papercraft/wireframe.c

313 lines
6.2 KiB
C
Raw Normal View History

2015-01-25 18:34:52 +01:00
/** \file
* Generate an OpenSCAD with cubes for each edge
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <math.h>
#include <err.h>
#include <assert.h>
#include "v3.h"
#ifndef M_PI
#define M_PI 3.1415926535897932384
#endif
static int debug = 0;
static int draw_labels = 0;
typedef struct
{
char header[80];
uint32_t num_triangles;
} __attribute__((__packed__))
stl_header_t;
typedef struct
{
v3_t normal;
v3_t p[3];
uint16_t attr;
} __attribute__((__packed__))
stl_face_t;
typedef struct face face_t;
typedef struct poly poly_t;
struct face
{
float sides[3];
face_t * next[3];
int next_edge[3];
int coplanar[3];
int used[3];
2015-01-25 18:34:52 +01:00
};
// once this triangle has been used, it will be placed
// in a polygon group and fixed in a position relative to that group
struct poly
{
int start_edge;
int printed;
// local coordinates of the triangle vertices
float a;
float x2;
float y2;
float rot;
// absolute coordintes of the triangle vertices
float p[3][2];
// todo: make this const and add backtracking
face_t * face;
poly_t * next[3];
poly_t * work_next;
};
/* Compare two edges in two triangles.
*
* note that if the windings are all the same, the edges will
* compare in the opposite order (for example, the edge from 0 to 1
* compares to the edge from 2 to 1 in the other triangle).
*/
static int
edge_eq2(
const stl_face_t * const t0,
const stl_face_t * const t1,
int e0,
int e1
)
{
const v3_t * const v00 = &t0->p[e0];
const v3_t * const v01 = &t0->p[(e0+1) % 3];
const v3_t * const v10 = &t1->p[e1];
const v3_t * const v11 = &t1->p[(e1+1) % 3];
if (v3_eq(v00, v11) && v3_eq(v01, v10))
return 1;
return 0;
}
/* Returns the 0 for coplanar, negative for mountain, positive for valley.
* (approximates the angle between two triangles that share one edge).
*/
int
coplanar_check(
const stl_face_t * const f1,
const stl_face_t * const f2
)
{
// find the four distinct points
v3_t x1 = f1->p[0];
v3_t x2 = f1->p[1];
v3_t x3 = f1->p[2];
v3_t x4;
for (int i = 0 ; i < 3 ; i++)
{
x4 = f2->p[i];
if (v3_eq(&x1, &x4))
continue;
if (v3_eq(&x2, &x4))
continue;
if (v3_eq(&x3, &x4))
continue;
break;
}
// (x3-x1) . ((x2-x1) X (x4-x3)) == 0
v3_t dx31 = v3_sub(x3, x1);
v3_t dx21 = v3_sub(x2, x1);
v3_t dx43 = v3_sub(x4, x3);
v3_t cross = v3_cross(dx21, dx43);
float dot = v3_dot(dx31, cross);
int check = -EPS < dot && dot < +EPS;
if (debug) fprintf( stderr, "%p %p %s: %f\n", f1, f2, check ? "yes" : "no", dot);
return (int) dot;
}
/** Translate a list of STL triangles into a connected graph of faces.
*
* If there are any triangles that do not have three connected edges,
* the first error will be reported and NULL will be returned.
*/
face_t *
stl2faces(
const stl_face_t * const stl_faces,
const int num_triangles
)
{
face_t * const faces = calloc(num_triangles, sizeof(*faces));
// convert the stl triangles into faces
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
if (debug) fprintf(stderr, "%p %f %f %f\n",
f, f->sides[0], f->sides[1], f->sides[2]);
}
// look to see if there is a matching point
// in the faces that we've already built
for (int i = 0 ; i < num_triangles ; i++)
{
const stl_face_t * const stl = &stl_faces[i];
face_t * const f = &faces[i];
for (int j = 0 ; j < num_triangles ; j++)
{
if (i == j)
continue;
const stl_face_t * const stl2 = &stl_faces[j];
face_t * const f2 = &faces[j];
for (int edge = 0 ; edge < 3 ; edge++)
{
if (f->next[edge])
continue;
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
{
if (f2->next[edge2])
continue;
if (!edge_eq2(stl, stl2, edge, edge2))
continue;
f->next[edge] = f2;
f->next_edge[edge] = edge2;
f2->next[edge2] = f;
f2->next_edge[edge2] = edge;
f->coplanar[edge] =
f2->coplanar[edge2] = coplanar_check(stl, stl2);
}
}
}
// all three edges should be matched
if (f->next[0] && f->next[1] && f->next[2])
continue;
fprintf(stderr, "%d missing edges?\n", i);
free(faces);
return NULL;
}
return faces;
}
static inline float
sign(
const float x
)
{
if (x < 0)
return -1;
if (x > 0)
return +1;
return 0;
}
int main(void)
{
const size_t max_len = 1 << 20;
uint8_t * const buf = calloc(max_len, 1);
ssize_t rc = read(0, buf, max_len);
if (rc == -1)
return EXIT_FAILURE;
const stl_header_t * const hdr = (const void*) buf;
const stl_face_t * const stl_faces = (const void*)(hdr+1);
const int num_triangles = hdr->num_triangles;
const float thick = 1;
const int do_square = 0;
fprintf(stderr, "header: '%s'\n", hdr->header);
fprintf(stderr, "num: %d\n", num_triangles);
face_t * const faces = stl2faces(stl_faces, num_triangles);
2015-01-25 18:34:52 +01:00
for (int i = 0 ; i < num_triangles ; i++)
{
//if (i > 20) break;
const stl_face_t * const raw = &stl_faces[i];
face_t * const f = &faces[i];
2015-01-25 18:34:52 +01:00
for (int j = 0 ; j < 3 ; j++)
{
// if this edge is coplanar with the other
// triangle, do not output it.
if (f->coplanar[j] == 0)
continue;
// if we have already transited this edge
if (f->used[j])
continue;
f->used[j] = 1;
const v3_t * const p1 = &raw->p[(j+0) % 3];
const v3_t * const p2 = &raw->p[(j+1) % 3];
2015-01-25 18:34:52 +01:00
const float len = v3_len(p1,p2);
const v3_t d = v3_sub(*p2, *p1);
if (len == 0)
continue;
printf("translate([%f,%f,%f]) sphere(r=%f);\n",
p1->p[0], p1->p[1], p1->p[2],
4*thick
);
2015-01-25 18:34:52 +01:00
const float b = acos(d.p[2] / len) * 180/M_PI;
const float c = d.p[0] == 0 ? sign(d.p[1]) * 90 : atan2(d.p[1], d.p[0]) * 180/M_PI;
//
// generate a cube that goes from
// p1 to p2.
printf("%%translate([%f,%f,%f]) rotate([%f,%f,%f]) ",
2015-01-25 18:34:52 +01:00
p1->p[0], p1->p[1], p1->p[2],
0.0, b, c
);
if (do_square)
{
printf("translate([0,0,%f]) cube([%f,%f,%f], center=true);\n",
len/2,
thick,
thick,
len
);
} else {
printf("cylinder(r=%f, h=%f);\n",
thick,
len
);
}
}
}
return 0;
}