313 lines
6.2 KiB
C
313 lines
6.2 KiB
C
/** \file
|
|
* Generate an OpenSCAD with cubes for each edge
|
|
*
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <math.h>
|
|
#include <err.h>
|
|
#include <assert.h>
|
|
#include "v3.h"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.1415926535897932384
|
|
#endif
|
|
|
|
static int debug = 0;
|
|
static int draw_labels = 0;
|
|
|
|
typedef struct
|
|
{
|
|
char header[80];
|
|
uint32_t num_triangles;
|
|
} __attribute__((__packed__))
|
|
stl_header_t;
|
|
|
|
|
|
typedef struct
|
|
{
|
|
v3_t normal;
|
|
v3_t p[3];
|
|
uint16_t attr;
|
|
} __attribute__((__packed__))
|
|
stl_face_t;
|
|
|
|
|
|
typedef struct face face_t;
|
|
typedef struct poly poly_t;
|
|
|
|
struct face
|
|
{
|
|
float sides[3];
|
|
face_t * next[3];
|
|
int next_edge[3];
|
|
int coplanar[3];
|
|
int used[3];
|
|
};
|
|
|
|
// once this triangle has been used, it will be placed
|
|
// in a polygon group and fixed in a position relative to that group
|
|
struct poly
|
|
{
|
|
int start_edge;
|
|
int printed;
|
|
|
|
// local coordinates of the triangle vertices
|
|
float a;
|
|
float x2;
|
|
float y2;
|
|
float rot;
|
|
|
|
// absolute coordintes of the triangle vertices
|
|
float p[3][2];
|
|
|
|
// todo: make this const and add backtracking
|
|
face_t * face;
|
|
poly_t * next[3];
|
|
|
|
poly_t * work_next;
|
|
};
|
|
|
|
|
|
/* Compare two edges in two triangles.
|
|
*
|
|
* note that if the windings are all the same, the edges will
|
|
* compare in the opposite order (for example, the edge from 0 to 1
|
|
* compares to the edge from 2 to 1 in the other triangle).
|
|
*/
|
|
static int
|
|
edge_eq2(
|
|
const stl_face_t * const t0,
|
|
const stl_face_t * const t1,
|
|
int e0,
|
|
int e1
|
|
)
|
|
{
|
|
const v3_t * const v00 = &t0->p[e0];
|
|
const v3_t * const v01 = &t0->p[(e0+1) % 3];
|
|
|
|
const v3_t * const v10 = &t1->p[e1];
|
|
const v3_t * const v11 = &t1->p[(e1+1) % 3];
|
|
|
|
if (v3_eq(v00, v11) && v3_eq(v01, v10))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/* Returns the 0 for coplanar, negative for mountain, positive for valley.
|
|
* (approximates the angle between two triangles that share one edge).
|
|
*/
|
|
int
|
|
coplanar_check(
|
|
const stl_face_t * const f1,
|
|
const stl_face_t * const f2
|
|
)
|
|
{
|
|
// find the four distinct points
|
|
v3_t x1 = f1->p[0];
|
|
v3_t x2 = f1->p[1];
|
|
v3_t x3 = f1->p[2];
|
|
v3_t x4;
|
|
|
|
for (int i = 0 ; i < 3 ; i++)
|
|
{
|
|
x4 = f2->p[i];
|
|
if (v3_eq(&x1, &x4))
|
|
continue;
|
|
if (v3_eq(&x2, &x4))
|
|
continue;
|
|
if (v3_eq(&x3, &x4))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
// (x3-x1) . ((x2-x1) X (x4-x3)) == 0
|
|
v3_t dx31 = v3_sub(x3, x1);
|
|
v3_t dx21 = v3_sub(x2, x1);
|
|
v3_t dx43 = v3_sub(x4, x3);
|
|
v3_t cross = v3_cross(dx21, dx43);
|
|
float dot = v3_dot(dx31, cross);
|
|
|
|
int check = -EPS < dot && dot < +EPS;
|
|
if (debug) fprintf( stderr, "%p %p %s: %f\n", f1, f2, check ? "yes" : "no", dot);
|
|
return (int) dot;
|
|
}
|
|
|
|
|
|
/** Translate a list of STL triangles into a connected graph of faces.
|
|
*
|
|
* If there are any triangles that do not have three connected edges,
|
|
* the first error will be reported and NULL will be returned.
