performance

This commit is contained in:
Casper Lamboo 2018-05-02 16:27:54 +02:00
parent 6c8b8e9d44
commit e966bc89b2

View File

@ -1,14 +1,14 @@
import { subtract, add, normalize, dot, distanceTo, divide, normal } from './vector2.js'; import { subtract, add, normalize, dot, distanceTo, divide, normal } from './vector2.js';
import earcut from 'earcut'; import earcut from 'earcut';
// const TRIANGULATED_OUTLINES = new WeakMap(); const TRIANGULATED_OUTLINES = new WeakMap();
export default function comb(outline, start, end) { export default function comb(outline, start, end) {
if (distanceTo(start, end) < 10) return [start, end]; if (distanceTo(start, end) < 10) return [start, end];
// if (!TRIANGULATED_OUTLINES.has(outline)) TRIANGULATED_OUTLINES.set(outline, decompose(outline)); if (!TRIANGULATED_OUTLINES.has(outline)) TRIANGULATED_OUTLINES.set(outline, decompose(outline));
// const { convexPolygons, vertices } = TRIANGULATED_OUTLINES.get(outline); const { convexPolygons, vertices } = TRIANGULATED_OUTLINES.get(outline);
const { convexPolygons, vertices } = decompose(outline);
const startPolygon = convexPolygons.findIndex(({ face }) => pointIsInsideConvex(start, face, vertices)); const startPolygon = convexPolygons.findIndex(({ face }) => pointIsInsideConvex(start, face, vertices));
const endPolygon = convexPolygons.findIndex(({ face }) => pointIsInsideConvex(end, face, vertices)); const endPolygon = convexPolygons.findIndex(({ face }) => pointIsInsideConvex(end, face, vertices));
if (startPolygon === -1 || endPolygon === -1) return [start, end]; if (startPolygon === -1 || endPolygon === -1) return [start, end];
@ -16,8 +16,8 @@ export default function comb(outline, start, end) {
const path = findClosestPath(convexPolygons, startPolygon, endPolygon); const path = findClosestPath(convexPolygons, startPolygon, endPolygon);
if (!path) return [start, end]; if (!path) return [start, end];
const line = containLineInPath(path, start, end, vertices);
const line = containLineInPath(path, start, end, vertices);
return line; return line;
} }
@ -113,100 +113,102 @@ function decompose(polygon) {
return { vertices, convexPolygons }; return { vertices, convexPolygons };
} }
function findClosestPath(convexPolygons, start, end, visited = [], path = []) { // const distanceMap = new WeakMap();
if (start === end) return []; // function findClosestPath(convexPolygons, start, end, visited = [], path = [], distance = 0) {
// if (start === end) return [];
//
// visited = [...visited, start];
//
// const { connects } = convexPolygons[start];
//
// const finish = connects.find(({ to }) => to === end);
// if (finish) return [...path, finish];
//
// const posibilities = [];
// for (let i = 0; i < connects.length; i ++) {
// const connect = connects[i];
// if (visited.includes(connect.to)) continue;
//
// const positibiltyDistance = distance + connect.distance;
// const posibility = findClosestPath(convexPolygons, connect.to, end, visited, [...path, connect], positibiltyDistance);
// if (posibility) {
// posibilities.push(posibility);
// distanceMap.set(posibility, positibiltyDistance);
// }
// }
//
// if (posibilities.length === 0) {
// return null;
// } else if (posibilities.length === 1) {
// return posibilities[0];
// } else if (posibilities.length > 1) {
// return posibilities.sort((a, b) => distanceMap.get(a) - distanceMap.get(b))[0];
// }
// }
visited = [...visited, start]; const findKey = _key => ({ key }) => _key === key;
function findClosestPath(map, start, end) {
// dijkstra's algorithm
const distances = { [start]: 0 };
const open = [{ key: 0, nodes: [start] }];
const predecessors = {};
const { connects } = convexPolygons[start]; while (open.length !== 0) {
