %(value)
# chord lines
dash_style = deepcopy(arrow_style)
dash_style['stroke'] = self.color_marker_chords
dash_style['stroke-dasharray'] = '4, 2, 1, 2'
line = self.drawDimension((ptA[0]*unitFactor, ptA[1]*unitFactor), (ptD[0]*unitFactor, ptD[1]*unitFactor), dash_style, parent)
line = self.drawDimension((ptB[0]*unitFactor, ptB[1]*unitFactor), (ptC[0]*unitFactor, ptC[1]*unitFactor), dash_style, parent)
# chord labels
centerx = ptB[0]*unitFactor + (ptC[0]-ptB[0])*unitFactor/2
centery = ptB[1]*unitFactor + (ptC[1]-ptB[1])*unitFactor/2
line_angle = calc_angle_between_points(ptC, ptB)
ypos = centery+font_height+2 if line_angle<0 else centery-2
text_style['fill'] = self.color_marker_chords
text_atts = {'style':str(inkex.Style(text_style)),
'transform': 'rotate(%f)' % (line_angle) }
text = etree.SubElement(parent, 'text', text_atts)
scale_matrix = [[1, 0.0, centerx], [0.0, 1, ypos]] # needs cos,sin corrections
text.transform = Transform(scale_matrix) * text.transform
text.text = "%4.2f" % (chord_base)
if cut_dia >= 0.001:
centerx = ptA[0]*unitFactor + (ptD[0]-ptA[0])*unitFactor/2
centery = ptA[1]*unitFactor + (ptD[1]-ptA[1])*unitFactor/2
xpos = centerx - font_height*math.sin(math.radians(abs(line_angle)))
ypos = centery-2 if line_angle>0 else centery+font_height+2
text = etree.SubElement(parent, 'text', text_atts)
scale_matrix = [[1, 0.0, centerx], [0.0, 1, ypos]]
text.transform = Transform(scale_matrix) * text.transform
text.text = "%4.2f" % (chord_cut)
# frustum lines
frustrum_repos = [[1, 0.0, 1], [0.0, 1, math.sqrt(pow(shortradius*unitFactor,2)-pow(cut_dia*unitFactor/2,2))]]
text_style['fill'] = self.color_marker_base
line_style['stroke'] = self.color_marker_base
arrow_style['stroke'] = self.color_marker_base
line_attribs = {'style': str(inkex.Style(line_style)),
'd': 'M %f,%f L %f,%f %f,%f %f,%f z' %(-cut_dia/2*unitFactor,0, cut_dia/2*unitFactor,0, base_dia/2*unitFactor,cone_height*unitFactor, -base_dia/2*unitFactor,cone_height*unitFactor)}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
line.transform = Transform(frustrum_repos) * line.transform
# ticks
line_attribs = {'style': str(inkex.Style(line_style)),
'd': 'M %f,%f L %f,%f' %(-(5+cut_dia/2*unitFactor),0, -(5+base_dia/2*unitFactor),0 )}
line = etree.SubElement(parent, inkex.addNS('path','svg'), line_attribs)
line.transform = Transform(frustrum_repos) * line.transform
#
line = self.drawDimension((-base_dia/2*unitFactor,0), (-base_dia/2*unitFactor,cone_height*unitFactor), arrow_style, parent)
line.transform = Transform(frustrum_repos) * line.transform
# frustum text
text_atts = {'style':str(inkex.Style(text_style)),
'x': str(-(18+base_dia/2*unitFactor)),
'y': str(cone_height*unitFactor/2) }
text = etree.SubElement(parent, 'text', text_atts)
text.text = "%4.3f" %(cone_height)
2020-08-23 03:05:25 +02:00
text.transform = Transform(frustrum_repos) * text.transform
2020-07-30 01:16:18 +02:00
if cut_dia >= 0.001:
text_atts = {'style':str(inkex.Style(text_style)),
'x': '0',
'y': str(font_height) }
text = etree.SubElement(parent, 'text', text_atts)
text.text = "%4.3f" %(cut_dia)
2020-08-23 03:05:25 +02:00
text.transform = Transform(frustrum_repos) * text.transform
2020-07-30 01:16:18 +02:00
text_atts = {'style':str(inkex.Style(text_style)),
'x': '0',
'y': str(cone_height*unitFactor+font_height) }
text = etree.SubElement(parent, 'text', text_atts)
text.text = "%4.3f" %(base_dia)
text.transform = Transform(frustrum_repos) * text.transform
if __name__ == '__main__':
SheetMetalConus().run()