|
|
*/
|
|
face_t *
|
|
stl2faces(
|
|
const stl_face_t * const stl_faces,
|
|
const int num_triangles
|
|
)
|
|
{
|
|
face_t * const faces = calloc(num_triangles, sizeof(*faces));
|
|
|
|
// convert the stl triangles into faces
|
|
for (int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
const stl_face_t * const stl = &stl_faces[i];
|
|
face_t * const f = &faces[i];
|
|
|
|
f->sides[0] = v3_len(&stl->p[0], &stl->p[1]);
|
|
f->sides[1] = v3_len(&stl->p[1], &stl->p[2]);
|
|
f->sides[2] = v3_len(&stl->p[2], &stl->p[0]);
|
|
if (debug) fprintf(stderr, "%p %f %f %f\n",
|
|
f, f->sides[0], f->sides[1], f->sides[2]);
|
|
}
|
|
|
|
// look to see if there is a matching point
|
|
// in the faces that we've already built
|
|
for (int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
const stl_face_t * const stl = &stl_faces[i];
|
|
face_t * const f = &faces[i];
|
|
|
|
for (int j = 0 ; j < num_triangles ; j++)
|
|
{
|
|
if (i == j)
|
|
continue;
|
|
|
|
const stl_face_t * const stl2 = &stl_faces[j];
|
|
face_t * const f2 = &faces[j];
|
|
|
|
for (int edge = 0 ; edge < 3 ; edge++)
|
|
{
|
|
if (f->next[edge])
|
|
continue;
|
|
|
|
for (int edge2 = 0 ; edge2 < 3 ; edge2++)
|
|
{
|
|
if (f2->next[edge2])
|
|
continue;
|
|
|
|
if (!edge_eq2(stl, stl2, edge, edge2))
|
|
continue;
|
|
|
|
f->next[edge] = f2;
|
|
f->next_edge[edge] = edge2;
|
|
f2->next[edge2] = f;
|
|
f2->next_edge[edge2] = edge;
|
|
|
|
f->coplanar[edge] =
|
|
f2->coplanar[edge2] = coplanar_check(stl, stl2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// all three edges should be matched
|
|
if (f->next[0] && f->next[1] && f->next[2])
|
|
continue;
|
|
fprintf(stderr, "%d missing edges?\n", i);
|
|
free(faces);
|
|
return NULL;
|
|
}
|
|
|
|
return faces;
|
|
}
|
|
|
|
static inline float
|
|
sign(
|
|
const float x
|
|
)
|
|
{
|
|
if (x < 0)
|
|
return -1;
|
|
if (x > 0)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int main(void)
|
|
{
|
|
const size_t max_len = 1 << 20;
|
|
uint8_t * const buf = calloc(max_len, 1);
|
|
|
|
ssize_t rc = read(0, buf, max_len);
|
|
if (rc == -1)
|
|
return EXIT_FAILURE;
|
|
|
|
const stl_header_t * const hdr = (const void*) buf;
|
|
const stl_face_t * const stl_faces = (const void*)(hdr+1);
|
|
const int num_triangles = hdr->num_triangles;
|
|
const float thick = 1;
|
|
const int do_square = 0;
|
|
|
|
fprintf(stderr, "header: '%s'\n", hdr->header);
|
|
fprintf(stderr, "num: %d\n", num_triangles);
|
|
|
|
face_t * const faces = stl2faces(stl_faces, num_triangles);
|
|
|
|
for (int i = 0 ; i < num_triangles ; i++)
|
|
{
|
|
//if (i > 20) break;
|
|
const stl_face_t * const raw = &stl_faces[i];
|
|
face_t * const f = &faces[i];
|
|
for (int j = 0 ; j < 3 ; j++)
|
|
{
|
|
// if this edge is coplanar with the other
|
|
// triangle, do not output it.
|
|
if (f->coplanar[j] == 0)
|
|
continue;
|
|
|
|
// if we have already transited this edge
|
|
if (f->used[j])
|
|
continue;
|
|
|
|
f->used[j] = 1;
|
|
|
|
const v3_t * const p1 = &raw->p[(j+0) % 3];
|
|
const v3_t * const p2 = &raw->p[(j+1) % 3];
|
|
const float len = v3_len(p1,p2);
|
|
const v3_t d = v3_sub(*p2, *p1);
|
|
if (len == 0)
|
|
continue;
|
|
|
|
printf("translate([%f,%f,%f]) sphere(r=%f);\n",
|
|
p1->p[0], p1->p[1], p1->p[2],
|
|
4*thick
|
|
);
|
|
|
|
|
|
const float b = acos(d.p[2] / len) * 180/M_PI;
|
|
const float c = d.p[0] == 0 ? sign(d.p[1]) * 90 : atan2(d.p[1], d.p[0]) * 180/M_PI;
|
|
//
|
|
// generate a cube that goes from
|
|
// p1 to p2.
|
|
printf("%%translate([%f,%f,%f]) rotate([%f,%f,%f]) ",
|
|
p1->p[0], p1->p[1], p1->p[2],
|
|
0.0, b, c
|
|
);
|
|
|
|
if (do_square)
|
|
{
|
|
printf("translate([0,0,%f]) cube([%f,%f,%f], center=true);\n",
|
|
len/2,
|
|
thick,
|
|
thick,
|
|
len
|
|
);
|
|
} else {
|
|
printf("cylinder(r=%f, h=%f);\n",
|
|
thick,
|
|
len
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return 0;
|
|
}
|