const key = Math.min(...open.map(n => n.key).sort());
const bucket = open.find(findKey(key));
const node = bucket.nodes.shift();
const currentDistance = key;
const { connects } = map[node];
const finish = connects.find(({ to }) => to === end); if (bucket.nodes.length === 0) open.splice(open.indexOf(bucket), 1);
if (finish) return [...path, finish];
const posibilities = []; for (let i = 0; i < connects.length; i ++) {
for (const connect of connects) { const { distance, to } = connects[i];
if (visited.includes(connect.to)) continue; const totalDistance = distance + currentDistance;
const vertexDistance = distances[to];
const posibility = findClosestPath(convexPolygons, connect.to, end, visited, [...path, connect]); if ((typeof vertexDistance === 'undefined') || (vertexDistance > totalDistance)) {
if (posibility) posibilities.push(posibility); distances[to] = totalDistance;
let openNode = open.find(findKey(totalDistance));
if (!openNode) {
openNode = { key: totalDistance, nodes: [] };
open.push(openNode);
}
openNode.nodes.push(to);
predecessors[to] = node;
}
}
} }
if (posibilities.length === 0) { if (typeof distances[end] === 'undefined') return null;
return null;
} else if (posibilities.length === 1) { const nodes = [];
return posibilities[0]; let node = end;
} else if (posibilities.length > 1) { while (typeof node !== 'undefined') {
const distanceMap = new WeakMap(); nodes.push(node);
for (const posibility of posibilities) { node = predecessors[node];
const distance = posibility.reduce((totalDistance, connect) => totalDistance + connect.distance, 0); }
distanceMap.set(posibility, distance); nodes.reverse();
const path = [];
for (let i = 1; i < nodes.length; i ++) {
const from = nodes[i - 1];
const to = nodes[i];
const connection = map[from].connects.find(connect => connect.to === to);
path.push(connection);
} }
return posibilities.sort((a, b) => distanceMap.get(a) - distanceMap.get(b))[0]; return path;
}
} }
// const parse = string => parseFloat(string);
// function findClosestPath(map, start, end) {
// // dijkstra's algorithm
// const costs = { [start]: 0 };
// const open = { [0]: [start] };
// const predecessors = {};
//
// while (open) {
// const keys = Object.keys(open).map(parse);
// if (keys.length === 0) break;
// keys.sort();
//
// const [key] = keys;
// const bucket = open[key];
// const node = bucket.shift();
// const currentCost = key;
// const { connects } = map[node];
//
// if (!bucket.length) delete open[key];
//
// for (const { distance, to } of connects) {
// const totalCost = distance + currentCost;
// const vertexCost = costs[to];
//
// if ((typeof vertexCost === 'undefined') || (vertexCost > totalCost)) {
// costs[to] = totalCost;
//
// if (!open[totalCost]) open[totalCost] = [];
// open[totalCost].push(to);
//
// predecessors[to] = node;
// }
// }
// }
//
// if (typeof costs[end] === 'undefined') return null;
//
// const nodes = [];
// let node = end;
// while (typeof node !== 'undefined') {
// nodes.push(node);
// node = predecessors[node];
// }
// nodes.reverse();
//
// const path = [];
// for (let i = 1; i < nodes.length; i ++) {
// const from = nodes[i - 1];
// const to = nodes[i];
//
// const connection = map[from].connects.find(connect => connect.to === to);
// path.push(connection);
// }
//
// return path;
// }
function containLineInPath(path, start, end, vertices) { function containLineInPath(path, start, end, vertices) {
const line = [start]; const line = [start];
for (const { edge: [indexA, indexB] } of path) { for (let i = 0; i < path.length; i ++) {
const { edge: [indexA, indexB] } = path[i];
const vertexA = vertices[indexA]; const vertexA = vertices[indexA];
const vertexB = vertices[indexB]; const vertexB = vertices[indexB];